XU Lei, ZHANG Wenchang, ZHAO Yan, et al. Preparation of Chitosan with High Degree of Deacetylation from Amorphous Chitin[J]. Science and Technology of Food Industry, 2021, 42(13): 216−220. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100188.
Citation: XU Lei, ZHANG Wenchang, ZHAO Yan, et al. Preparation of Chitosan with High Degree of Deacetylation from Amorphous Chitin[J]. Science and Technology of Food Industry, 2021, 42(13): 216−220. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100188.

Preparation of Chitosan with High Degree of Deacetylation from Amorphous Chitin

More Information
  • Received Date: October 22, 2020
  • Available Online: April 24, 2021
  • By controlling the grinding time, four kinds of chitin powders with crystallinity of 80.91%, 58.06%, 31.94% and 8.09% were obtained by superfine grinding of chitin, then the heterogeneous deacetylation reaction of them and ordinary grinding chitin was comparative studied. The results showed that the degree of deacetylation of the prepared chitosan was increased with the decrease of crystallinity of chitin. Chitosan with high degree of deacetylation (>90%) could be obtained by single alkali treatment by using chitin powder with crystallinity of 31.94% and 8.09%, and the degree of deacetylation chitosan with ordinary grinding chitin was only 84%. According to the kinetic analysis, the activation energies of heterogeneous deacetylation of chitin powder obtained by ordinary grinding and four kinds of chitin powders obtained by superfine grinding were 58.71, 47.23, 42.30, 35.44 and 31.73 kJ/mol, respectively. The activation energy of the reaction decreased with the decrease of crystallinity, which indicated that amorphous treatment could enhance the heterogeneous deacetylation activity of chitin.
  • [1]
    Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications[J]. Marine Drugs,2015,13(3):1133−1174. doi: 10.3390/md13031133
    [2]
    Duan B, Huang Y, Lu A, et al. Recent advances in chitin based materials constructed via physical methods[J]. Progress in Polymer Science,2018,82:1−33. doi: 10.1016/j.progpolymsci.2018.04.001
    [3]
    Sun C, Fu D, Jin L, et al. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea[J]. Carbohydrate Polymers,2018,199:341−352. doi: 10.1016/j.carbpol.2018.07.045
    [4]
    Deepthi S, Venkatesan J, Kim S K, et al. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering[J]. International Journal of Biological Macromolecules,2016,93(Pt B):1338−1353.
    [5]
    Song S, Zhao Y, Yuan X, et al. β-Chitin nanofiber hydrogel as a scaffold to in situ fabricate monodispersed ultra-small silver nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,574:36−43.
    [6]
    Bedian L, Villalba-Rodriguez A M, Hernandez-Vargas G, et al. Bio-based materials with novel characteristics for tissue engineering applications - A review[J]. International Journal of Biological Macromolecules,2017,98:837−846. doi: 10.1016/j.ijbiomac.2017.02.048
    [7]
    Muxika A, Etxabide A, Uranga J, et al. Chitosan as a bioactive polymer: Processing, properties and applications[J]. International Journal of Biological Macromolecules,2017,105(Pt 2):1358−1368.
    [8]
    Shariatinia Z. Pharmaceutical applications of chitosan[J]. Advances in Colloid and Interface Science,2019,263:131−194. doi: 10.1016/j.cis.2018.11.008
    [9]
    Verlee A, Mincke S, Stevens C V. Recent developments in antibacterial and antifungal chitosan and its derivatives[J]. Carbohydrate Polymers,2017,164:268−283. doi: 10.1016/j.carbpol.2017.02.001
    [10]
    俞娟, 徐俊华, 范一民. 壳聚糖抗菌性能研究进展[J]. 林业工程学报,2018,3(5):20−27.
    [11]
    Cheung R C, Ng T B, Wong J H, et al. Chitosan: An update on potential biomedical and pharmaceutical applications[J]. Marine Drugs,2015,13(8):5156−5186. doi: 10.3390/md13085156
    [12]
    张立挺, 蒋子文, 高磊, 等. 壳聚糖明胶可食用复合膜的制备与抗菌性能研究[J]. 食品研究与开发,2020,41 (6):106−111.
    [13]
