LIU Chao, LI Kun, BAI Xiaoxuan, et al. Analysis of Gene Clusters for Sanxiapeptin Biosynthesis by Transcriptomic Sequencing [J]. Science and Technology of Food Industry, 2021, 42(13): 156−162. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110192.
Citation: LIU Chao, LI Kun, BAI Xiaoxuan, et al. Analysis of Gene Clusters for Sanxiapeptin Biosynthesis by Transcriptomic Sequencing [J]. Science and Technology of Food Industry, 2021, 42(13): 156−162. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110192.

Analysis of Gene Clusters for Sanxiapeptin Biosynthesis by Transcriptomic Sequencing

More Information
  • Received Date: November 22, 2020
  • Available Online: April 22, 2021
  • In order to explore the biosynthesis mechanism of the sanxiapeptin, the BGISEQ-500 platform was used to determine cDNA library when the SG-4 was cultured at 200 mL for 4, 7 d and 300 mL for 7 d, and RNA-seq analysis 6.42 Gb data generated by high-throughput sequencing without reference genome. The results showed that the transcriptome sequence alignment rate was as high as 93.88%, it was found that the differential genes were mainly concentrated in the pathways of antibiotic synthesis, substance transport and redox metabolism. In the non-ribosomal peptide synthetase (NRPS, Non-ribosomal peptide synthetase) gene cluster PDE_01071, the expression trends of 21 genes were completely consistent with the content of substances, it suggested that the gene cluster PDE_01071 might be responsible for the synthesis of sanxiapeptin.
  • [1]
    Vogt E, Künzler M. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics[J]. Applied Microbiology Biotechnology,2019,103(14):5567−5581.
    [2]
    Süssmuth R, Müller J, Von Döhren H, et al. Fungal cyclooligomer depsipeptides: From classical biochemistry to combinatorial biosynthesis[J]. Natural Product Reports,2011,28(1):99−124. doi: 10.1039/C001463J
    [3]
    Abulfathi A A, Chirehwa M, Rosenkranz B, et al. Evaluation of the effectiveness of dose individualization to achieve therapeutic vancomycin concentrations[J]. Journal Clinical Pharmacology,2018,58(9):1134−1139. doi: 10.1002/jcph.1254
    [4]
    Yang X, Feng P, Yin Y, et al. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment[J]. Molecular Biology and Physiology,2018,9(5):e01211−e01218.
    [5]
    Zhao P, Xue Y, Li X, et al. Fungi-derived lipopeptide antibiotics developed since 2000[J]. Peptides,2019(113):52−65.
    [6]
    Ramm S, Krawczyk B, Süssmuth R D, et al. A Self-sacrificing N-methyltransferase is the precursor of the fungal natural product omphalotin[J]. Angewandte Chemie (International ed. in English),2017,56(33):9994−9997.
    [7]
    Nuti R, Goud N S, Saraswati A P, et al. Antimicrobial peptides: A promising therapeutic strategy in tackling antimicrobial resistance[J]. Current Medicinal Chemistry,2017,24:4303−4314.
    [8]
    Reimer J M, Aloise M N, Harrison P M, et al. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase[J]. Nature,2016,529:239−242. doi: 10.1038/nature16503
    [9]
    张晨曦. 两种核糖体肽类天然产物的生物合成机制研究[D]. 上海: 上海师范大学, 2017.
    [10]
    Luo S, Dong S H. Recent advances in the discovery and biosynthetic study of eukaryotic RiPP natural products[J]. Molecules,2019,24(8):1541. doi: 10.3390/molecules24081541
    [11]
    Ortega M A, van der Donk W A. New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products[J]. Cell Chemical Biology,2016,23(1):31−44. doi: 10.1016/j.chembiol.2015.11.012
    [12]
    Ding W, Liu W Q, Jia Y, et al. Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in ascomycetes[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(13):3521−3526. doi: 10.1073/pnas.1522907113
    [13]
    Hudson G A, Mitchell D A. RiPP antibiotics: Biosynthesis and engineering potential[J]. Current Opinion in Microbiology,2018,45:61−69. doi: 10.1016/j.mib.2018.02.010
    [14]
    Singh M, Chaudhary S, Sareen D. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product[J]. Journal of Biosciences,2017,42(1):175−187.
    [15]
    韩梦瑶, 陈晶晶, 朱平, 等. 非核糖体肽合成酶研究进展[J]. 药学学报,2018,53(7):1080−1089.
    [16]
    潘园园, 刘钢. 中国丝状真菌次级代谢分子调控研究进展[J]. 遗传,2018,40(10):874−887.
    [17]
    Niu X, Thaochan N, Hu Q. Diversity of linear non-ribosomal peptide in biocontrol fungi[J]. Journal of Fungi,2020,6(2):61. doi: 10.3390/jof6020061
    [18]
    Boddy C N. Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides[J]. J Ind Microbiol Biotechnol,2014,41:443−450. doi: 10.1007/s10295-013-1368-1
    [19]
    Steiniger C, Hoffmann S, Süssmuth R D, et al. Harnessing fungal nonribosomal cyclodepsipeptide synthetases for mechanistic insights and tailored engineering[J]. Chemical Science,2017,8(11):7834−7843. doi: 10.1039/C7SC03093B
    [20]
    Prieto C, García-Estrada C, Martín J F, et al. NRPSsp: Non-ribosomal peptide synthase substrate predictor[J]. Bioinformatics,2012,28(3):426−427.
    [21]
    Röttig M, Blin K, Kohlbacher O, et al. NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity[J]. Nucleic Acids Research,2011,39:362−367.
    [22]
    Rodríguez-García A, Sola-Landa A, Barreiro C. RNA-Seq-Based comparative transcriptomics: RNA preparation and bioinformatics[J]. Methods in Molecular Biology,2017,1645:59−72.
    [23]
    Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdisciplinary Reviews-RNA,2017,8(1):10.
    [24]
    雷秀云. 基于RNA-Seq技术的竹红菌甲素和20-羟基蜕皮甾酮的生物合成研究[D]. 苏州: 苏州大学, 2017.
    [25]
    刘凤娟. 基于转录组学和代谢组学分析的山黧豆β-ODAP生物合成机制分析[D]. 咸阳: 西北农林科技大学, 2019.
    [26]
    刘伟, 王俊燚, 李萌, 等. 基于转录组测序的银杏类黄酮生物合成关键基因表达分析[J]. 中草药,2018,49(23):5633−5639. doi: 10.7501/j.issn.0253-2670.2018.23.024
    [27]
    杨宇纯, 肖梅, 薛艳红, 等. 草酸青霉中新型线性五肽的发现及对柑橘采后致腐菌拮抗活性研究[J]. 微生物学通报,2020,47 (2):481−489.
    [28]
    杨宇纯. 草酸青霉(Penicillium oxalicum)的线性五肽抑制柑橘采后致腐菌活性研究[D]. 宜昌: 三峡大学, 2020.
    [29]
    贾泽, 江云, 王智玮, 等. 炭样小单孢菌 JXNU-1 抗生素合成的转录组学分析[J]. 基因组学与应用生物学,2018,37(9):3817−3828.
    [30]
    魏春梅, 栾威, 代娅, 等. 比较转录组研究钛离子对紫花苜蓿基因表达的影响[J]. 应用与环境生物学,2019,25 (1):117−127.
    [31]
    贺润丽, 王晓英, 韩毅丽, 等. 利用转录组分析款冬萜类化合物生物合成关键酶基因及表达特征[J]. 中草药,2020,51(20):5302−5310. doi: 10.7501/j.issn.0253-2670.2020.20.024
    [32]
    刘超, 宋瑾怡, 熊泽, 等. 草酸青霉线性五肽生物合成的比较转录组分析[J]. 食品与生物技术学报, 2021, 40(5): 37−44. doi:10.3969/j.issn. 1673-1689.2021.05.005.
  • Cited by

