WU Dandan, QI Bule, SIRendalai , et al. Rapid Detection of Adulteration in Camel Milk by Electronic Nose[J]. Science and Technology of Food Industry, 2021, 42(11): 263−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100041.
Citation: WU Dandan, QI Bule, SIRendalai , et al. Rapid Detection of Adulteration in Camel Milk by Electronic Nose[J]. Science and Technology of Food Industry, 2021, 42(11): 263−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100041.

Rapid Detection of Adulteration in Camel Milk by Electronic Nose

More Information
  • Received Date: October 11, 2020
  • Available Online: March 30, 2021
  • In order to more quickly and accurately identify the odor characteristics of adulterated camel milk, this research takes ALaShan Bactrian camel milk as the object. The milk is prepared according to different adulteration concentrations into 0.1%, 1%, 3%, 5%, 10%, 15%, 20% and 100% milk gradients.According to the odor characteristics of adulterated camel milk, the evaluation of adulterated camel milk can be made more quickly and accurately through 10 electronic nose sensors and multivariate analysis.Finally, the data analysis of adulterated camel milk samples in the validation set was verified. The results showed that based on the response value of the electronic nose to the volatile components of adulterated milk samples, the first two principal components are 85.1%, and the correlation coefficient of the partial least squares discriminant model was R2X=0.842, R2Y=0.628, Q2=0.618. It was revealed that the electronic nose could effectively distinguish camel milk or adulterated camel milk samples, and the minimum detection limit for detecting adulterated milk in camel milk was 1%. The key electronic nose sensor that affects camel milk odor recognition was the W5S sensor. In addition, the correlation coefficients of the PLS-DA model of adulterated milk samples in the validation set were R2X=0.81, R2Y=0.659, Q2=0.641. The results further confirmed the effectiveness of the electronic nose for identifying the smell of camel milk. In summary, electronic nose technology was used to achieve rapid and accurate identification of odor characteristics of camel milk mixed with cow milk in this study, which provides a theoretical basis for the subsequent research on the odor characteristics of camel milk adulteration, and also for adulteration of other foods.
  • [1]
    Ehlayel M, Bener A. Camel’s milk allergy[J]. Allergy and Asthma Proceedings,2018,39(5):384−388. doi: 10.2500/aap.2018.39.4150
    [2]
    Felfoul I, Jardin J, Gaucheron F, et al. Proteomic profiling of camel and cow milk proteins under heat treatment[J]. Food Chemistry,2017,216:161−169. doi: 10.1016/j.foodchem.2016.08.007
    [3]
    Khalesi M, Salami M, Moslehishad M, et al. Biomolecular content of camel milk: A traditional super food towards future health care industry[J]. Trends in Food Science & Technology,2017,62:49−58.
    [4]
    Maryam S, Reza Yi, Mohammad R, et al. Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes[J]. International Dairy Journal,2008,18(12):1097−1102. doi: 10.1016/j.idairyj.2008.06.003
    [5]
    吉日木图, 陈钢粮, 云振宇. 双峰驼与双峰驼乳[M]. 北京: 中国轻工业出版社, 2009: 29.
    [6]
    Ri Ge Tu Z, Ni Meng He W, Zhitong W. Determination of nutrient composition of camel milk[J]. Animal Husbandry in China,2016:51−52.
    [7]
    逯笑岩. 牛奶掺假检测技术的研究进展[J]. 农产品加工,2018(15):83−84.
    [8]
    Yang L, Yinqiang L, Guozhen L, et al. A review of methods for detecting melamine in food samples[J]. Critical Reviews in Analytical Chemistry,2017,47(1):51−66. doi: 10.1080/10408347.2016.1176889
    [9]
    Jeong H S, Chung H, Song S H, et al. Validation and determination of the contents of acetaldehyde and formaldehyde in foods[J]. Toxicological Research,2015,31(3):273−278. doi: 10.5487/TR.2015.31.3.273
    [10]
    Garcia J, Sanvido G B, Saraiva S A, et al. Bovine milk powder adulteration with vegetable oils or fats revealed by MALDI-QTOF MS[J]. Food Chemistry,2012,131(2):722−726. doi: 10.1016/j.foodchem.2011.09.062
    [11]
    Rani A, Sharma V, Arora S, et al. A rapid reversed-phase thin layer chromatographic protocol or detection of adulteration in ghee (clarified milk fat) with vegetable oils[J]. Journal of Food Science and Technology,2015,52(4):2434−2439. doi: 10.1007/s13197-013-1208-3
    [12]
    Carvalho B M A, Carvalho L M, Coimbra J S, et al. Rapid detection of whey in milk powder samples by spectrophotometric and multivariate calibration[J]. Food Chemistry,2015,174:1−7. doi: 10.1016/j.foodchem.2014.11.003
    [13]
    Jha S N, Jaiswal P, Borah A, et al. Detection and quantification of urea in milk using attenuated total reflectance-Fourier Transform infrared spectroscopy[J]. Food and Bioprocess Technology,2015,8(4):926−933. doi: 10.1007/s11947-014-1455-y
    [14]
    姜晓仙, 吉日木图. 驼乳掺假检测方面的研究进展[C]. 阿右旗人民政府、中国畜牧业协会骆驼分会. “一带一路”骆驼科技、产业与文化国际研讨会暨第五届中国骆驼产业发展大会论文集. 阿右旗人民政府、中国畜牧业协会骆驼分会: 中国畜牧业协会, 2017: 118−123.
    [15]
    斯仁达来. 利用低场核磁共振技术快速检测掺假驼乳的研究[D]. 呼和浩特: 内蒙古农业大学, 2016.
    [16]
    Mabood F, Jabeen F, Ahmed M, et al. Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk[J]. Food Chemistry,2017:221.
    [17]
    贾茹, 张娟, 王佳奕, 等. 电子鼻结合化学计量法对羊奶中蛋白质掺假的识别[J]. 食品科学,2017,38(8):308−312. doi: 10.7506/spkx1002-6630-201708048
    [18]
    金嫘, 白丽娟, 彭小雨, 等. 采用电子鼻检测羊奶中的牛奶掺入[J]. 食品与发酵工业,2015,41(4):165−168.
    [19]
    马利杰. 电子鼻对羊奶及羊奶粉掺假的快速检测研究[D]. 咸阳: 西北农林科技大学, 2015.
    [20]
    王綪, 李璐, 王佳奕, 等. 电子鼻结合气相色谱-质谱法对宁夏小尾寒羊肉中鸭肉掺假的快速检测[J]. 食品科学,2017,38(20):222−228. doi: 10.7506/spkx1002-6630-201720032
    [21]
    韩慧, 王志强, 李彩虹, 等. 基于电子舌的掺假羊奶快速定量预测模型[J]. 食品与机械,2018,34(12):53−56.
    [22]
    刘彬球, 陈孝权, 吴晓刚, 等. PCA和PLS-DA用于晒青毛茶级别分类研究[J]. 茶叶科学,2015,35(2):179−184. doi: 10.3969/j.issn.1000-369X.2015.02.014
    [23]
    刘平. 基于近红外和高光谱检测鸡蛋粉掺假的研究[D]. 武汉: 华中农业大学, 2017.
    [24]
    黄涵, 曾令杰, 冯鸿耀, 等. 基于HPLC指纹图谱与PLS-DA法评价新疆、云南产雪菊的质量[J]. 中成药,2015,37(12):2710−2714.
    [25]
    钱丽丽, 冷候喜, 宋雪健, 等. 基于PLS-DA判别法对黑龙江大米产地溯源的研究[J]. 食品工业,2017,38(1):171−174.
    [26]
    Zhu Y, Shao C Y, Lv H P, et al. Enantiomeric and quantitative analysis of volatile terpenoids in different teas (Camellia sinensis)[J]. Journal of Chromatography A,2017,1490:177−190. doi: 10.1016/j.chroma.2017.02.013
    [27]
    唐军, 廖享, 童红, 等. 基于气质与PLS-DA对新疆薰衣草精油判别分析[J]. 计算机与应用化学,2014,31(6):702−704.
    [28]
    姚月凤, 王家勤, 滑金杰, 等. 电子舌在工夫红茶甜纯滋味特征评价中的应用[J]. 食品科学,2019,40(18):236−241. doi: 10.7506/spkx1002-6630-20181012-100
    [29]
    尹洪旭, 杨艳芹, 姚月凤, 等. 基于气相色谱-质谱技术与多元统计分析对不同栗香特征绿茶判别分析[J]. 食品科学,2019,40(4):192−198. doi: 10.7506/spkx1002-6630-20180120-276
  • Cited by

