LIU Dawei. Optimization Purification Process of Polysaccharides from Scutellaria baicalensis Georgi by Macroporous Resins and Its Antibacterial Activity[J]. Science and Technology of Food Industry, 2021, 42(15): 183−188. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110170.
Citation: LIU Dawei. Optimization Purification Process of Polysaccharides from Scutellaria baicalensis Georgi by Macroporous Resins and Its Antibacterial Activity[J]. Science and Technology of Food Industry, 2021, 42(15): 183−188. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110170.

Optimization Purification Process of Polysaccharides from Scutellaria baicalensis Georgi by Macroporous Resins and Its Antibacterial Activity

More Information
  • Received Date: November 17, 2020
  • Available Online: June 01, 2021
  • To optimize the purification conditions of polysaccharides extract from Scutellaria baicalensis Georgi by macroporous resin, the suitable macroporous resin was selected through performance comparison of static adsorption and elution of macroporous resins of different types, and the optimum conditions were confirmed by dynamic adsorption and elution tests. Meanwhile, the resistant abilities against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis were detected by filtering paper method. The results showed that the adsorption curves that AB-8 macroporous resin adsorbed polysaccharides of Scutellaria baicalensis Georgi accorded with the Langmuir mode feature. The optimum purification conditions were as follows: 60 mL polysaccharides extract solution of concentration 3 mg/mL (pH 5.0) was made and adsorbed by AB-8 macroporous resin with loading flow rate 2.0 mL/min, and then eluted by 75% ethanol with elution flow rate 1.0 mL/min. Under these conditions, the total polysaccharides content increased from 26.25% to 77.12%. The polysaccharides of Scutellaria baicalensis Georgi had inhibitory effects varying degrees on the four tested bacteria and the strongest inhibitory activity was resistant against Escherichia coli. The minimum inhibitory concentrations of Escherichia coli, Staphylococcus aureus, and Bacillus subtilis were 0.625, 0.625 and 1.25 mg/mL, respectively. This process had better purified efficiency, and polysaccharides after purification had better antibacterial activities, therefore it provides a reference for corresponding resource development.
  • [1]
    Pan F, Su T J, Liu Y, et al. Extraction, purification and antioxidation of a polysaccharide from Fritillaria unibracteata var. wabuensis[J]. International Journal of Biological Macromolecules,2018,112:1073−1083. doi: 10.1016/j.ijbiomac.2018.02.070
    [2]
    尹术华, 吴文英, 宋也好, 等. 白扁豆非淀粉多糖的理化性质、抗氧化活性及其抑菌性能[J]. 食品工业科技,2020,41(19):39−44.
    [3]
    Gong G W, Wang H Y, Kong X P, et al. Flavonoids are identified from the extract of Scutellariae Radix to suppress inflammatory-induced angiogenic responses in cultured raw264.7 macrophages[J]. Scientific Reports,2018,8(8):2563−2582.
    [4]
    Wang L P, Duan H T, Jiang J B, et al. A simple and rapid infrared-assisted self enzymolysis extraction method for total flavonoid aglycones extraction from Scutellariae Radix and mechanism exploration[J]. Analytical & Bioanalytical Chemistry,2017,409(23):5593−5602.
    [5]
    姜希红, 刘树民. 黄芩药理作用及其化学物质基础研究[J]. 中国药师,2020,23(10):2004−2010. doi: 10.3969/j.issn.1008-049X.2020.10.032
    [6]
    罗燕子. 中药黄芩的化学成分及药理作用的相关研究进展[J]. 临床合理用药杂志,2018,11(30):180−181.
    [7]
    何强, 张峻松. 黄芩多糖提取方法的研究[J]. 安徽农学通报,2011,17(20):24−25. doi: 10.3969/j.issn.1007-7731.2011.20.014
    [8]
    刘梦杰, 王飞, 张燕, 等. 黄芩多糖的体内抗氧化活性[J]. 中国食品学报,2016,16(7):52−58.
    [9]
    Choi B R. Effect of autophagy in human tongue squamous cell carcinoma SCC 25 cells from Scutellariae Radix by ethanol extract[J]. Journal of Korean society of Dental Hygiene,2014,14(2):287−292. doi: 10.13065/jksdh.2014.14.02.287
    [10]
    李海平, 陈瑞战, 金辰光, 等. 黄芩多糖的超声提取工艺优化及抗氧化活性研究[J]. 食品工业科技,2014,35(16):237−242.
