ZHANG Hui, ZHOU Xiaomei, ZHANG Biao, et al. Optimization of Medium Composition for Expression of Recombinant Sucrose Phosphorylase and Effect of Chemical Reagents on Enzyme Activity[J]. Science and Technology of Food Industry, 2021, 42(15): 119−124. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110137.
Citation: ZHANG Hui, ZHOU Xiaomei, ZHANG Biao, et al. Optimization of Medium Composition for Expression of Recombinant Sucrose Phosphorylase and Effect of Chemical Reagents on Enzyme Activity[J]. Science and Technology of Food Industry, 2021, 42(15): 119−124. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110137.

Optimization of Medium Composition for Expression of Recombinant Sucrose Phosphorylase and Effect of Chemical Reagents on Enzyme Activity

More Information
  • Received Date: November 16, 2020
  • Available Online: June 03, 2021
  • In order to improve the expression level of recombinant sucrose phosphorylase, the effects of different carbon sources, nitrogen sources, protectants and metal ions on the expression of recombinant sucrose phosphorylase in Escherichia coli was studied by single factor test, then the optimal composition of recombinant sucrose phosphorylase expression medium was determined by orthogonal test. In addition, the effects of different chemical reagents and metal ions on the stability of recombinant sucrose phosphorylase were investigated.The results showed that vitamin C and FeCl2 significantly (P<0.01) inhibited the protein expression, and Cu2+ and Zn2+ completely killed the microorganisms. On the contrary, starch, K+ and Mg2+ could promote the expression of recombinant sucrose phosphorylase, and the synergistic effect could greatly improve the expression efficiency of recombinant sucrose phosphorylase. The total enzyme activity of optimal combination, with 0.5% starch, 0.1% K+ and 0.05% Mg2+ in 50 mL LB medium, was 1207.83 U, which was increased by 3.6 -fold. The results showed that 10 mmol/L Fe2+, 10 mmol/L Mg2+, 1% bovine serum protein and 0.1% Tween 80 could increase the enzyme activity and stability of sucrose phosphorylase in a certain extent.
  • [1]
    Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities[J]. Biochemical Journal,1991,280(Pt 2):309.
    [2]
    Kawasaki H, Nakamura N, Ohmori M, et al. Cloning and expression in Escherichia coli of sucrose phosphorylase gene from Leuconostoc mesenteroides No. 165[J]. Bioscience Biotechnology & Biochemistry,1996,60(2):322.
    [3]
    Nakajima N, Ishihara K, Hamada H. Functional glucosylation of kojic acid and daidzein with the Eucalyptus membrane-associated UDP-glucosyltransferase reaction system[J]. Journal of Bioscience & Bioengineering,2001,92(5):469−71.
    [4]
    沈洋, 吕雪芹, 林璐, 等. 蔗糖磷酸化酶的半理性设计及生产α-熊果苷的条件优化[J]. 食品与发酵工业,2020,46(13):1−9.
    [5]
    李晓玉, 夏媛媛, 沈微, 等. 肠膜明串珠菌蔗糖磷酸化酶的酶学表征及在催化合成α-熊果苷中的应用[J]. 生物工程学报,2020,36(8):1546−1555.
    [6]
    Taeyeon K, Cheongtae K, Jonghoon L. Transglucosylation of ascorbic acid to ascorbic acid 2-glucoside by a recombinant sucrose phosphorylase from Bifidobacterium longum[J]. Biotechnology Letters,2007,29(4):611−5. doi: 10.1007/s10529-006-9285-2
    [7]
    Lee J H, Yoon S H, Nam S H. Molecular cloning of a gene encoding the sucrose phosphorylase from Leuconostoc mesenteroides B-1149 and the expression in Escherichia coli[J]. Enzyme & Microbial Technology,2006,39(4):612−20.
    [8]
    Kagan B O, Latker S N, Zfasman E M. Phosphorolysis of saccharose by cultures of Leuconostoc mesenteroides[J]. Biokhimiya,1942,7:93−108.
    [9]
    Doudoroff M. Studies on the phosphorolysis of sucrose[J]. Journal of Biological Chemistry,1943:151.
    [10]
