WANG Gaojian, WANG Zhenzhen, LI Jiajia, et al. Antioxidant Activity in Vitro and Promoting Resistance to Oxidative Stress in Caenorhabditis elegans of Blueberry Jiaosu[J]. Science and Technology of Food Industry, 2021, 42(15): 343−350. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110157.
Citation: WANG Gaojian, WANG Zhenzhen, LI Jiajia, et al. Antioxidant Activity in Vitro and Promoting Resistance to Oxidative Stress in Caenorhabditis elegans of Blueberry Jiaosu[J]. Science and Technology of Food Industry, 2021, 42(15): 343−350. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110157.

Antioxidant Activity in Vitro and Promoting Resistance to Oxidative Stress in Caenorhabditis elegans of Blueberry Jiaosu

More Information
  • Received Date: November 17, 2020
  • Available Online: May 31, 2021
  • Blueberry Jiaosu fermented by using wild blueberries (Vaccinium uliginosum L) was used as raw materials. The changes of the total anthocyanin, phenolic, flavonoid contents, and antioxidant capacity in vitro during fermentation were detected. Caenorhabditis elegans were used to determine the antioxidant activity in vivo, preliminarily explored the related mechanism of antioxidant of blueberry Jiaosu. The results showed that the total anthocyanin content increased firstly and then decreased, reaching 0.52 mg/mL on the 50th day. The total phenolic and flavonoid contents kept increasing and reached their maximum level (2.81 mg/mL, 3.17 mg/mL, respectively) on the 300th day. In C.elegans, the results showed that blueberry Jiaosu could prolong the lifespan of C.elegans, enhance its oxidative stress ability under the stimulation of hydrogen peroxide, increase the activities of superoxide dismutase, catalase and glutathione peroxidase, and reduce the content of reactive oxygen species and malondialdehyde. These indicate that blueberry Jiaosu may increase the activity of antioxidant enzymes to reduce the oxidative damage of Caenorhabditis elegans.
  • [1]
    毛建卫, 吴元锋, 方晟, 等. 微生物酵素研究进展[J]. 发酵科技通讯,2010,39(3):42−44. doi: 10.3969/j.issn.1674-2214.2010.03.018
    [2]
    蒋增良, 毛建卫, 黄俊, 等. 蓝莓酵素在天然发酵过程中抗氧化性能的变化[J]. 食品工业科技,2013,34(2):194−197.
    [3]
    蒋增良, 毛建卫, 黄俊, 等. 葡萄酵素在天然发酵过程中体外抗氧化性能的变化[J]. 中国食品学报,2014,14(10):29−34.
    [4]
    程勇杰, 陈小伟, 王珍珍, 等. 树莓酵素与蓝莓酵素有机酸分析及其体外抗氧化性能[J]. 食品工业科技,2017,38(20):141−145.
    [5]
    李兴元. 蓝莓花青素、多酚类物质的分离纯化与生物活性研究[D]. 天津: 天津大学, 2012.
    [6]
    刘庆忠, 朱东姿, 王甲威, 等. 世界蓝莓产业发展现状——中国篇[J]. 落叶果树,2018,50(6):1−4.
    [7]
    陈成花, 张婧, 刘炳杰, 等. 蓝莓果渣营养成分分析及评估[J]. 食品与发酵工业,2016,42(9):223−227.
    [8]
    李斌, 谢旭, 孙希云, 等. 国内外蓝莓加工技术与功能性成分研究进展[J]. 食品科学技术学报,2019(5):16−22. doi: 10.3969/j.issn.2095-6002.2019.05.003
    [9]
    王鸿艳. 蓝莓开发利用研究现状及发展前景[J]. 山西农经,2018,227(11):58−61.
    [10]
    Li X, Zhang J Y, Gao W Y, et al. Chemical composition and anti-inflammatory and antioxidant activities of eight pear cultivars[J]. Journal of Agricultural & Food Chemistry,2012,60(35):8738−8744.
    [11]
    范昊安, 薛淑龙, 王高坚, 等. 紫苏叶酵素发酵过程中代谢产物与抗氧化活性研究[J]. 中国酿造,2019,38(9):148−154. doi: 10.11882/j.issn.0254-5071.2019.09.029
    [12]
    杨小慧, 石光波, 拜晓彬, 等. 文冠果落果黄酮成分分析及抑菌性评价[J]. 食品科学,2018,39(10):53−58. doi: 10.7506/spkx1002-6630-201810009
    [13]
    Aya U, Masanori H, Kazutoshi M, et al. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones[J]. Molecules,2016,21(6):708. doi: 10.3390/molecules21060708
    [14]
    沙如意, 王珍珍, 陈小伟, 等. 火龙果酵素在发酵过程中功能成分变化规律及其与抗氧化相关性[J]. 生物资源,2018,40(3):208−217.
    [15]
    Grajedaiglesias C, Salas E, Barouh N, et al. Antioxidant activity of protocatechuates evaluated by DPPH, ORAC, and CAT methods[J]. Food Chemistry,2016:749−757.
    [16]
    吕振宇, 孟姣, 孙传鑫, 等. 枸杞对秀丽隐杆线虫寿命和产卵的影响及其抗氧化作用[J]. 食品科学,2019,40(5):183−188. doi: 10.7506/spkx1002-6630-20171016-119
    [17]