    [11]
    朱鹤云, 关皎, 王佳林, 等. 紫外分光光度法测定黄芩多糖的含量[J]. 吉林医药学院学报,2016,37(5):334−335.
    [12]
    何荣荣, 陈献翔, 陈海明, 等. 大孔树脂分离纯化茶枯饼中的茶皂素[J]. 食品工业,2020,41(1):20−23.
    [13]
    王秋阳, 赵欣锐, 王超, 等. 大孔树脂纯化红松松仁膜衣黄酮的抗氧化活性研究[J]. 食品科技,2019,44(9):223−227.
    [14]
    段宙位, 陈婷, 何艾, 等. 大孔树脂纯化沉香叶黄酮工艺优化及纯化前后抗氧化性比较[J]. 食品工业科技,2020,41(17):161−166.
    [15]
    栾朝霞. 肉苁蓉总多酚纯化工艺及其抗运动性疲劳作用研究[J]. 食品工业科技,2020,41(15):59−64.
    [16]
    朱晓亚. 天门冬总皂苷提取物的纯化及体内抗疲劳作用研究[J]. 食品科技,2019,44(9):263−269.
    [17]
    曹冠华, 张雪, 陈月月, 等. 阳春砂仁叶和杆乙醇提取物抑菌作用的比较[J]. 中成药,2020,42(7):1914−1917.
    [18]
    许海燕, 彭修娟, 王珊, 等. 桦菌芝多糖抗氧化性及抑菌活性研究[J]. 食品与机械,2020,36(7):171−174.
    [19]
    王小敏, 陈乔, 郭丽丽, 等. 连翘果、连翘叶乙醇提取物的抑菌活性及成分分析[J]. 食品工业科技,2019,40(6):89−94.
    [20]
    Jacobson R K, Notaro M J, Carr G J. Comparison of Neisseria gonorrhoeae minimum inhibitory concentrations obtained using agar dilution versus microbroth dilution methods[J]. Journal of Microbiological Methods,2019,157:93−99. doi: 10.1016/j.mimet.2019.01.001
    [21]
    陈艳, 李美凤, 孟晓, 等. 大孔树脂法纯化松茸多糖的工艺研究[J]. 食品与发酵科技,2017,53(5):54−57.
    [22]
    Guo L D, Yu X B. Isolation, purification, characterization, and antioxidant activity of low-molecular-weight polysaccharides from Sparassis latifolia[J]. International Journal of Biological Macromolecules,2019,137:1112−1120. doi: 10.1016/j.ijbiomac.2019.06.177
    [23]
    孙伟, 叶润, 蔡静, 等. 大孔树脂纯化桑白皮多糖的工艺研究[J]. 食品工业科技,2020,41(14):129−133.
    [24]
    吴婕, 吴学慧, 徐高. 大孔树脂纯化甜茶叶总黄酮及其纯化前后的抗氧化性[J]. 江苏农业科学,2019,47(16):190−193.
    [25]
    冯靖, 彭效明, 李翠清, 等. 大孔树脂纯化银杏叶中总黄酮的工艺研究[J]. 应用化工,2019,48(10):2339−2343. doi: 10.3969/j.issn.1671-3206.2019.10.017
    [26]
    宫江宁, 饶玉, 杨义菊, 等. 大孔树脂吸附纯化黔产龙胆草多糖工艺优化[J]. 食品与机械,2017,33(5):178−181.
    [27]
    路俊仙, 崔璐, 张才波, 等. 不同种质黄芩体外抑菌作用的研究[J]. 现代药物与临床,2009,24(6):364−366.
  • Cited by

    Periodical cited type(24)

    1. 张娜,刘丽,李璐,吕京京,董益阳. 青胶蒲公英根多酚超声辅助提取工艺优化及其体外抗氧化、降糖活性. 食品工业科技. 2024(17): 200-208 . 本站查看
    2. 李梅婷,赵泽帆,张晓静,陈宝怡,卢乐怡,张喆,董林欣,王静,肖国丹,张绮玥. 余甘子多酚提取工艺优化研究. 质量安全与检验检测. 2024(04): 85-91 .
    3. 郝晓华,宋雅林,刘可心. 响应面法优化酸提取荷叶中生物碱的工艺研究. 太原师范学院学报(自然科学版). 2024(03): 56-64 .
