YANG Bo, ZHU Yuxuan, MIAO Xiaoqing, et al. Protective Effects of Propolis Ethanol Extract on Mouse Aortic Endothelial Cells Injury[J]. Science and Technology of Food Industry, 2021, 42(15): 332−336. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100065.
Citation: YANG Bo, ZHU Yuxuan, MIAO Xiaoqing, et al. Protective Effects of Propolis Ethanol Extract on Mouse Aortic Endothelial Cells Injury[J]. Science and Technology of Food Industry, 2021, 42(15): 332−336. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100065.

Protective Effects of Propolis Ethanol Extract on Mouse Aortic Endothelial Cells Injury

More Information
  • Received Date: October 11, 2020
  • Available Online: May 30, 2021
  • Objective: The aim of this study was to investigate the protective effects of ethanol extracts of propolis (EEP) on mouse aortic endothelial cells (MAEC) from injury induced by lipopolysaccharide (LPS). Methods: Cell proliferation rate was determined by CCK-8. Then MAEC were divided into the blank group, LPS model group, low-dose (2.5 μg/mL), middle-dose (5 μg/mL), and high-dose (10 μg/mL) groups of EEP. The TNF-α and IL-6 levels were evaluated by ELISA. The expression levels of ICAM-1, VCAM-1 and MCP-1 were measured by Western Blot. Results: Compared with the control group, the cell proliferation rate of MAEC in the LPS group was extremely significant reduced (P<0.001), and the levels of ICAM-1, VCAM-1, MCP-1, TNF-α and IL-6 were extremely significant increased (P<0.001). The cell proliferation rate of EEP groups increased significantly (P<0.05 or P<0.01), and the content of TNF-α, IL-6 and the expression levels of ICAM-1, VCAM-1, and MCP-1 decreased compared with these of LPS group. There were significant differences between each propolis group and LPS group (P<0.01 or P<0.001). Conclusion: EEP could effectively inhibit LPS-induced the expression of inflammatory factors in MAEC, and it has the effect of protecting endothelial cells.
  • [1]
    胡钟竞, 王杰. 动脉粥样硬化形成机制及影响因素研究概况[J]. 临床医药文献电子杂志,2020,50(7):197−198.
    [2]
    Taleb Soraya. Inflammation in atherosclerosis[J]. Archives of Cardiovascular Diseases,2016,109(12):708−715. doi: 10.1016/j.acvd.2016.04.002
    [3]
    Small D M. Cellular mechanisms for lipid deposition in atherosclerosis (first of two parts)[J]. The New England Journal of Medicine,1977,297(16):873−877. doi: 10.1056/NEJM197710202971608
    [4]
    刘俊田. 动脉粥样硬化发病的炎症机制的研究进展[J]. 西安交通大学学报(医学版),2015,36(2):141−152.
    [5]
    全国蜂产品标准化工作组(SAC/SWG 2). GB/T 24283-2018蜂胶[S]. 国家市场监督管理总局, 中国国家标准化管理委员会, 2018.
    [6]
    Huang Y L, Huang Z Q, Watanabe C, et al. Combined direct analysis in real-time mass spectrometry (DART-MS) with analytical pyrolysis for characterization of Chinese crude propolis[J]. Journal of analytical and applied pyrolysis,2019,137:227−236. doi: 10.1016/j.jaap.2018.11.030
    [7]
    张婷婷. GC-MS和紫外光谱法分析中国蜂胶乙醇提取物[D]. 南昌: 南昌大学, 2017.
    [8]
    Santos L M, Fonseca M S, Sokolonski Ana R, et al. Propolis: Types, composition, biological activities, and veterinary product patent prospecting[J]. Journal of the Science of Food and Agriculture,2020,100(4):1369−1382. doi: 10.1002/jsfa.10024
    [9]
    Xu X L, Pu R X, Li Y J, et al. Chemical compositions of propolis from china and the united states and their antimicrobial activities against Penicillium notatum[J]. Molecules,2019,24(19):3576. doi: 10.3390/molecules24193576
    [10]
    Okińczyc P, Paluch E, Franiczek R, et al. Antimicrobial activity of Apis mellifera L. and Trigona sp. propolis from Nepal and its phytochemical analysis[J]. Biomedicine & Pharmacotherapy,2020,129:110435.