    Periodical cited type(10)

    1. 宋永贵,陈运丽,苏丹,李前民,李惠珍,艾志福,杨明,朱根华,陈丽玲. 龙骨-牡蛎通过调节肠道微生态增强柴胡加龙骨牡蛎汤的抗抑郁效应. 中成药. 2025(02): 625-633 .
    2. 崔雨婷,张方圆,许伟明,李子贇,胡镜清. 基于肠道菌群与冠心病的关系探讨“阴火”科学内涵. 世界中医药. 2024(09): 1279-1285 .
    3. 叶清珠,王苗苗. 植物抗菌色素在抗菌纺织品中的应用. 上海纺织科技. 2024(07): 8-11+17 .
    4. 尹东,杜丽坤,徐洪涛,任那,张天昊. 基于肠道菌群探析中医药治疗肥胖的研究进展. 西部中医药. 2024(09): 111-114 .
    5. 王其龙,杨景森,黄凯勇,朱翠. 小檗碱调控动物肠道菌群稳态的研究进展. 中国畜牧杂志. 2022(02): 23-26+31 .
    6. 罗晓璐,李丽娜,黎京荣,彭啸峰,吴鹏,朱翠. 饲喂有抗或无抗饲粮的黄羽肉鸡在不同日龄下肠道菌群的变化. 广东畜牧兽医科技. 2022(01): 6-13 .
    7. 余佳,高欣悦,付凤萍,吴建英,余琳,陈红英. 半仿生-比色法测定三黄泻心汤中总生物碱的溶出量. 湖北农业科学. 2022(03): 140-143 .
    8. 柯群华,彭晶,王胜义. 中药与肠道菌群及其代谢相关研究进展. 中兽医医药杂志. 2022(02): 35-40 .
    9. 刘良浩,蒋志滨,于海洋,吴志斌,李泠君,唐甜,高洁. 黄连素缓解肠易激综合征作用机制的研究进展. 中国病理生理杂志. 2022(05): 944-948 .
    10. 姚广丰,张奇,张楠,隋玲玲,刘佳,李威,胡铁军. 盐酸小檗碱相关杂质的合成. 辽宁化工. 2022(06): 763-765 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return