    张佳婵, 王昌涛, 刘瑶, 等. 沙棘粕醇提取物对秀丽隐杆线虫的抗衰老功效及其机制[J]. 食品科学,2017(23):148−155.
    [18]
    张聪慧. 大豆异黄酮代谢产物对秀丽隐杆线虫的抗衰老作用及其机制研究[D]. 保定: 河北农业大学, 2014.
    [19]
    刘涵, 陈晓枫, 刘晓娟, 等. 不同几何构型虾青素的体外抗氧化作用及对秀丽隐杆线虫氧化应激的保护作用[J]. 食品科学,2019,40(3):178−185. doi: 10.7506/spkx1002-6630-20171010-056
    [20]
    王怀玲. 蓝莓多酚化合物抗衰老活性及作用机制研究[D]. 广州: 华南理工大学, 2018.
    [21]
    韦仕静. 桑葚酵素发酵工艺及花青素生物转化的研究[D]. 广州: 华南理工大学, 2018.
    [22]
    Jing R C, Liu X M, Chen Z Y, et al. Mulberry anthocyanin biotransformation by intestinal probiotics[J]. Food Chemistry,2016,213:721−727. doi: 10.1016/j.foodchem.2016.07.032
    [23]
    崔京燕. 树莓果实成熟过程中多酚类化合物的变化及其提取和应用[D]. 太原: 中北大学, 2019.
    [24]
    Chu S C, Chen C. Effects of origins and fermentation time on the antioxidant activities of kombucha[J]. Food Chemistry,2006,98(3):502−507. doi: 10.1016/j.foodchem.2005.05.080
    [25]
    张玲, 左广垒, 刘子菱, 等. 比较蓝莓发酵酒、浸泡酒和蓝莓果间总酚、总黄酮及DPPH的差异[J]. 食品科技,2015,40(1):68−72.
    [26]
    黄永杰, 李锋, 李大鹏, 等. 黄酮类化合物干预糖尿病视网膜病变的研究进展[J]. 食品科学,2019,40(19):326−333. doi: 10.7506/spkx1002-6630-20181004-009
    [27]
    郭家刚, 杨松, 伍玉菡, 等. 基于主成分与聚类分析的蓝莓品质综合评价研究[J]. 食品研究与开发,2020,41(12):53−60. doi: 10.12161/j.issn.1005-6521.2020.12.010
    [28]
    Pertuzatti P B, Barcia M T, Jacques A, et al. Quantification of several bioactive compounds and antioxidant activities of six cultivars of brazilian blueberry[J]. The Natural Products Journal,2012,2(3):188−195. doi: 10.2174/2210315511202030188
    [29]
    Kameya H, Watanabe J, Takano-ishikawa Y, et al. Comparison of scavenging capacities of vegetables by ORAC and EPR[J]. Food Chemistry,2014,145(feb. 15):866−873.
    [30]
    Davalos A, Bartolome B, Gomezcordoves C, et al. Antioxidant properties of commercial grape juices and vinegars[J]. Food Chemistry,2005,93(2):325−330. doi: 10.1016/j.foodchem.2004.09.030
    [31]
    Ayyadevara S, Bharill P, Dandapat A, et al. Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of Caenorhabditis elegans[J]. Antioxidants & Redox Signaling,2013,18(5):481−490.
    [32]
    Lin Q, Long L, Zhuang Z, et al. Antioxidant activity of water extract from fermented mycelia of Cordyceps sobolifera (Ascomycetes) in Caenorhabditis elegans.[J]. International Journal of Medicinal Mushrooms,2018,20(1):61−70. doi: 10.1615/IntJMedMushrooms.2018025324
    [33]
    Moriwaki T, Kato S, Kato Y, et al. Extension of lifespan and protection against oxidative stress by an antioxidant herb mixture complex (KPG-7) in Caenorhabditis elegans[J]. Journal of Clinical Biochemistry & Nutrition,2013,53(2):81−88.
    [34]
    郑飞. 蓝莓多糖对衰老小鼠运动耐力及抗疲劳效果研究[J]. 食品科学,2014,35(21):249−252. doi: 10.7506/spkx1002-6630-201421049
    [35]
    Niki E. Assessment of antioxidant capacity in vitro and in vivo[J]. Free Radical Biology & Medicine,2010,49(4):503−515.
    [36]
    王红, 张晓寒, 程静, 等. 紫薯提取物对秀丽隐杆线虫抗氧化作用的影响[J]. 食品科学,2017,38(23):165−170. doi: 10.7506/spkx1002-6630-201723026
    [37]
    杨金月. 中长碳链甘油三酯结构对秀丽隐杆线虫寿命的影响[D]. 无锡: 江南大学, 2019.
    [38]
    Feng S, Cheng H, Xu Z, et al. Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans[J]. International Journal of Biological Macromolecules,2015,81:188−194. doi: 10.1016/j.ijbiomac.2015.07.057
    [39]
    Peng C, Zuo Y, Kwan K M, et al. Blueberry extract prolongs lifespan of Drosophila melanogaster[J]. Experimental Gerontology,2012,47(2):170−178. doi: 10.1016/j.exger.2011.12.001
    [40]
    Wang H, Liu J, Li T, et al. Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans[J]. Food & Function,2018,9(10):5273−5282.
  • Cited by

    Periodical cited type(3)

    1. 黄燃,鲍士宝. 亚硫酸钠-壳聚糖微粒对明胶膜结构和性能的影响. 食品工业科技. 2024(13): 9-16 . 本站查看
    2. 黄燃,鲍士宝. 花色苷-壳聚糖微粒对明胶膜结构和性能的影响. 食品科技. 2024(09): 242-249 .
    3. 杨玉. 大豆分离蛋白基抗菌乳液膜的制备与特性研究. 食品科技. 2023(12): 229-235 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return