CAO Qingguo, GUO Qin, CAI Jiahui, et al. Synergistic Antibacterial Effects of Polygonatum sibiricum Red. with Oxytetracycline on Vibrio parahaemolyticus[J]. Science and Technology of Food Industry, 2021, 42(13): 141−148. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100203.
Citation: CAO Qingguo, GUO Qin, CAI Jiahui, et al. Synergistic Antibacterial Effects of Polygonatum sibiricum Red. with Oxytetracycline on Vibrio parahaemolyticus[J]. Science and Technology of Food Industry, 2021, 42(13): 141−148. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100203.

Synergistic Antibacterial Effects of Polygonatum sibiricum Red. with Oxytetracycline on Vibrio parahaemolyticus

More Information
  • Received Date: October 25, 2020
  • Available Online: April 22, 2021
  • In this paper, Polygonatum sibiricum Red. and 8 kinds of aquatic antibiotics were used to inhibit Vibrio parahaemolyticus, the main pathogen of acute hepatopancreas necrosis disease (AHPND) in shrimp culture. The minimum inhibitory concentration (MIC) of P.sibiricum Red. and antibiotics were determined by chessboard method. The effects of Polygonatum on the membrane conductivity, membrane potential and survival rate of bacteria were studied. The effects of Polygonatum sibiricum Red. on the expression of efflux pump related genes were studied by RT-PCR. The results showed that the combination of P. sibiricum Red. and oxytetracycline had the best synergistic antibacterial effect with the optimum combination of 1/8 MIC P. sibiricum Red.+1/4 MIC oxytetracycline and the FIC of 0.38. The synergy turned into additive or even irrelevant effects in the presence of CCCP. Conductivity, membrane potential and propidium iodide staining proved that P. sibiricum Red. could destroy the cell membrane of V. parahaemolyticus, improving its permeability, leading to the depolarization of the cell membrane and the disappearance of proton gradient on both sides of the membrane. P. sibiricum Red. significantly inhibited the expression of five outer membrane proteins, five reverse synergistic transporters and 11 RND efflux transporters of V.parahaemolyticus, of which vpa0096 (OmpW) was down-regulated by 497.51 times, while vp0425 (TolC), vp2072 (Na+/H+), vp2665 (Na+/Ca2+ exchanger), vp1092, vp0911, vp1178, vpa0344, and vpa0809 were down-regulated by 27.03, 73.53, 55.56, 100.00, 35.71, 37.74, 49.02, and 56.18 times, respectively. P. sibiricum Red. reduced the activities of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) of TCA cycle, thereby inhibiting the TCA cycle of V.parahaemolyticus. Oxytetracycline is one of the substrates of vp0425 (TolC). Polygonatum sibiricum Red. is a natural efflux pump inhibitor, which can keep oxytetracycline in cells and improve the antibacterial effect of oxytetracycline. The synergistic effect of Polygonatum sibiricum Red. and oxytetracycline on vibriosis in aquaculture can greatly reduce the concentration of oxytetracycline, residual risk and the emergence of drug-resistant Vibrio, thus promoting the healthy development of aquaculture.
  • [1]
    Bondad-Reantaso, M G. Acute hepatopancreatic necrosis disease (AHPND) of penaeid shrimps: Global perspective[C]. Asean Regional Technical Consultation on Ems/ahpnd & Other Transboundary Diseases for Improved Aquatic Animal Health in Southeast Asia, February, Makati City, Philippines, 2016: 16-25.
    [2]
    Tassanakajon A, Amparyup P, Somboonwiwat K, et al. Cationic antimicrobial peptides in penaeid shrimp[J]. Marine Biotechnology,2011,13(4):639−657. doi: 10.1007/s10126-011-9381-8
    [3]
    Jeyasanta K I, Lilly T, Patterson J. Prevalence of Vibrio species in the cultured shrimp and their antibiotic resistants[J]. Asian Journal of Applied Science and Technology (AJAST),2017,1(8):100−111.
    [4]
    Olusola S, Emikpe B, Olaifa F. The potentials of medicinal plant extracts as bio-antimicrobials in aquaculture[J]. International Journal of Medicinal & Aromatic Plants,2013,3(3):404−412.
    [5]
    Vatsos I N, Rebours C. Seaweed extracts as antimicrobial agents in aquaculture[J]. Journal of Applied Phycology,2014,27(5):2017−2035.
    [6]
    Jha R K. Efficacy of natural herbal formulation against acute hepatopancreatic necrosis disease (AHPND) causingVibrio parahaemolyticus inPenaeus vannamei [J]. Veterinary Medicine - Open Journal,2017,2(1):1−6. doi: 10.17140/VMOJ-2-109