    4. 李泽洋,黄华,肖善芳,郭松. 半边风多酚提取工艺优化及其抗氧化和抗菌活性研究. 饲料研究. 2024(19): 102-107 .
    5. 李宏,唐中伟,袁建琴,刘亚令,李友莲. 正交设计与响应面法优化甘草多糖提取工艺的研究. 轻工科技. 2023(01): 4-9 .
    6. 张腊腊,胡浩斌,韩明虎,王玉峰,武芸. 响应面优化黄花菜多酚提取工艺及其抗氧化活性研究. 中国食品添加剂. 2023(02): 102-108 .
    7. 郑佳,王军茹,张根生,马书青. 花楸果多酚物质提取及抗氧化性的研究. 中国林副特产. 2023(01): 9-14 .
    8. 赵敏,战祥,徐茜,李泽璠,周立新. 响应面法优化五倍子多酚的提取工艺. 湖北大学学报(自然科学版). 2023(02): 294-300 .
    9. 陈婷,段宙位. 柠檬皮中多酚的超声辅助提取及其抗氧化性研究. 食品科技. 2023(02): 246-252 .
    10. 张园园,刘畅,邵颖,肖付刚. 信阳茶油提取工艺优化及脂肪酸组成分析. 食品研究与开发. 2023(13): 153-159 .
    11. 林志銮,张传海. 多花黄精多酚工艺条件优化及其抗氧化活性评价. 广州化工. 2023(08): 45-49+73 .
    12. 苏泾涵,王改萍,刘玉华,戚亚,彭大庆,李守科,曹福亮. 叶用文冠果总多酚提取工艺及抗氧化活性分析. 南京林业大学学报(自然科学版). 2023(05): 129-137 .
    13. 李科鹏,冯玉会,普开仙,李锐扬,戴应淑,师伟,李琛. 正红菇多酚的提取及抗氧化性能研究. 广州化工. 2023(19): 11-15 .
    14. 张立攀,王俊朋,钱佳英,赵梦瑶,李冰,王春杰,胡桂芳,王法云,王永. 超声辅助法提取牡丹花中总黄酮和总多酚的工艺优化. 食品安全质量检测学报. 2022(02): 567-575 .
    15. 王燕,刘书伟,张田田,侯亚楠,沈梦霞. 槟榔多酚提取工艺的优化. 海南热带海洋学院学报. 2022(02): 25-31 .
    16. 吴卫成,忻晓庭,张程程,刘大群,卢立志,胡宏海,章检明,张治国,郭阳. 番薯叶多酚提取工艺优化及其生物活性研究. 中国食品学报. 2022(05): 189-199 .
    17. 仵菲,买里得尔·叶拉里,白红进. 响应面法优化库尔勒香梨各部位总多酚提取工艺及抗氧化活性研究. 塔里木大学学报. 2022(02): 16-23 .
    18. 王琳,冉佩灵,熊双丽,李安林. 超高压腌制对烤制猪肉品质的影响. 食品工业科技. 2022(15): 19-26 . 本站查看
    19. 舒玉凤,卢静静,陈旭. 蒲公英多糖提取及其抗氧化活性研究. 现代农业科技. 2022(15): 186-189+193 .
    20. 马妮,刘慧燕,方海田,胡海明,辛世华,杨小萍,刘洪涛. 红枣多酚提取工艺优化、成分及抗氧化活性分析. 食品工业科技. 2022(16): 246-254 . 本站查看
    21. 舒玉凤,卢静静,陈旭. 超声辅助法提取蒲公英多糖及抗氧化活性研究. 农产品加工. 2022(13): 42-46 .
    22. 张星和,侯洪波,邹章玉,冯李院,汪玉洁. 高黎贡山紫果西番莲果皮中原花青素的提取工艺及其稳定性. 食品研究与开发. 2022(20): 147-155 .
    23. 林宝妹,邱珊莲,吴妙鸿,张帅,李海明,洪佳敏. 嘉宝果果皮多酚提取工艺优化及生物活性测定. 江苏农业科学. 2021(21): 191-196 .
    24. 宋姗姗,杨艾华,王微微,徐东林,杨倩军,陈杨,林子涵,王小敏. 火炭母提取物抗氧化性及稳定性研究. 中国食品添加剂. 2021(12): 23-30 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (280) PDF downloads (30) Cited by(30)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return