    Silverstein R, Voet J, Reed D, et al. Purification and mechanism of action of sucrose phosphorylase[J]. Journal of Biological Chemistry,1967,242(242):1338−46.
    [11]
    Russell R R, Mukasa H, Shimamura A, et al. Streptococcus mutans gtfA gene specifies sucrose phosphorylase[J]. Infection & Immunity,1988,56(10):2763−5.
    [12]
    Broek L A M V D, Boxtel E L V, Kievit R P, et al. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083[J]. Applied Microbiology & Biotechnology,2004,65(2):219−27.
    [13]
    王淼淼. Bifidobacterium adolescentis蔗糖磷酸化酶的重组表达、应用及固定化研究[D]. 无锡: 江南大学, 2019.
    [14]
    叶慧, 冯凤琴, 莫征杰. 蔗糖磷酸化酶在大肠杆菌中的表达及优化[J]. 食品科技,2015,40(4):22−27.
    [15]
    何贺贺, 林厚民, 寇力丹, 等. 肠膜明串珠菌ATCC 12291蔗糖磷酸化酶的酶学性质及转糖苷分子改造[J]. 食品科学,2019,40(20):122−129. doi: 10.7506/spkx1002-6630-20181024-279
    [16]
    沈洋. 蔗糖磷酸化酶的克隆表达及生物转化制备α-熊果苷的研究[D]. 无锡: 江南大学, 2020.
    [17]
    何贺贺, 尹钰, 屈潇毅, 等. 蔗糖富集环境中蔗糖磷酸化酶的酶学性质研究与改造[J]. 微生物学通报,2019,46(10):2465−2474.
    [18]
    段培枫, 尤甲甲, 徐美娟, 等. 重组枯草芽孢杆菌全细胞催化合成2-O-α-D-甘油葡糖苷[J]. 生物工程学报,2020,36(9):1918−1928.
    [19]
    姚栋. 蔗糖磷酸化酶的高效表达及合成α-熊果苷的研究[D]. 无锡: 江南大学, 2020.
    [20]
    江瑞妮, 叶康, 甘恬, 等. 蔗糖磷酸化酶及其在糖基化反应中的应用[J/OL]. 生物工程学报: 1−18[2021−01−06]. https://doi.org/10.13345/j.cjb.200213.
    [21]
    Nishimoto M, Kitaoka M. Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk[J]. Bioscience Biotechnology and Biochemistry,2007,71(8):2101−2104. doi: 10.1271/bbb.70320
    [22]
    Zhang Hui, Sun Xiao, Li Wenjie, et al. Expression and characterization of recombinant sucrose phosphorylase[J]. The Protein Journal,2018,37(1):93−100. doi: 10.1007/s10930-017-9754-6
    [23]
    Kitaoka M, Aoyagi C, Hayashi K. Colorimetric quantification of cellobiose employing cellobiose phosphorylase[J]. Analytical Biochemistry,2001,292(1):163−166. doi: 10.1006/abio.2001.5049
    [24]
    Nihira T, Nakajima M, Inoue k, et al. Colorimetric quantification of α- d -galactose 1-phosphate[J]. Analytical Biochemistry,2007,371(2):259−261. doi: 10.1016/j.ab.2007.07.012
    [25]
    李超, 吴雪晴, 郑艳. 乳糖酸产生菌的发酵培养基优化[J]. 食品工业科技,2014,35(3):187−191, 356.
    [26]
    周红姿, 郭凯, 李纪顺, 等. 靶向抗肿瘤GnRH-PE39KDEL融合蛋白表达培养基的优化[J]. 科学技术与工程,2014,14(20):177−180. doi: 10.3969/j.issn.1671-1815.2014.20.033
    [27]
    乔君, 田延军, 马玉岳, 等. 产天冬氨酸酶菌株大肠杆菌HY-05C发酵培养基及培养条件的优化[J]. 食品工业科技,2016,37(3):139−142, 148.
    [28]
    胡珺. 脂肪酶产生菌的筛选鉴定、产酶条件优化及酶学性质研究[D]. 武汉: 湖北工业大学, 2017.
    [29]
    宋建民, 何凯红, 孙爱友, 等. 碳氮源平衡流加策略提高重组大肠杆菌表达融合型乳酸片球菌素的产率[J]. 华东理工大学学报(自然科学版),2011,37(2):163−166. doi: 10.3969/j.issn.1006-3080.2011.02.006
    [30]
    井明艳, 孙建义. 蛋白质的折叠调控与包涵体的形成[J]. 浙江大学学报(农业与生命科学版),2004,30(6):690−696.
    [31]
    王岩, 侯美如, 刘宇, 等. 益生菌保护剂的筛选与优化[J]. 黑龙江畜牧兽医,2016(17):208−211.
    [32]
    余茜, 张国丽, 敖晓琳. 金属离子对微生物蛋白酶活性的影响及机理[J]. 中国食品学报,2019,19(4):287−294.
    [33]
    马超, 吴瑛. 抗菌剂抗菌机理简述[J]. 中国酿造,2016,35(1):5−9. doi: 10.11882/j.issn.0254-5071.2016.01.002
    [34]
    孙国龙, 陈丽, 黄金, 等. 表面活性剂对酶活性的影响研究进展[J]. 西部皮革,2013(10):24−29. doi: 10.3969/j.issn.1671-1602.2013.10.013
    [35]
    唐庆芸, 王永华. 表面活性剂对T1脂肪酶活力的影响[J]. 现代食品科技,2017,33(3):179−183, 170.
    [36]
    程旺开. 金属离子对纤维素酶活性影响的研究[J]. 安徽农学通报,2011,17(5):27−8. doi: 10.3969/j.issn.1007-7731.2011.05.012
    [37]
    张庆芳, 逄飞, 于爽, 等. 海洋高产尿酸氧化酶菌株筛选鉴定及酶学性质研究[J]. 生物技术通报,2019,35(7):61−69.
    [38]
    付林俊, 刘海, 张晓晴, 等. 不同离子对漆酶酶活的影响[J]. 化学试剂,2019,41(8):830−835.
  • Cited by

    Periodical cited type(4)

    1. 肖雪,王金浩,邵俊花,范江平,葛长荣,肖智超. 超声辅助酶法优化鸡肉蛋白水解工艺. 食品研究与开发. 2023(02): 124-131 .
    2. 李自会,段晓杰,刘昆仑,布冠好,王亮,张顺棠,井金锋,任伟. 鸡骨架和鸡胸肉复合底物酶解工艺优化及产物呈味特性研究. 食品工业科技. 2023(15): 184-192 . 本站查看
    3. 李自会,张顺棠,段晓杰,布冠好,刘昆仑,高立栋,井金峰. 酶解禽类蛋白制备呈味基料的研究进展. 中国调味品. 2022(11): 211-215 .
    4. 司翔宇,商焱,范君君,党亚丽. 即食香辣洋姜风味改良研究. 中国果菜. 2021(08): 34-38 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (244) PDF downloads (19) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return