CUI Lizhu, FU Yiyi, LIU Shiwei, et al. Optimization for Baking Process of Sea-Buckthorn Biscuits Based on Sensory Evaluation of Fuzzy Mathematics [J]. Science and Technology of Food Industry, 2021, 42(15): 163−169. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100038.
Citation: CUI Lizhu, FU Yiyi, LIU Shiwei, et al. Optimization for Baking Process of Sea-Buckthorn Biscuits Based on Sensory Evaluation of Fuzzy Mathematics [J]. Science and Technology of Food Industry, 2021, 42(15): 163−169. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100038.

Optimization for Baking Process of Sea-Buckthorn Biscuits Based on Sensory Evaluation of Fuzzy Mathematics

More Information
  • Received Date: October 11, 2020
  • Available Online: June 02, 2021
  • To improve the quality of sea-buckthorn biscuits, the effect of baking time, surface and bottom heating temperature on the quality of sea-buckthorn biscuits by using the sensory score as a evaluation index based on the sensory evaluation method of fuzzy mathematics. The baking conditions were optimized by response surface methodology (RSM). The quality of sea-buckthorn biscuit was analyzed by electronic tongue and electronic nose. The results showed that, the optimal baking conditions of sea-buckthorn biscuits were as follows: surface temperature 175 ℃, bottom temperature 167.5 ℃, and baking time 13 min. In this condition, the sensory scores of sea-buckthorn biscuits was 77.89. The analysis of the taste of Sea-buckthorn biscuits by electronic tongue showed that the difference mainly existed in the sour, sweet, salty and umami taste, significant difference results, which indicated that the results of electronic tongue analysis could completely distinguish different samples. The results of electronic nose showed that the main differences were PA/2 (Umami sensor) and P30/1 (Rancidity odor sensor), the cumulative variance contribution rate of principal component analysis was 99.40%, which indicated that the electronic nose could distinguish different Sea-buckthorn biscuits and commercial samples accurately.
  • [1]
    姚娜娜, 车凤斌, 李永海, 等. 沙棘的营养价值及综合开发利用概述[J]. 保鲜与加工,2020,20(2):226−232. doi: 10.3969/j.issn.1009-6221.2020.02.038
    [2]
    Aleksandra Zielińska, Nowak I. Abundance of active ingredients in sea-buckthorn oil[J]. Lipids in Health and Disease,2017,16(1):95−106. doi: 10.1186/s12944-017-0469-7
    [3]
    Marta Solà Marsiach, Cuenca A P. The impact of sea buckthorn oil fatty acids on human health[J]. Lipids in Health and Disease,2019,18(1):145−156. doi: 10.1186/s12944-019-1065-9
    [4]
    柳梅, 任璇, 姚玉军, 等. 沙棘叶多酚提取物抗氧化及体外降血糖活性研究[J]. 天然产物研究与开发,2017(6):1013−1019.
    [5]
    Attri S, Goel G. Influence of polyphenol rich seabuckthorn berries juice on release of polyphenols and colonic microbiota on exposure to simulated human digestion model[J]. Food Research International,2018,111(SEP.):314−323.
    [6]
    臧茜茜, 邓乾春, 从仁怀, 等. 沙棘油功效成分及药理功能研究进展[J]. 中国油脂,2015,40(5):76−81. doi: 10.3969/j.issn.1003-7969.2015.05.017
    [7]
    吴芳彤, 曹倩荣, 吴广枫, 等. 基于模糊数学感官评价法和混料设计优化紫薯莜麦酒配方[J]. 食品与发酵工业,2019,45(17):158−165.
    [8]
    孙莹, 苗榕芯. 基于模糊数学综合感官评价的甘薯淀粉面包的工艺优化[J]. 食品工业科技,2018(17):180−185.
    [9]
    林致通, 张东霞, 雷雯, 等. 基于模糊数学与感官质构分析建立鲜凉皮食用品质评价标准[J]. 食品与发酵工业,2020,46(7):225−233.