    [11]
    Zhang H, Fu Y Y, Niu F G, et al. Enhanced antioxidant activity and in vitro release of propolis by acid-induced aggregation using heat-denatured zein and carboxymethyl chitosan[J]. Food Hydrocolloids,2018,81:104−112. doi: 10.1016/j.foodhyd.2018.02.019
    [12]
    Annie R P, Mikhael H F, Rodrigues T, et al. Green propolis increases myeloid suppressor cells and CD4 + Foxp3 + cells and reduces Th2 inflammation in the lungs after allergen exposure[J]. Journal of Ethno Pharmacology,2020,252:112496.
    [13]
    Shi Y Z, Liu Y C, Zheng Y F, et al. Ethanol extract of chinese propolis attenuates early diabetic retinopathy by protecting the blood retinal barrier in streptozotocin induced diabetic rats[J]. Journal of Food Science,2019,84(2):358−369. doi: 10.1111/1750-3841.14435
    [14]
    Lima L D C, Andrade S P, Campos P P, et al. Brazilian green propolis modulates inflammation, angiogenesis and fibrogenesis in intraperitoneal implant in mice[J]. BMC Complement Altern Med,2014,14:177. doi: 10.1186/1472-6882-14-177
    [15]
    Franchin M, Freires I A, Lazarini J G, et al. The use of Brazilian propolis for discovery and development of novel anti-inflammatory drugs[J]. European Journal of Medicinal Chemistry,2018,153:49−55. doi: 10.1016/j.ejmech.2017.06.050
    [16]
    Kitamura H, Saito K, Fujimoto J, et al. Brazilian propolis ethanol extract and its component kaempferol induce myeloid-derived suppressor cells from macrophages of mice in vivo and in vitro[J]. BMC complementary medicine and therapies,2018,18(1):138. doi: 10.1186/s12906-018-2198-5
    [17]
    Fang Y, Sang H, Yuan N, et al. Ethanolic extract of propolis inhibits atherosclerosis in Apo E-knockout mice[J]. Lipids in Health and Disease,2013,12:123. doi: 10.1186/1476-511X-12-123
    [18]
    赵胜男. 白杨素通过抑制NF-κB信号通路缓解血管内皮炎症[D]. 武汉: 华中科技大学, 2019.
    [19]
    Dauphinee S M, Karsan A. Lipopolysaccharide signaling in endothelial cells[J]. Laboratory Investigation,2006,86(1):9−22. doi: 10.1038/labinvest.3700366
    [20]
    任德成. 内皮细胞损伤的机制及保护药物的筛选研究[D]. 北京: 中国协和医科大学, 2002.
    [21]
    Zhong Y, Liu C, Feng J, et al. Curcumin affects ox-LDL-induced IL-6, TNF-α, MCP-1 secretion and cholesterol efflux in THP-1 cells by suppressing the TLR4/NF-κB/miR33a signaling pathway[J]. Experimental and Therapeutic Medicine,2020,20(3):1856−1870.
    [22]
    周信, 张小荣, 张秋燕, 等. 生半夏及其炮制品对小鼠主动脉内皮细胞炎性因子分泌的影响[J]. 中国实验方剂学杂志,2013,19(10):261−265.
    [23]
    Klinghammer L, Urschel K, Cicha K, et al. Impact of telmisartan on the inflammatory state in patients with coronary atherosclerosis Influence on IP-10, TNF-α and MCP-1[J]. Cytokine,2013,62(2):290−296. doi: 10.1016/j.cyto.2013.02.001
    [24]
    Zhang Y, Yang X, Bian F, et al. TNF-α promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-κ B and PPAR-γ[J]. Journal of Molecular and Cellular Cardiology,2014,72:85−94. doi: 10.1016/j.yjmcc.2014.02.012
    [25]
    张伟洁, 郑宏. IL-6介导免疫炎性反应作用及其与疾病关系的研究进展[J]. 细胞与分子免疫学杂志,2017,33(5):699−703.