    Periodical cited type(12)

    1. 赵成莹,袁静,王宝菊,刘恒煜,刘承军,周广驰,李志强,刘晓. 乳品掺假检测技术研究进展. 中国乳业. 2024(03): 77-82 .
    2. 张桂云,谢建华,杨伟强. 电子鼻在食品掺假鉴定中的应用研究进展. 食品与机械. 2023(04): 211-216+240 .
    3. 戢得蓉,石晶晶,王艺融,段丽丽. 复配防腐剂在怪味鸡丝中的应用研究. 中国食品添加剂. 2023(05): 233-240 .
    4. 曹新文,王建峰,刘传强,王春,陆容,张吉红,李秀林,赵秀玲,黄素文. 驼源性核酸多重快速荧光定量PCR检测方法的建立及检测试剂盒的研制. 中国兽医科学. 2023(05): 664-670 .
    5. 付辉,于志强,黄素文,赵秀玲,张吉红,黄永健,马涛. 驼乳中牛乳和羊乳掺假快速检测试纸条的研制. 中国口岸科学技术. 2023(08): 40-47 .
    6. 许文娟,赵晗,王洪涛,刘东霞,孔彩霞,马蕾. 电子鼻在食品安全检测领域的研究进展. 食品工业. 2022(02): 255-260 .
    7. 蒋靖雯,林思宇,易灿,王聪,刘倩,王一斐. 感官分析技术及其在乳制品中的应用. 中国乳业. 2022(02): 110-116 .
    8. 孙璐,崔占鸿. 牛乳溯源研究进展. 青海畜牧兽医杂志. 2022(01): 50-55 .
    9. 刘琴,何晓瑞,陆东林,李景芳,徐敏. 驼乳掺假牛乳检测技术研究进展. 新疆畜牧业. 2022(02): 24-26+30 .
    10. 粟娜,高海慧,贺花,郭抗抗. 原料乳掺假检测研究进展. 食品工业. 2022(06): 250-253 .
    11. 曲爱玲,马长路. 电子鼻在食品安全中的应用及发展趋势. 食品工业. 2022(08): 320-325 .
    12. 郭颖慧,任易婕,霍胜楠. 荧光定量PCR法鉴定乳及乳制品中骆驼成分的研究. 预防医学论坛. 2021(12): 916-918 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (270) PDF downloads (32) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return