YANG Zifan, ZHANG Ke, LIU Ying, et al. Comparison of Physicochemical Properties of Pepsin-Soluble Collagens from Swim Bladders of Sturgeon(Acipenser schrenckii) and Grass Carp(Ctenopharyngodon idella) [J]. Science and Technology of Food Industry, 2021, 42(15): 27−32. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110108.
Citation: YANG Zifan, ZHANG Ke, LIU Ying, et al. Comparison of Physicochemical Properties of Pepsin-Soluble Collagens from Swim Bladders of Sturgeon(Acipenser schrenckii) and Grass Carp(Ctenopharyngodon idella) [J]. Science and Technology of Food Industry, 2021, 42(15): 27−32. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110108.

Comparison of Physicochemical Properties of Pepsin-Soluble Collagens from Swim Bladders of Sturgeon(Acipenser schrenckii) and Grass Carp(Ctenopharyngodon idella)

More Information
  • Received Date: November 12, 2020
  • Available Online: May 31, 2021
  • Using sturgeon and grass carp swim bladder as raw materials, compared and analyzed the physicochemical properties of two kinds of fish swim bladder pepsin-soluble collagen (PSC). Calculation of collagen yield, amino acid composition, SDS-PAGE, ultraviolet spectroscopy, Fourier infrared spectroscopy, circular dichroism, microdifferential scanning calorimeter to study the differences of the composition and physic-chemical properties of the two types of swim bladder PSC. The results showed that the content of crude fat and hydroxyproline in the basic nutrients of sturgeon swim bladder were significantly higher than that of grass carp swim bladder (P<0.05). The yield of sturgeon swim bladder was 80.63%, which was significantly higher than the PSC yield of grass carp swim bladder 49.85% (P<0.05).Two kinds of swim bladder PSC were consistent with type I collagen. The relative molecular weight of α chain and the content of dimer β chain of sturgeon swim bladder PSC were lower than those of grass carp swim bladder PSC. In the amino acid composition, the content of Ser, Met, Ile, Leu, His and Arg of sturgeon swim bladder PSC was significantly higher than that of grass carp swim bladder PSC (P<0.05), the content of Ala, Phe, Lys, Pro and Hyp of grass carp swim bladder PSC was significantly higher than that of sturgeon swim bladder PSC (P<0.05). They had similar secondary structures. The PSC denaturation temperature of sturgeon swim bladder was 29.26 ℃, which was significantly lower than that of the PSC of grass carp swim bladder, which was 36.01 ℃ (P<0.05). Among the two kinds of fish bladder PSC, grass carp swim bladder PSC had better thermal stability than sturgeon swim bladder PSC, but sturgeon swim bladder PSC had a higher yield than grass carp swim bladder PSC.
  • [1]
    赵然, 曹敏杰, 王晶, 等. 水产动物源胶原蛋白蛋白的提取及应用研究进展[J]. 食品安全质量检测学报,2020,11(22):8157−8165.
    [2]
    邓浩, 党政, 尹青春, 等. 胶原蛋白蛋白的研究进展[J]. 广州化工,2019,47(18):27−30. doi: 10.3969/j.issn.1001-9677.2019.18.014
    [3]
    王保友, 王斌, 陈玮, 等. 我国鲟鱼养殖产业现状及发展趋势[J]. 水产研究,2020,7(2):107−114.
    [4]
    蒋玉. 鲟鱼鳔胶原蛋白蛋白延缓皮肤自然衰老作用及分子机制研究[D]. 镇江: 江苏大学, 2019.
    [5]
    Zhang X, Ookawa M, Tan Y, et al. Biochemical characterisation and assessment of fibril-forming ability of collagens extracted from Bester sturgeon Huso huso×Acipenser ruthenus[J]. Food Chemistry,2014,160:305−312. doi: 10.1016/j.foodchem.2014.03.075
    [6]
    张宝, 陈运中, 徐颖, 等. 草鱼鱼鳔胶原蛋白性质的研究[J]. 食品科学,2010,31(1):58−62.
    [7]
    詹永献. 草鱼鱼鳔胶原蛋白蛋白理化性质及结构特点的研究[D]. 洛阳: 河南科技大学, 2012.
    [8]
    王金梅, 包建强. 超声波辅助酶法提取草鱼皮胶原蛋白蛋白及其纯化[J]. 食品工业科技,2016,37(18):236−240.
    [9]
    李娜. 鳕鱼鳔胶原蛋白蛋白和胶原蛋白肽特性及对细胞衰老进程干预作用与机制[D]. 上海: 上海海洋大学, 2019.
    [10]
    Tanaka T, Takahashi K, Tsubaki K, et al. Isolation and characterization of acid-soluble bluefin tuna (Thunnus orientalis) skin collagen[J]. Fisheries and Aquatic Scienences,2018,21(1):7−14. doi: 10.1186/s41240-018-0084-1
    [11]
    Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227(5259):680−685. doi: 10.1038/227680a0