    [7]
    Rao M, Padyana S, Dipin K M, et al. Antimicrobial compounds of plant origin as efflux pump Inhibitors: new avenues for controlling multidrug resistant pathogens[J]. Journal of Antimicrobial Agents,2018,4(1):159.
    [8]
    Lee Y S, Han S H, Lee S H, et al. Synergistic effect of tetrandrine and ethidium bromide against methicillin-resistant Staphylococcus aureus (MRSA)[J]. Journal of Toxicological Sciences,2011,36(5):645. doi: 10.2131/jts.36.645
    [9]
    Joung D K, Choi S H, Kang O H, et al. Synergistic effects of oxyresveratrol in conjunction with antibiotics against methicillin-resistant Staphylococcus aureus [J]. Molecular Medicine Reports,2015,12(1):663. doi: 10.3892/mmr.2015.3345
    [10]
    Bucar, S P. Plant derived inhibitors of bacterial efflux pumps: An update[J]. Phytochemistry Reviews,2015,14(6):961−974. doi: 10.1007/s11101-015-9436-y
    [11]
    Li X Z, Plesiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria[J]. Clin Microbiol Rev,2015,28(2):337−418. doi: 10.1128/CMR.00117-14
    [12]
    Gabriella S, Annamária K, Márió G, et al. New roads leading to old destinations: Efflux pumps as targets to reverse multidrug resistance in bacteria[J]. Molecules,2017,22(3):468. doi: 10.3390/molecules22030468
    [13]
    Zgurskaya H I, Ganesh K, Abigail N, et al. Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of enterobacteria[J]. Frontiers in Microbiology,2011(2):189.
    [14]
    姜程曦, 张铁军, 陈常青, 等. 黄精的研究进展及其质量标志物的预测分析[J]. 中草药,2017,48(1):1−16. doi: 10.7501/j.issn.0253-2670.2017.01.001
    [15]
    董治程, 谢昭明, 黄丹, 等. 黄精资源、化学成分及药理作用研究概况[J]. 中南药学,2012,10(6):450−453.
    [16]
    云宝仪, 周磊, 谢鲲鹏, 汪业菊, 谢明杰. 黄芩素抑菌活性及其机制的初步研究[J]. 药学学报,2012,47(12):1587−1592.
    [17]
    李碗芯, 孙莉娜, 林向民. 革兰氏阴性细菌外膜蛋白耐药功能及其抑菌策略研究进展[J]. 福建农林大学学报(自然版),2015,44(6):561−566.
    [18]
    Matsuo T, Nakamura K, Kodama T, et al. Characterization of all RND-type multidrug efflux transporters in Vibrio parahaemolyticus [J]. Microbiologyopen,2013,2(5):725−42. doi: 10.1002/mbo3.100
    [19]
    Matsuo T, Ogawa W, Tsuchiya T, et al. Overexpression of vmeTUV encoding a multidrug efflux transporter of Vibrio parahaemolyticus causes bile acid resistance[J]. Gene,2014,541(1):19−25. doi: 10.1016/j.gene.2014.03.004
    [20]
    Wang Y, Wang Q, Bai X, et al. Expression and immunological characterization of the OmpA protein from Vibrio parahaemolyticus strain SH112[J]. Acta Microbiologica Sinica,2019.
    [21]
    J Lun, D Liu, T Liu, et al. Evaluation of outer membrane protein U (OmpU) as a novel capture target of Vibrio parahaemolyticus and rapid detection of acute hepatopancreatic necrosis disease (AHPND) using PCR combined with immunomagnetic separation[J]. Aquaculture Amsterdam,2018,485:225−232. doi: 10.1016/j.aquaculture.2017.11.046
    [22]
    周德庆编著. 微生物学教程[M]. 第3版. 北京: 高等教育出版社, 2011: 107−108.
    [23]
    Zhijuan Mao, Lian Yu, Zhenqiang You, et al. Cloning, expression and immunogenicty analysis of five outer membrane proteins of Vibrio parahaemolyticus ZJ2003[J]. Fish & Shellfish Immunology,2007,23(3):567−575.
    [24]
    Xiuping Fu, Jingyun Zhang, Tianyi Li, et al. The outer membrane protein OmpW enhanced V. cholerae growth in hypersaline conditions by transporting carnitine[J]. Front Microbiol,2017(8):2703.
    [25]
    叶智鸧. 铁离子对大肠杆菌外膜蛋白OmpW的调控机制研究[D]. 杭州: 浙江理工大学, 2015.
    [26]
    Dijun Du, Hendrik Wvan Veen, Satoshi Murakami, et al. Structure, mechanism and cooperation of bacterial multidrug transporters[J]. Curr Opin Struct Biol,2015,33:76−91. doi: 10.1016/j.sbi.2015.07.015
    [27]
    Nikaido H. Multiple antibiotic resistance and efflux[J]. Current Opinion in Microbiology,1998,1(5):516−523. doi: 10.1016/S1369-5274(98)80083-0
    [28]
    Chopra I, Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiol Mol Biol Rev,2001,65(2):232−260. doi: 10.1128/MMBR.65.2.232-260.2001
    [29]
    Pioletti M. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3[J]. The EMBO Journal,2014,20(8):1829−1839.
  • Cited by

    Periodical cited type(2)

    1. 谭婉静,张笑薇,白泓,李晓凤,余以刚,肖性龙. 丁香油与月桂酸对金黄色葡萄球菌的协同抑制作用. 现代食品科技. 2022(02): 278-285+265 .
    2. 于航,王海默,钟世勋,吕月琴,刘兆胜,孙汝江. 抗菌肽APSH-07与抗生素对常见致病菌的体外协同抗菌效果研究. 饲料工业. 2021(16): 22-26 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (384) PDF downloads (13) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return