LIU Qingbo, ZHANG Dan, DONG Heliang, et al. Adsorption Properties of Lactobacillus Peptidoglycan on Acrylamide[J]. Science and Technology of Food Industry, 2021, 42(13): 103−110. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100087.
Citation: LIU Qingbo, ZHANG Dan, DONG Heliang, et al. Adsorption Properties of Lactobacillus Peptidoglycan on Acrylamide[J]. Science and Technology of Food Industry, 2021, 42(13): 103−110. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100087.

Adsorption Properties of Lactobacillus Peptidoglycan on Acrylamide

More Information
  • Received Date: October 13, 2020
  • Available Online: April 22, 2021
  • Four strains of lactic acid bacteria peptidoglycan (PG) are used as biosorbent to study the adsorption characteristics of acrylamide (AA). The effects of different factors ( pH value, temperature, time, PG concentration, AA concentration and calcium ion concentration) and simulated gastrointestinal environment on the adsorption characteristics of AA were investigated by HPLC. The results showed that with the increase of pH value and temperature, the adsorption rate of four lactic acid bacteria PG for AA increased first and then decreased. When the pH value was 5 and the temperature was 37 ℃, the adsorption rate of PG by four lactic acid bacteria reached the maximum value, among which the PG adsorption rate of Lactobacillus plantarum 1.0665 was 87.35%. Within 6 h, the adsorption rate of PG by four strains of lactic acid bacteria increased significantly with the extension of time (P<0.05), but there was no change after 6 h .The results showed that the adsorption rate decreased with the increase of AA concentration, and increased with the increase of PG concentration and calcium concentration. In the simulated gastric environment, different pH values significantly affected the adsorption effect of PG on AA (P<0.05), and the adsorption rate of PG to AA was the highest when pH was 3.5, and the different time had no significant effect on the adsorption capacity of PG for AA (P>0.05). In the simulated intestinal environment, bile salt concentration and the adsorption time significantly affected by efficiency of PG to AA (P<0.05), and 0.3%~0.4% bile salt concentration was more conducive to the adsorption of AA by PG. In conclusion, this study laid a theoretical foundation for the study of the adsorption mechanism of lactic acid bacteria.
  • [1]
    Tan X T, Ye J, Liu W Q, et al. Acrylamide aggravates cognitive deficits at night period via the gut-brain axis by reprogramming the brain circadian clock[J]. Archives of Toxicology,2019,93(2):467−486.
    [2]
    Mottram D S, Wedzicha B L, Dodson A T. Acrylamide is formed in the Maillard reaction[J]. Nature,2002,419(6906):448−449. doi: 10.1038/419448a
    [3]
    Viviane M, Pauia B S, Fernanda I, et al. Acrylamide: A review about its toxic effects in the light of developmental origin of health and disease (DOHaD) concept[J]. Food Chemistry,2019,283:422−430. doi: 10.1016/j.foodchem.2019.01.054
    [4]
    周萍萍. 丙烯酰胺的膳食风险评估研究进展[J]. 食品安全导刊,2018,31(24):54−57.
    [5]
    Wang H, Pan H, Lie T T, et al. Reproductive toxicity of acrylamide-treated male rats[J]. Reproductive Toxicology,2010(29):225−230.
    [6]
    Hu Q Q, Xu X H, Fu Y C, et al. Rapid methods for detecting acrylamide in thermally Processed foods: A review[J]. Food Control,2015,56:135−146.
    [7]
    李名薇, 孙建霞, 许伟, 等. 丙烯酰胺对睾丸间质细胞R2C活性及孕酮合成功能的影响[J]. 食品科学,2015(17):271−275.
    [8]
    陈冬妍, 刘黄友, 汪恩婷, 等. 丙烯酰胺和环氧丙酰胺的毒性及大蒜素对其毒性的保护作用研究进展[J]. 食品安全质量检测学报,2016,7(1):238−243.
