LIU Yao, FAN Yongkang, WU Xiaoqin, et al. Study on Properties of Quercetin-loaded Enzymatic Glycosylated Casein Composite Nanoparticles[J]. Science and Technology of Food Industry, 2021, 42(15): 64−71. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110211.
Citation: LIU Yao, FAN Yongkang, WU Xiaoqin, et al. Study on Properties of Quercetin-loaded Enzymatic Glycosylated Casein Composite Nanoparticles[J]. Science and Technology of Food Industry, 2021, 42(15): 64−71. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110211.

Study on Properties of Quercetin-loaded Enzymatic Glycosylated Casein Composite Nanoparticles

More Information
  • Received Date: November 22, 2020
  • Available Online: May 31, 2021
  • Objective: To prepare quercetin loaded casein nanoparticles (n-Cas-Que) and transglutaminase glycosylated casein nanoparticles (n-Cas-Cos-Que), and explore their storage stability, in vitro anti digestibilitiy, bioaccessibility, anti-oxidation and inhibitory effect on human prostate cancer PC-3 cells. The results showed that when stored in 4 ℃ avoid light, 25 ℃ avoid light and 25 ℃ natural light for 60 days, the retention rates of quercetin in n-Cas-Que and n-Cas-Cos-Que were 80.78%, 91.30%, 66.87%, 79.25%, 22.18%, 34.33%, respectively, which indicated that n-Cas-Cos-Que nanoparticles could protect quercetin better.The results of anti-digestion pointed out that n-Cas-Cos-Que had better anti-digestibility and higher bioavailability than n-Cas-Que. After 180 min of simulated digestion in vitro, the bioaccessibility of quercetin aqueous solution, n-Cas-Que and n-Cas-Cos-Que were 10.13%, 27.65% and 48.91%, respectively. DPPH method and ABTS method were used to investigate the antioxidant activity of the two nanoparticles. The scavenging rates of n-Cas-Cos-Que and n-Cas-Que on DPPH and ABTS were 58.71%, 53.82% and 56.98% and 48.34%, respectively, which indicated that n-Cas-Cos-Que had better antioxidant activity than n-Cas-Que. The inhibition of human prostate cancer PC-3 cells expressed that with the increase of quercetin concentration, the inhibitory effects of Que, n-Cas-Que and n-Cas-Cos-Que on PC-3 cells were gradually enhanced. When the concentration of quercetin reached 80 μg/mL, the survival rates of PC-3 cells treated with Que, n-Cas-Que and n-Cas-Cos-Que were 73.25%, 56.84% and 49.88% respectively, and there were significant differences among these survival rates (P<0.05). Compared with Que and n-Cas-Que, n-Cas-Cos-Que nanoparticles had better inhibitory effect on PC-3 cells. The results showed that casein nanoparticles can protect quercetin well, and enzymatic glycosylation can improve its protective effect on quercetin, and raise its anti digestion and biological accessibility, as well as antioxidant and anti-cancer activity.
  • [1]
    Alinezhad H, Azimi R, Zare M, et al. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. var. angustifolius[J]. International Journal of Food Properties,2013,16(4-5-6):1169−1178.
    [2]
    Arias N, Macarulla M T, Aguirre L, et al. Quercetin can reduce insulin resistance without decreasing adipose tissue and skeletal muscle fat accumulation[J]. Genes & Nutrition,2014,9(1):361.
    [3]
    郭艳芳, 张皓, 朱玲, 等. 槲皮素改善糖尿病肥胖大鼠糖脂代谢紊乱及总胆固醇的作用[J]. 解剖学研究,2018,40(6):505−509. doi: 10.3969/j.issn.1671-0770.2018.06.012
    [4]
    Nabavi S F, Russo G L, Daglia M, et al. Role of quercetin as an alternative for obesity treatment: You are what you eat[J]. Food Chemistry,2015(7):305−310.
    [5]
    Yuan K, Zhu Q Q, Lu Q Y, et al. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities[J]. The Journal of Nutritional Biochemistry,2020:108454.
    [6]
    洪志伟, 孟令宇, 葛雅琨, 等. 槲皮素对大肠杆菌和金黄色葡萄球菌的体外抑菌作用的研究[J]. 吉林化工学院学报,2017,34(5):38−41.
    [7]
    Cai X, Fang Z, Dou J, et al. Bioavailability of quercetin: Problems and promises[J]. Current Medicinal Chemistry,2013(20):2572−2582.
    [8]
    樊永康, 刘健华, 刘尧, 等. 负载槲皮素的酶法糖基化酪蛋白复合纳米粒子的构建与表征[J]. 食品工业科技, 2021, 42(8): 49−57.
    [9]
    Pelaz B, Alexiou C, Alvarez Puebla R, et al. Diverse applications of nanomedicine[J]. Acs Nano,2017,11(3):2313−2381. doi: 10.1021/acsnano.6b06040
    [10]
    Park J, Park J, Pei Y H, et al. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines[J]. Advanced Drug Delivery Reviews,2015,104:93−109.