    [10]
    王琼, 徐宝才, 于海, 等. 电子鼻和电子舌结合模糊数学感官评价优化培根烟熏工艺[J]. 中国农业科学,2017,50(1):161−170. doi: 10.3864/j.issn.0578-1752.2017.01.014
    [11]
    Wentian Zhang, Taoping Liu, Maiken Ueland, et al. Design of an efficient electronic nose system for odour analysis and assessment[J]. Measurement,2020,41(10):80−89.
    [12]
    苏智敏, 黄小平, 刘飞, 等. 电子舌技术在食用盐模糊感官评价中的应用[J]. 食品与机械,2020,36(8):53−56.
    [13]
    Danshi Zhu, Xiaojun Ren, Liwei Wei, et al. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue[J]. Scientia Horticulturae,2020,260 (10):79−88.
    [14]
    黄嘉丽, 黄宝华, 卢宇靖, 等. 电子舌检测技术及其在食品领域的应用研究进展[J]. 中国调味品,2019,44(5):189−193, 196. doi: 10.3969/j.issn.1000-9973.2019.05.044
    [15]
    乐梨庆, 万燕, 向达兵, 等. 藜麦酥性饼干的加工工艺研究[J]. 粮食与饲料工业,2019(7):21−25.
    [16]
    姬长英. 感官模糊综合评价中权重分配的正确制定[J]. 食品科学,1991,12(3):9−11.
    [17]
    易宇文, 李冬梅, 范文教, 等. 基于模糊数学与智能感官评价的鱼香调味汁配方优化研究[J]. 中国食品添加剂,2017(11):132−139. doi: 10.3969/j.issn.1006-2513.2017.11.015
    [18]
    陈琼玲, 赵永娟, 孙亚莉, 等. 模糊数学感官评价法优化花生桃酥加工工艺[J]. 粮食与油脂,2018,31(9):59−62. doi: 10.3969/j.issn.1008-9578.2018.09.016
    [19]
    潘印卿. 电子舌技术在食品品质检测与评价中的应用研究[D]. 开封: 河南工业大学, 2015.
    [20]
    Pathange L P, Mallikarjunan P, Marini R P, et al. Non-destructive evaluation of apple maturity using an electronic nose system[J]. Journal of Food Engineering,2006,77(4):1018−1023. doi: 10.1016/j.jfoodeng.2005.08.034
    [21]
    Jiashen Cai, Yunyang Zhu, Runhui Ma. Effects of roasting level on physicochemical, sensory, and volatile profiles of soybeans using electronic nose and HS-SPME-GC-MS[J]. Food Chemistry,2021,340(12):68−80.
    [22]
    周学松, 苏为华. 模糊综合评判取大取小算法问题的进一步讨论[J]. 浙江工商大学学报,2007,85(4):3−8. doi: 10.3969/j.issn.1009-1505.2007.04.001
  • Related Articles

    [1]XIAO Zhigang, ZHOU Lianshun, WANG Lishuang, YUAN Yuan, LI Ruizhi, ZHANG Yifan, DUAN Yumin, WANG Peng. Optimization on the Processing Technology of Modified Purple Sweet Potato Biscuits Based on Fuzzy Mathematics Comprehensive Evaluation Method[J]. Science and Technology of Food Industry, 2023, 44(7): 170-177. DOI: 10.13386/j.issn1002-0306.2022060031
    [2]LIU Shiwei, WANG Chengxiang, DUAN Shenglin, ZHANG Meina, WANG Xi, MA Fujun, ZHAO Xinyan, LI Haizhi. Research on Formula Optimization and Low-GI Verification of Coarse Grain Steamed Bread Based on Fuzzy Mathematics Sensory Evaluation[J]. Science and Technology of Food Industry, 2022, 43(21): 375-380. DOI: 10.13386/j.issn1002-0306.2021110206