    [9]
    Zhai Q X, Yin R J, Yu L L, et al. Screening of lactic acid bacteria with potential protective effects against cadmium toxicity[J]. Food Control,2015,54:23−30. doi: 10.1016/j.foodcont.2015.01.037
    [10]
    张梦梅, 刘书亮. 乳酸菌吸附重金属的影响因素、机理及应用研究进展[J]. 食品科学,2018,39(15):316−322. doi: 10.7506/spkx1002-6630-201815046
    [11]
    Wang L, Yue T L, Yuan Y H, et al. A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells[J]. Food Control,2015,50:104−110. doi: 10.1016/j.foodcont.2014.08.041
    [12]
    Chen Y, Kong Q, Chi C, et al. Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophilus andLactobacillus delbrueckii subsp. bulgaricus[J]. International Journal of Food Microbiology,2015,211:1−5. doi: 10.1016/j.ijfoodmicro.2015.06.021
    [13]
    赵思佳, 李蕊, 刘彤, 等. 5 株乳酸菌吸附丙烯酰胺稳定性的比较[J]. 食品科学,2019,40(24):151−156. doi: 10.7506/spkx1002-6630-20181225-288
    [14]
    Shen Y, Zhao S J, Zhao X D, et al. In vitro adsorption mechanism of acrylamide by lactic acid bacteria[J]. LWT-Food Science and Technology,2019,100:119−125. doi: 10.1016/j.lwt.2018.10.058
    [15]
    Zhang D, Liu W, Li L, et al. Key role of peptidoglycan on acrylamide binding by lactic acid bacteria[J]. Food Science & Biotechnology,2017,26(1):271−277.
    [16]
    漆叶琼, 张佳涛, 潘向辉, 等. 乳杆菌吸附苯并芘的特性[J]. 微生物学报,2011(7):956−964.
    [17]
    杨旭, 朱静静, 潘道东, 等. 嗜酸乳杆菌肽聚糖的六种提取方法比较研究[J]. 食品工业科技,2016,37(15):66−70, 75.
    [18]
    Chen K, Liu C, He Y, et al. A short-type peptidoglycan recognition protein from the silkworm: Expression, characterization and involvement in the prophenoloxidase activation pathway[J]. Developmental & Comparative Immunology,2014,45(1):1−9.
    [19]
    Wu Z, Pan D D, Guo Y X, et al. Peptidoglycan diversity and antiinflammatory capacity in Lactobacillus strains[J]. Carbohyd Polym,2015,128:130−137. doi: 10.1016/j.carbpol.2015.04.026
    [20]
    Vemula H, Ayon N J, Gutheil W G. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus[J]. Biochimie,2016,121:72−78. doi: 10.1016/j.biochi.2015.11.017
    [21]
    徐艳. 游离放线菌发酵废渣中肽聚糖的提取, 纯化与活性研究[D]. 杭州: 浙江工业大学, 2017.
    [22]
    宁妍. 双歧杆菌肽聚糖吸附苯并芘的研究与应用[D]. 保定: 河北农业大学, 2018.
    [23]
    牛文泽, 胡辉, 储炬, 等. 棘孢小单孢菌绛红变种细胞肽聚糖对庆大霉素吸附机制的研究[J]. 中国抗生素杂志,2003,28(2):65−69. doi: 10.3969/j.issn.1001-8689.2003.02.001
    [24]
    Jin Y, Yu S, Teng C, et al. Biosorption characteristic of Alcaligenes sp. BAPb. 1 for removal of lead(II) from aqueous solution[J]. Biotech,2017,7:123−127.
    [25]
    Wang X, Want T, Zheng X, et al. Isotherms, thermodynamic and mechanism studies of removal of low concentration uranium (VI) by Aspergillus niger[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research,2017,75(12):2727.