    [12]
    Cao W, Shi L, Weng W. Histological distribution and characterization of collagen in European eel(Anguilla anguilla) Muscle[J]. Journal of Aquatic Food Product Technology,2019,29(1):1−11.
    [13]
    Pal G K, Suresh P V. Physico-chemical characteristics and fibril-forming capacity of carp swim bladder collagens and exploration of their potential bioactive peptides by in silico approaches[J]. International Journal of Biological Macromolecules,2017,101:304−313. doi: 10.1016/j.ijbiomac.2017.03.061
    [14]
    Tang L, Chen S, Su W, et al. Physicochemical properties and film-forming ability of fish skin collagen extracted from different freshwater species[J]. Process Biochemistry,2015,50:148−155. doi: 10.1016/j.procbio.2014.10.015
    [15]
    Rochdi A, Foucat L, Renou J P. NMR and DSC studies during thermal denaturation of collagen[J]. Food Chemistry,2000,69(3):295−299. doi: 10.1016/S0308-8146(99)00267-8
    [16]
    文卓琼, 黄爱妮. 鱼类胶原蛋白蛋白的研究进展[J]. 黑龙江科技信息,2016(14):95−96.
    [17]
    汪安利, 祖晋锋, 时文强, 等. 白鲢鱼鳔营养成分分析与评价[J]. 食品安全质量检测学报,2019,10(8):143−148.
    [18]
    Sionkowska A, KozLowska J, Skorupska M, et al. Isolation and characterization of collagen from the skin of Brama australis[J]. International Journal of Biological Macromolecules,2015,80:605−609. doi: 10.1016/j.ijbiomac.2015.07.032
    [19]
    李国英, 刘文涛. 胶原蛋白化学[M]. 北京: 中国轻工业出版社, 2013: 5-8.
    [20]
    Sun L, Li B, Song W, et al. Characterization of Pacific cod ( Gadus macrocephalus) skin collagen and fabrication of collagen sponge as a good biocompatible biomedical material[J]. Process Biochemistry,2017,63:229−235. doi: 10.1016/j.procbio.2017.08.003
    [21]
    Zhang Q, Wang Q, Lv S, et al. Comparison of collagen and gelatin extracted from the skins of Nile tilapia(Oreochromis niloticus) and channel catfish (Ictalurus punctatus)[J]. Food Bioscience,2016,13:41−48. doi: 10.1016/j.fbio.2015.12.005
    [22]
    Doyle B B, Bendit E G, Blout E R. Infrared spectroscopy of collagen and collagen like peptides[J]. Biopolymers,2010,14(5):937−957.
    [23]
    Payne K J, Veis A. Fourier transform ir spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies[J]. Biopolymers,1988,27(11):1749. doi: 10.1002/bip.360271105
    [24]
    Sreerama N, Woody R W. Poly(pro)II helices in globular proteins: Identification and circular dichroic analysis[J]. Biochemistry,1994,33(33):10022−10025. doi: 10.1021/bi00199a028
    [25]
    Feng Y B, Melacini G, Taulane J P, et al. Acetyl-terminated and template-assembled collagen-based polypeptides composed of Gly-Pro-Hyp Sequences. 2. Synthesis and conformational analysis by circular dichroism, ultraviolet absorbance, and optical rotation[J]. Journal of the American Chemical Society,1996,118(43):10351−10358. doi: 10.1021/ja961260c
    [26]
    王园园, 张靓, 周鹏, 等. 太湖白鱼中胶原蛋白蛋白的提取及其理化性质分析[J]. 食品工业科技,2017,38(18):45−49.
    [27]
    邓明霞, 汪海波, 杨玲, 等. 氨基酸组成及溶剂环境对淡水鱼胶原蛋白蛋白热稳定性能的影响[J]. 现代食品科技,2015,31(12):111−120.
    [28]
    Bhuimbar M V, Bhagwat P K, Dandge P B. Extraction and characterization of acid soluble collagen from fish waste: Development of collagen-chitosan blend as food packaging film[J]. Journal of Environmental Chemical Engineering,2019,7(2):102−108.
    [29]
    Kimura S, Ohno Y. Fish type I collagen: tissue-specific existence of two molecular forms, (α1) 2α2 and α1α2α3, in Alaska pollack[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1987,88(2):409−413. doi: 10.1016/0305-0491(87)90320-8
    [30]
    李林春. 中国鱼类图鉴[M]. 山西: 山西科学技术出版社, 2015: 20−30.
    [31]
    Ikoma T, Kobayashi H, Tanaka J, et al. Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas[J]. International Journal of Biological Macromolecules,2003,32(3−5):199−204. doi: 10.1016/S0141-8130(03)00054-0
    [32]
    Nagai T, Suzuki N, Nagashima T. Collagen from common minke whale (Balaenoptera acutorostrata) unesu[J]. Food Chemistry,2008,111(2):296−301. doi: 10.1016/j.foodchem.2008.03.087
  • Related Articles