    [3]SHA Rui, DING Jie, CHEN Jing, NIU Ben. Optimization of Mulberry Leaf Instant Solid Tea Formula by Fuzzy Mathematics Sensory Evaluation Method[J]. Science and Technology of Food Industry, 2022, 43(11): 200-207. DOI: 10.13386/j.issn1002-0306.2021090235
    [4]FU Zhi-feng, ZHANG Xiao-rong, ZHOU He, SHI Yan, TU Zong-cai. Optimization of Processing Formula of Kiwifruit Cake by Fuzzy Mathematical Sensory Evaluation[J]. Science and Technology of Food Industry, 2020, 41(19): 212-218,351. DOI: 10.13386/j.issn1002-0306.2020.19.033
    [5]GAO Tao, CHEN Hong-xu, TANG Hua-li. Optimization of the Formulation of Three Kinds of Dried Fruit Composite Solid Beverage by Fuzzy Mathematics Sensory Evaluation Method[J]. Science and Technology of Food Industry, 2020, 41(9): 175-180. DOI: 10.13386/j.issn1002-0306.2020.09.028
    [6]WANG Li, GUO Li-jun, ZHANG Xiu-ying, WANG Yu-tao, WEI Jian, ZHANG Li, SUN Bao-zhong, YU Qun-li. Optimization on Processing Technology of Barbecue Tripe based on Fuzzy Mathematical Sensory Evaluation[J]. Science and Technology of Food Industry, 2018, 39(19): 200-205. DOI: 10.13386/j.issn1002-0306.2018.19.035
    [7]BAO Gao-liang, LIU Ya-na, HAN Dong-jie, SUN Bao-zhong, ZHANG Li, XIE Peng, LI Hai-peng. Establishment of sensory evaluation system for frying of dry- cured yak meat based on fuzzy mathematics[J]. Science and Technology of Food Industry, 2016, (15): 287-293. DOI: 10.13386/j.issn1002-0306.2016.15.047
    [8]LI Ming- juan, YOU Xiang-rong, ZHANG Ya-yuan, LIAO Fen, SUN Jian, QIN Gang, WEI Ping, LI Zhi-chun, YANG Mei, XIE Xiao-qiang. Effects of the sugarcane leaves biochar powder on the sensory quality and texture characteristics of biscuits[J]. Science and Technology of Food Industry, 2016, (05): 98-103. DOI: 10.13386/j.issn1002-0306.2016.05.011
    [9]LI Ran-ran, RUAN Zheng, LI Bian-sheng, HUANG Jia-rong, LUO Yong-bao. Establishment of sensory evaluation system for cantonese-style barbecued pork bun based on fuzzy mathematics[J]. Science and Technology of Food Industry, 2014, (24): 118-122. DOI: 10.13386/j.issn1002-0306.2014.24.016
    [10]Processing technology of shrimp flavor by fuzzy mathematic sensory evaluation[J]. Science and Technology of Food Industry, 2013, (08): 274-276. DOI: 10.13386/j.issn1002-0306.2013.08.058
  • Cited by

    Periodical cited type(22)

    1. 于梦丽,陈雨,林凤岩,陈复生. 物理-酶耦合修饰大豆蛋白凝胶特性的研究进展. 食品与发酵工业. 2025(05): 351-360 .
    2. 李婧御,李元鑫,刘冉,孙永旺,郭尚敬,穆洪静,赵庆奎. 原花青素对大豆分离蛋白凝胶流变特性及抗氧化活性的影响. 中国调味品. 2024(03): 81-86 .
    3. 李志杰,闫睿思,汪秀娟,胡中海,蔡天赐,甄宗圆. 蛋白添加剂增强肉制品凝胶性研究进展. 食品科学. 2024(07): 348-357 .
    4. 胡婷婷. 即食豆花的工艺研究进展. 中国食品工业. 2024(10): 113-115 .