    [11]
    张文君, 吴梦婷, 张国锋, 等. 白藜芦醇纳米传递系统的研究进展[J/OL]. 食品科学: 1-11[2021-01-10]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201212.0811.004.html.
    [12]
    姜伟明, 郭圣荣. 载体材料在改善纳米粒肠道吸收研究中的应用[J]. 南京中医药大学学报,2013(3):297−300. doi: 10.3969/j.issn.1000-5005.2013.03.027
    [13]
    Anselmo A C, Mitragotri S. Nanoparticles in the clinic[J]. Bioengineering & Translational Medicine,2016,1(1):10−29.
    [14]
    Chen Y F, Zhao Z L, Guo X B, et al. Fabrication and characterization of zein/lactoferrin composite nanoparticles for encapsulating 7, 8-dihydroxyflavone: Enhancement of stability, water solubility and bioaccessibility[J]. International Journal of Biological Macromolecules,2020,146:179−192. doi: 10.1016/j.ijbiomac.2019.12.251
    [15]
    于钰. 酪蛋白自组装纳米粒的超声制备及其应用[D]. 青岛: 中国海洋大学, 2012.
    [16]
    闵敏. 糖基化酪蛋白的制备、及其性能和应用研究[D]. 杭州: 浙江工商大学, 2017.
    [17]
    冯进. 基于葡萄糖双子表面活性剂和卵白蛋白的生物活性物质载体制备和特性研究[D]. 杭州: 浙江大学, 2017.
    [18]
    刘夫国. 蛋白质-多酚-碳水化合物共价复合物制备及其对功能因子稳态作用[D]. 北京: 中国农业大学, 2017.
    [19]
    赵波. 沙棘黄酮提取及体外抑制人前列腺癌PC-3细胞作用研究[D]. 杭州: 浙江大学, 2018.
    [20]
    游丽君, 刘敏, 林恋竹, 等. 载荷槲皮素的酪蛋白纳米粒子输送载体的构建[J]. 华南理工大学学报( 自然科学版),2017(45):139−145.
    [21]
    Feng J, Lin C, Wang H, et a1. Decoration of gemini alkyl O-glucosides based vesicles by electrostatic deposition of sodium carboxymethyl cellullose: Mechanism, structure and improved stability[J]. Food Hydrocolloid,2016,58:284−297. doi: 10.1016/j.foodhyd.2016.03.012
    [22]
    Zou L, Zheng B, Zhang R, et al. Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: Comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions[J]. Rsc Advances,2016,6:3126−3136. doi: 10.1039/C5RA22834D
    [23]
    Geno X, Cui B, Li Y, et al. Preparation and characterization of ovalbumin and carboxymethyl cellulose conjugates via glycosylation[J]. Food Hydrocolloids,2014,37:86−92. doi: 10.1016/j.foodhyd.2013.10.027
    [24]
    Horne D S. Casein structure, self-assembly and gelation[J]. Current opinion in colloid & interface science,2002,7(5-6):456−461.
    [25]
    Salvia T L, Qian C, Martin B O, et al. Influence of particle size on lipid digestion and beta-carotene bio-accessibility in emulsions and nano emulsions[J]. Food Chemistry,2013,141:1472−1480. doi: 10.1016/j.foodchem.2013.03.050
    [26]
    Sarkar A, Horne D S, Singh H. Interactions of milk protein-stabilized oil-in-water emulsions with bile salts in a simulated upper intestinal model[J]. Food Hydrocolloids,2010,24:142−51. doi: 10.1016/j.foodhyd.2009.08.012
    [27]
    Muhoza B, Zhang Y, Xia S, et al. Improved stability and controlled release of lutein-loaded micelles based on glycosylated casein via Maillard reaction[J]. Journal of Functional Foods,2018,45:1−9. doi: 10.1016/j.jff.2018.03.035
    [28]
    Francisco R, Carmen L D, Cinco-Moroyoqui F J, et al. Preparation and characterization of quercetin-loaded zein nanoparticles by electrospraying and study of in vitro bioavailability[J]. Journal of Food Science,2019,84(2):2883−2897.
    [29]
    Khan M K, Rakotomanomana N, Dufour C, et al. Binding of citrus flavanones and their glucuronides and chalcones to human serum albumin[J]. Food & Function,2011,2(10):617−626.
    [30]
    Gogary E, Riham I, Rubio, et al. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo[J]. ACS Nano,2014,8(2):1384−1401. doi: 10.1021/nn405155b
    [31]
    Moon J H, Eo S K, Lee J H. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death[J]. Oncology Reports,2015,34(1):375−380. doi: 10.3892/or.2015.3991
    [32]
    Angst E, Park J L, Moro A, et al. The flavonoid quercetin inhibits pancreatic cancer growth in vitro and in vivo[J]. Pancreas,2013,42(2):223−229. doi: 10.1097/MPA.0b013e318264ccae
    [33]
    Schroeder L, Marahrens P, Koch J G, et al. Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF -7 and MDA-MB-231 breast carcinoma cells[J]. Oncology Reports,2019,41(1):387−396.
    [34]
    郝建鹏. 槲皮素纳米微胶囊的制备及性能研究[D]. 杨凌: 西北农林科技大学, 2016.
  • Cited by

    Periodical cited type(2)

    1. 杨春霞,王芳焕. 贺兰山东麓产区酿酒葡萄中高氯酸盐暴露风险评估. 食品安全质量检测学报. 2024(08): 298-305 .
    2. 陈秋宇,梁江,王小丹,张磊,魏晟. 我国重点和非重点地区居民膳食中高氯酸盐暴露风险概率评估. 中国食品卫生杂志. 2023(12): 1740-1748 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (224) PDF downloads (17) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return