    [1]WU Xiaolong, TU Zongcai, HU Yueming, WANG Xumei, WANG Hui. Effects of Different High-temperature Treatments on Physicochemical Properties and Taste Quality of Grass Carp Meat[J]. Science and Technology of Food Industry, 2024, 45(19): 84-93. DOI: 10.13386/j.issn1002-0306.2023110193
    [2]HUANG Shimeng, WANG Jingqi, PI Yuzhen, SHAO Junhua. Identification and Physicochemical Properties of Collagen from Sika Antler Base[J]. Science and Technology of Food Industry, 2024, 45(3): 284-292. DOI: 10.13386/j.issn1002-0306.2023030334
    [3]MENG Fen, QIN Qiu-si, DONG Ye, MAO Hai-ping, DAI Zhi-yuan. Effects of Ultrasound and TGase on Physicochemical Properties of Grass Carp Meat during Restructuring[J]. Science and Technology of Food Industry, 2020, 41(23): 30-36. DOI: 10.13386/j.issn1002-0306.2020070024
    [4]QU Yi, ZHOU Si-yi, FENG Tao, ZHONG Sai-yi, CHEN Su-hua, SU Wei-ming, WU Xiao-he. Extraction of glycosaminoglycans from swim bladder and evaluation of the capacities of its hygroscopicity and moisture retention[J]. Science and Technology of Food Industry, 2017, (16): 118-125. DOI: 10.13386/j.issn1002-0306.2017.16.023
    [5]LI Xiao-meng, YU Lei, WANG Wei-xu, LI Shuai-fei, WANG Cai-jiao, YANG Mo. Research of the physicochemical property of the quick- cooking black bean[J]. Science and Technology of Food Industry, 2016, (09): 53-57. DOI: 10.13386/j.issn1002-0306.2016.09.002
    [6]ZHENG Yu-zhong, CHEN Qing-biao, ZHOU Lin, CHEN Xun-sheng, ZHANG Zhen-xia. Effects of clarification methods to physicochemical properties of Astragalus extract[J]. Science and Technology of Food Industry, 2015, (22): 129-132. DOI: 10.13386/j.issn1002-0306.2015.22.018
    [7]LIU Yi, MA Liang, CHEN Li-qing, ZHOU Meng-rou, ZHANG Yu-hao, ZHANG Yu-hao. Physicochemical properties analysis of ultra-high pressure gelatin[J]. Science and Technology of Food Industry, 2014, (13): 137-140. DOI: 10.13386/j.issn1002-0306.2014.13.021
    [8]FAN Jin-bo, WANG Peng-jie, ZHOU Su-zhen, LV Chang-xin, FENG Xu-qiao. Advances in structure and physicochemical properties of casein micelle[J]. Science and Technology of Food Industry, 2014, (03): 396-400. DOI: 10.13386/j.issn1002-0306.2014.03.086
    [9]XIAO Wei-dong, TAI Li-mei, KONG Qing-long, LIU Bei, FAN Jian, ZHAO Tian-rui. Purification and determination of physicochemical property of Tuber indicum polysaccharide[J]. Science and Technology of Food Industry, 2014, (03): 135-137. DOI: 10.13386/j.issn1002-0306.2014.03.050
    [10]Study on physicochemical properties of purple potato starch[J]. Science and Technology of Food Industry, 2013, (09): 123-127. DOI: 10.13386/j.issn1002-0306.2013.09.054
  • Cited by

    Periodical cited type(7)

    1. 孙皓岩,胡淑曼,魏宝红,马晓青,杨文哲,刘佳,杨雪,邱培菊. 鱼鳔与驴皮的化学成分及对环磷酰胺所致贫血小鼠的改善作用. 食品工业科技. 2024(03): 338-345 . 本站查看
    2. 张金聚,卢一泓,何倾,吴孟华,马志国,张英,曹晖. 市售鱼鳔氨基酸及蛋白质成分分析. 中成药. 2024(02): 499-506 .
    3. 唐艺玲,陈舒忆,李雪芹,张磊. 鱼胶的种类、成分及功效研究进展. 中国食品学报. 2024(03): 458-470 .
    4. 庄毓秀,林海生,秦小明,曹文红,陈忠琴,高加龙,郑惠娜,章超桦. 方格星虫体壁明胶的理化特征及功能特性分析. 食品与发酵工业. 2024(17): 226-234 .
    5. 高飞,周文果,陈江平,田晶晶,张晔,杨燕萍,黄建联. 白鲢鱼胶与鮸鱼鱼胶泡发后品质差异性比较. 食品研究与开发. 2024(21): 34-41 .
    6. 胡淑曼,孙皓岩,刘佳,杨文哲,马晓青,魏宝红,杨雪. 鱼胶的化学成分及其对环磷酰胺所致贫血小鼠的改善作用研究. 中国海洋药物. 2023(06): 1-12 .
    7. 韩秋煜,石崎松一郎,包斌. 鱼皮胶原蛋白中透明质酸酶抑制肽的制备工艺优化. 食品与机械. 2021(11): 142-147 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (260) PDF downloads (28) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return