    史建如, 孙永, 刘楠, 等. 壳聚糖基褐藻多酚可食膜的制备工艺优化[J]. 南方农业学报,2018,49(5):979−985. doi: 10.3969/j.issn.2095-1191.2018.05.22
    [14]
    邹圣灿, 林莎莎, 王宝群, 等. 壳聚糖止血海绵的制备及其性能[J]. 纺织导报,2019(3):75−77.
    [15]
    郑磊, 崔慧斐. 不同分子量和脱乙酰度壳聚糖用作组织工程材料的性质评价[J]. 中国生化药物杂志,2009,30(2):106−110.
    [16]
    吕全建, 王建玲, 姬小明, 等. 影响壳聚糖脱乙酰度的因素研究[J]. 安徽农业科学,2008,36(16):6615−6616. doi: 10.3969/j.issn.0517-6611.2008.16.005
    [17]
    朱昌玲, 孙达峰, 张洁, 等. 高脱乙酰度壳聚糖制备工艺研究[J]. 中国野生植物资源,2011,30(6):44−47. doi: 10.3969/j.issn.1006-9690.2011.06.010
    [18]
    赵维, 李建科. 高脱乙酰度蛹渣壳聚糖制备工艺优化[J]. 食品科学,2010,31(20):121−126.
    [19]
    Gao X, Zhu D, Liu Y, et al. Physicochemical properties and anthocyanin bioaccessibility of downy rose-myrtle powder prepared by superfine grinding[J]. International Journal of Food Properties,2019,22(1):2022−2032. doi: 10.1080/10942912.2019.1702999
    [20]
    郭妍婷, 黄雪, 陈曼, 等. 超微粉碎技术在食品加工中的应用[J]. 仲恺农业工程学院学报,2017,30(3):60−64. doi: 10.3969/j.issn.1674-5663.2017.03.013
    [21]
    郭妍婷, 黄雪, 陈曼, 等. 超微粉碎技术的应用研究进展[J]. 广东化工,2016,43(16):276−277. doi: 10.3969/j.issn.1007-1865.2016.16.141
    [22]
    Wang Z, Hong C, Xing Y, et al. Influences of ultrafine comminution on chemical properties of antibiotic bioferment residue[J]. Powder Technology,2017,321:514−522. doi: 10.1016/j.powtec.2017.08.003
    [23]
    Augusto-Obara T R, Oliveira J D, Gloria E M D, et al. Benefits of superfine grinding method on antioxidant and antifungal characteristic of Brazilian green propolis extract[J]. Scientia Agricola,2019,76(5):398−404. doi: 10.1590/1678-992x-2018-0056
    [24]
    李婧琳, 王媚, 史亚军, 等. 超微粉碎技术在中药制剂中的应用分析[J]. 现在中医药,2018,38(5):121−123.
    [25]
    Wu M, Gao F, Yin D M, et al. Processing of Superfine grinding corn straw fiber-reinforced starch film and the enhancement on its mechanical properties[J]. Polymers (Basel),2018,10(8).
    [26]
    Zhang W, Zhao Y, Xu L, et al. Superfine grinding induced amorphization and increased solubility of alpha-chitin[J]. Carbohydrate Polymers,2020,237:116145. doi: 10.1016/j.carbpol.2020.116145
    [27]
    Ioelovich M. Crystallinity and hydrophility of chitin and chitosan[J]. Journal of Chemistry,2014,3(3):7−14.
    [28]
    Chang K L B, Tsai G, Lee J, et al. Heterogeneous N-deacetylation of chitin in alkaline solution[J]. Carbohydrate Research,1997(303):327−332.
    [29]
    徐文峰, 廖晓玲. 碱量法测定壳聚糖脱乙酰度的研究[J]. 分析试验室,2008,27(增刊):218−221.
    [30]
    Cárdenas G, Cabrera G, Taboada E, et al. Chitin characterization by SEM, FTIR, XRD, and13C cross polarization/mass angle spinning NMR[J]. Journal of Applied Polymer Science,2004,93(4):1876−1885. doi: 10.1002/app.20647
    [31]
    Margoutidis G, Parsons V H, Bottaro C S, et al. Mechanochemical amorphization of α-chitin and conversion into oligomers of N-Acetyl-d-glucosamine[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):1662−1669.
    [32]
    刘廷国, 李斌, 刘晶, 等. 甲壳素非均相脱乙酰的低温反应动力学研究[J]. 食品工业科技,2009,30(10):80−84.
    [33]
    Ottoy M H, Varum K M, Smidsrod O. Compositional heterogeneity of heterogeneously deacetylated chitosans[J]. Carbohydrate Polymers,1996,29(1):17−24. doi: 10.1016/0144-8617(95)00154-9
    [34]
    Yaghobi N, Mirzadeh H. Enhancement of chitin's degree of deacetylation of multistage alkali treatments[J]. Iranian Polymer Journal,2004,13(2):131−136.
    [35]
    张子涛, 陈东辉, 陈亮. 甲壳素脱乙酰化及其动力学[J]. 青岛大学学报,2000,15(4):23−26.
    [36]
    Chebotok E N, Novikov V Y, Konovalova I N. Kinetics of base deacetylation of chitin and chitosan as influenced by their crystallinity[J]. Russian Journal of Applied Chemistry,2007,80(10):1753−1758. doi: 10.1134/S1070427207100321
  • Cited by

    Periodical cited type(2)

    1. 许丁予,焦思宇,姚先超,刘鑫,陈丽芬,林日辉. 疏水壳聚糖气凝胶的制备和负载姜黄素及缓释性能. 食品科学. 2023(18): 18-25 .
    2. 秦博勇,程家耕,张玉陶,刘言,段烁,王桥. 响应面法优化制备高脱乙酰度小龙虾壳聚糖工艺及产物表征. 中国食品添加剂. 2023(12): 122-128 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (328) PDF downloads (22) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return