    5. 杜童申,刘悦,马骏骅,王馨怡,沈存宽,杨华,颜金鑫. 超声预处理对亚麻籽胶-大豆分离蛋白复合凝胶凝胶特性及结构的影响. 食品工业科技. 2024(13): 83-90 . 本站查看
    6. 袁钦杰,桑森鑫,刘小杰,叶佳琳,胡浩,刘兴泉,张娇娇. 用于组织化蛋白开发的豆类分离蛋白功能特性评价. 中国粮油学报. 2024(06): 118-126 .
    7. 朱秀清,邓筱琪,朱颖,王喜泉,李玉玲,夏晓雨. 大豆蛋白凝胶制备及其影响因素的研究进展. 食品工业科技. 2023(06): 405-414 . 本站查看
    8. 吕静,杨洁茹,李坤,陈龙,李静,李晓卓,朱静. 不同提取工艺对油茶籽粕蛋白质结构及功能特性的影响. 食品工业科技. 2023(14): 102-110 . 本站查看
    9. 张惠琳,林捷,郑华,吴绍宗,刘文博,胡嘉炜,刘泽祺,黄茵. 黄原胶和瓜尔豆胶对鸡血凝胶特性的影响. 食品工业科技. 2023(18): 106-114 . 本站查看
    10. 于淼,裴昱博,李春. 基于超声波改性大豆分离蛋白的研究进展. 食品科技. 2023(12): 222-228 .
    11. 邹婕,王琪,马美湖,黄茜,盛龙. 高场强超声对蛋清液起泡特性的影响. 中国食品学报. 2022(01): 163-171 .
    12. 刘冉,曾庆华,梁明,王雷,程霜. 黄原胶对大豆分离蛋白凝胶流变特性和微观结构的影响. 食品工业科技. 2022(04): 65-72 . 本站查看
    13. 朱宏星,高田毅,黄杨,王鑫,葛庆丰,王道营,孙冲. 肌红蛋白血红素辅基氧化修饰对肌球蛋白功能特性及凝胶特性的影响. 食品科学. 2022(08): 1-8 .
    14. 李晓惠,任仙娥,杨锋,黄永春,黄承都,张昆明,刘纯友. 水力空化对大豆分离蛋白谷氨酰胺转氨酶促凝胶行为的影响. 食品科学. 2022(11): 67-74 .
    15. 李晓惠,任仙娥,杨锋,黄永春,黄承都,张昆明,刘纯友. 水力空化对大豆分离蛋白钙致凝胶行为的影响. 中国调味品. 2022(08): 1-5 .
    16. 王可尧,任仙娥,杨锋,黄永春,张昆明,刘纯友,黄承都. 大豆和豌豆分离蛋白复合热促凝胶特性的研究. 中国调味品. 2022(10): 7-11 .
    17. 张娟,于志杰,杜枚. 大豆蛋白改性研究的进展. 粮食与饲料工业. 2022(05): 29-31+35 .
    18. 刘静雪,梁雪寒,田兰英,李凤林. 超声处理对大豆分离蛋白性质影响研究. 粮食加工. 2022(06): 22-25 .
    19. 杨晓盼,刘丽莉,黄正迪,李媛媛,郝威铭,张孟军,史胜娟. 常温贮藏期间鸡蛋清流变特性和蛋白质成分的变化. 浙江农业学报. 2021(03): 526-533 .
    20. 安红周,梁会会,费小吉,李盘欣,黄泽华. 不同大豆分离蛋白流变学特性的比较研究. 食品科技. 2021(04): 142-148 .
    21. 蔡燕萍,游寅寅,刘建华,邱月,吕飞,丁玉庭. 大豆蛋白凝胶性及其改良方法的研究进展. 食品与发酵工业. 2021(15): 298-306 .
    22. 王俊鹏,贺稚非,李敏涵,齐世超,李洪军. 冷等离子体技术在蛋白质改性中的应用研究进展. 食品科学. 2021(21): 299-307 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (331) PDF downloads (30) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return