    [26]
    Gunjal A B, Kapadnis B P, Pawar N J. Potential of live biomass of Aspergillus spp. in biosorption of heavy metals from aqueous solutions[J]. Journal of Solid Waste Technology and Management,2017,43(3):216−225. doi: 10.5276/JSWT.2017.216
    [27]
    Zhang X B, Ohta Y. In vitro binding of mutagenic pyrolyzates to lactic acid bacterial cells in human gastric juice[J]. Journal of Dairy Science,1991,74(3):752−757. doi: 10.3168/jds.S0022-0302(91)78221-0
    [28]
    Zhao H F, Wang X, Zhang J W, et al. The mechanism of Lactobacillus strains for their ability to remove fumonisins B1 and B2[J]. Food & Chemical Toxicology,2016,97:40−46.
    [29]
    Urdaneta V, Casadesús J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts[J]. Frontiers in Medicine,2017,4:163. doi: 10.3389/fmed.2017.00163
    [30]
    Schubert K, Damink S W M O, Bergen M V, et al. Interactions between bile salts, gut microbiota, and hepatic innate immunity[J]. Immunological Reviews,2017,279(1):23−35.
  • Cited by

    Periodical cited type(12)

    1. 王琳,王耀,胡骁飞,王成宾,吴佳蓓. 免疫分析技术在金刚烷胺残留检测中的应用. 食品与机械. 2023(04): 205-210 .
    2. 孙玲玲,尹营,耿旭浩,霍思宇,高家政,陈冬东,彭涛,薛占永. 动物源性食品中金刚烷胺类药物残留检测技术研究进展. 食品科技. 2023(08): 294-301 .
    3. 任宏彬,张鑫鑫,贾晓婷,杨晓伟. 高效液相色谱-质谱联用法同时测定鸡肉中2种金刚烷胺类药物和12种喹诺酮类药物残留. 中国家禽. 2022(01): 77-82 .
    4. 张艳,王全胜,吴银良. 分散固相萃取-液相色谱-串联质谱法同时测定鸡蛋中7种抗病毒类药物和利巴韦林代谢物残留量. 食品安全质量检测学报. 2022(06): 1872-1879 .
    5. 郭东光,陈明艳,冯春花,王丰,卞爽丽,李文明,王凯露,吕薇薇,郑文珺,陈子怡,孙国鹏,李雪华,田金河,李鹏,朱艳平,岳锋,王选年. 齐帕特罗人工抗原合成及其多克隆抗体制备. 动物医学进展. 2022(05): 6-12 .
    6. 林瑶. 畜禽肉食品中金刚烷胺金刚乙胺残留量的超高效液相色谱串联质谱法测定. 预防医学论坛. 2022(06): 438-441 .
    7. 赵军强,韩典峰,田秀慧,王景,刘鸽,丁玉竹,彭中校,薛敬林,刘永春,乔瑞光,徐英江. 食品中金刚烷胺的危害、检测方法和残留风险研究进展. 中国渔业质量与标准. 2022(03): 64-71 .
    8. 姜英杰,葛子欣,翟玮玮,苏晶. EMR-Lipid固相萃取结合液相色谱串联质谱法快速测定鸡蛋中金刚烷胺和金刚乙胺残留量. 中国食品添加剂. 2022(11): 218-224 .
    9. 徐少华,聂婵,谭磊. 内标法测定鸡肉中金刚烷胺含量方法的优化——高效液相色谱-串联质谱法. 养禽与禽病防治. 2022(07): 20-23 .
    10. 王丰存,端礼钦,王静,郑云天. 超声提取-固相萃取-超高效液相色谱串联质谱法同时测定畜禽产品中金刚烷胺及8种氟喹诺酮类药物残留. 中国检验检测. 2022(06): 52-55+79 .
    11. 曾海英,王家磊,刘志敏,任召珍. 肉鸡中金刚烷胺残留测定及其残留代谢规律研究. 食品安全质量检测学报. 2021(08): 3118-3122 .
    12. 彭娟,赖科洋. 食品中金刚烷胺残留检测方法新进展. 食品科学. 2021(19): 325-333 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (171) PDF downloads (14) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return