    [26]
    解慧梅, 胡格, 索占伟, 等. 人参皂甙Rb1和黄芪多糖对微血管内皮细胞分泌NO、IL-6和TNF-α的影响[J]. 畜牧兽医学报,2006(9):903−907. doi: 10.3321/j.issn:0366-6964.2006.09.013
    [27]
    郭建恩, 高飞, 胡亚涛, 等. 瓜蒌薤白半夏汤对动脉粥样硬化小鼠炎症因子、ICAM-1、VCAM-1表达的影响[J]. 暨南大学学报(自然科学与医学版),2017,38(3):234−239.
    [28]
    黄志广. 重组SAK-HV对小鼠主动脉内皮细胞的作用及机制研究[D]. 南宁: 广西医科大学, 2016.
    [29]
    Kan I, Takeshi K, Hiroyuki I, et al. Induction of ICAM-1 and VCAM-1 on the mouse lingual lymphatic endothelium with TNF-α[J]. Acta Histochemica et Cytochemica,2008,41(5):115−120. doi: 10.1267/ahc.08017
    [30]
    Liang C J, Lee C W, Sung H C, et al. Magnolol reduced TNF-α-induced vascular cell adhesion molecule-1 expression in endothelial cells via JNK/p38 and NF-κB signaling pathways[J]. The American Journal of Chinese Medicine: An International Journal of Comparative Medicine East and West,2014,42(3):619−37.
    [31]
    Nageh M F, Sandberg E T, Marotti K R, et al. Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice[J]. Arteriosclerosis, Thrombosis, and Vascular Biology,1997,17(8):1517−1520. doi: 10.1161/01.ATV.17.8.1517
    [32]
    穆伟. 动脉粥样硬化中血管细胞粘附分子-1的表达与基因干预研究[D]. 济南: 山东大学, 2015.
    [33]
    Lin J T, Kakkar V, Lu X J. Impact of MCP-1 in atherosclerosis[J]. Current Pharmaceutical Design,2014,20(28):4580−4588. doi: 10.2174/1381612820666140522115801
    [34]
    Appakkudal R A, Bradley R, Ganju R K. LPS-induced MCP-1 expression in human microvascular endothelial cells is mediated by the tyrosine kinase, Pyk2 via the p38 MAPK/NF-κ B-dependent pathway[J]. Molecular immunology,2009,46(5):962−968. doi: 10.1016/j.molimm.2008.09.022
    [35]
    Zhang Y J, Catherine A E, Barrett J R. MCP-1: Structure/Activity Analysis[J]. Methods,1996,10(1):93−103. doi: 10.1006/meth.1996.0083
    [36]
    Chang M L, Guo F, Zhou Z D, et al. HBP induces the expression of monocyte chemoattractant protein-1 via the FAK/PI3K/AKT and p38 MAPK/NF-κB pathways in vascular endothelial cells[J]. Cellular Signaling,2018,43:85−94. doi: 10.1016/j.cellsig.2017.12.008
  • Cited by

    Periodical cited type(7)

    1. 王如月,虎海防,罗莎莎,甄紫怡,徐业勇,胡晓静. 杏李不同采收成熟度果实品质分析. 中国农业科技导报(中英文). 2025(02): 158-169 .
    2. 孙建城,王登亮,马创举,刘丽丽,陈骏,刘春荣,吴群. 不同采收期对华柑4号柑橘果实品质的影响. 中国果树. 2024(07): 67-73 .
    3. 宋欣悦,吕靖芳,戴芬,朱作艺. 不同采收成熟度菲油果营养品质评价. 农产品质量与安全. 2024(05): 20-24+72 .
    4. 方玉凤,温宝阳,王英东. 黑龙江省野生山刺玫优良种源选择利用研究. 林业科技. 2024(06): 1-6 .
    5. 赵妍,祝文雪,李先宽,高鑫,付鲲,张坚. 酸枣种质资源表型多样性及营养成分分析. 种子. 2024(11): 120-126 .
    6. 吴斌,苏金生,邢文婷,宋顺,马伏宁,黄东梅. 不同品种百香果果实转色期糖酸品质性状评价. 果树学报. 2024(12): 2532-2542 .
    7. 李星星,周国富,骆官雨,陈思蓉,张金龙,陈国华,张晓明. 橘小实蝇对不同品种苹果的选择偏好及适应性. 中国农业科学. 2023(17): 3358-3371 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (212) PDF downloads (18) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return