WAN Min, YAO Yufei, FU Wangwei, et al. Extraction Process Optimization, Composition Analysis of Essential Oil from Chimonanthus nitens Oliv and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(15): 150−156. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090307.
Citation: WAN Min, YAO Yufei, FU Wangwei, et al. Extraction Process Optimization, Composition Analysis of Essential Oil from Chimonanthus nitens Oliv and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(15): 150−156. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090307.

Extraction Process Optimization, Composition Analysis of Essential Oil from Chimonanthus nitens Oliv and Its Antioxidant Activity

More Information
  • Received Date: September 28, 2020
  • Available Online: June 02, 2021
  • Objective: The present study aimed to optimize the extraction process and evaluate the constituents, antioxidant properties of essential oil from Chimonanthus nitens Oliv. Methods: The microwave-assisted steam distillation extraction of essential oil from Chimonanthus nitens Oliv was optimized by orthogonal design, and the extraction rate of the essential oil from Chimonanthus nitens Oliv was employed as the index to evaluate the optimum process. Subsequently, gas chromatography-mass spectrometry (GC-MS) was applied to determine the chemical components of the essential oil of Chimonanthus nitens Oliv. In addition, the antioxidant activity of the essential oil was evaluated by taking 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical, reducing power and chelating ability of metal ions as indicators. Results: The optimal extraction extraction conditions were microwave time 10 min, ratio of material to liquid 1:25 g/mL, steam distillation time 5 h. In this contions, the extraction rate of the essential oil from Chimonanthus nitens Oliv was 1.7792%. Furthermore, a total of 21 chemical compounds were identified in the essential oil of Chimonanthus nitens Oliv, which contained lipids and terpenoid, among them, (1-methyl-4-propyl-1-ene-2-cyclohexyl) acetate was 50.67%, followed by α-pinene (6.92%), α-terpinyl acetate (5.77%), humulene epoxide II (3.96%), pseudolimonen (3.21%) and germacrene D (3.12%). Moreover, antioxidant activity analysis indicated that the essential oil from Chimonanthus nitens Oliv possessed certain antioxidant activity. Briefly, the IC50 of the essential oil ivolved in the DPPH free radical scavenging assay, was 81.6 mg/mL. Furthermore, the reduction force of the essential oil could be achieved to the level of the positive control group, when its concentration was 10 mg/mL, and the half inhibition concentration of the chelating ability of metal ions was 17.16 mg/mL. Conclusion: In this paper, the microwave-assisted steam distillation extraction of essential oil from Chimonanthus nitens Oliv was optimized, the chemical components of the essential oil of Chimonanthus nitens Oliv was analyzed by GC-MS, and its antioxidant activity was demonstrated in this work.
  • [1]
    陈慧. 黄金茶乙醇提取物的成分分析及降血糖作用研究[D]. 南昌: 江西农业大学, 2018.
    [2]
    Chen H, Ouyang K, Jiang Y, et al. Constituent analysis of the ethanol extracts of Chimonanthus nitens Oliv. leaves and their inhibitory effect on α-glucosidase activity[J]. International Journal of Biological Macromolecules,2017,98(5):829−836.
    [3]
    黄文平, 温芝琪, 王萌萌, 等. 山腊梅叶中8种成分含量测定及主成分分析[J]. 中药新药与临床药理,2018,29(6):799−803.
    [4]
    Zhang Q, Huo R, Ma Y, et al. A novel microwave-assisted steam distillation approach for separation of essential oil from tree peony (Paeonia suffruticosa Andrews) petals: Optimization, kinetic, chemical composition and antioxidant activity[J]. Industrial Crops & Products,2020:154.
    [5]
    Pérez-Burillo S, Giménez R, Rufián-Henares J, et al. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: Relationship with sensory properties[J]. Food Chemistry,2018,248(15):111−118.
    [6]
    王治芬, 张妮, 马小攀, 等. 蜡梅不同部位精油化学成分分析及其体外抑菌活性研究[J]. 中国现代应用药学,2019,36(8):901−905.
    [7]
    李正国, 刘明春, 邓伟, 等. 素心蜡梅和红心蜡梅鲜花挥发油成分分析[J]. 精细化工,2008,25(10):985−988, 992. doi: 10.3321/j.issn:1003-5214.2008.10.013
    [8]
    刘志雄, 刘祝祥. 超临界CO2萃取腊梅籽化学成分研究[J]. 中药材,2008,31(7):992−995. doi: 10.3321/j.issn:1001-4454.2008.07.017
    [9]
    陈静慧, 石浩, 张强, 等. 基于电子鼻和顶空固相微萃取-气相质谱联用技术分析柠檬草中的挥发性成分[J]. 食品与发酵工业,2019,45(3):231−236.
    [10]
    徐年军, 白海波, 严小军, 等. 山腊梅中挥发油成分分析[J]. 分析测试学报,2006,25(1):90−93. doi: 10.3969/j.issn.1004-4957.2006.01.024
    [11]
    沈强. 腊梅花精油提取工艺及成分比较[D]. 重庆: 西南大学, 2009.
    [12]
    万敏, 吴文英, 姚于飞, 等. 山腊梅精油提取工艺研究进展[J]. 药物流行病学杂志,2020,29(增刊):107−110.
    [13]
    权春梅, 周光姣, 朱勇, 等. 精油提取方法及芍花精油的研究进展[J]. 广州化工,2016,44(20):16−17, 42. doi: 10.3969/j.issn.1001-9677.2016.20.006
    [14]
    梁晓媛, 李隆云, 白志川. 青蒿中青蒿素提取工艺研究进展[J]. 重庆理工大学学报(自然科学版),2013(2):32−38.
    [15]
    谢明勇, 陈奕. 微波辅助萃取技术研究进展[J]. 食品与生物技术学报,2006,25(1):105−114. doi: 10.3321/j.issn:1673-1689.2006.01.022
    [16]
    Kanwar J, Taskeen M, Mohammad I, et al. Kanwar Jyoti, Taskeen Mujtaba, Mohammad Imthiyaz, et al. Recent advances on tea polyphenols.[J]. Frontiers in bioscience (Elite edition),2012,4(4):111.
    [17]
    尹术华, 吴文英, 宋也好, 等. 白扁豆非淀粉多糖的理化性质、抗氧化活性及其抑菌性能[J]. 食品工业科技,2020,41(19):39-44.
    [18]
    Nuengchamnong N, Krittasilp K, Ingkaninan K. Characterisation of phenolic antioxidants in aqueous extract of Orthosiphon grandiflorus tea by LC-ESI-MS/MS coupled to DPPH assay[J]. Food chemistry,2011,127(3):1287−1293. doi: 10.1016/j.foodchem.2011.01.085
    [19]
    Zhao C, Li X, Miao J, et al. The effect of different extraction techniques on property and bioactivity of polysaccharides from Dioscorea hemsleyi[J]. International Journal of Biological Macromolecules,2017,102(9):847−85.
    [20]
    吴杨洋, 周妍汝, 刘春燕, 等. 灵芝多糖提取工艺优化及抗氧化活性的研究[J]. 食品安全质量检测学报,2020,11(14):4636−4642.
    [21]
    刘琼, 夏道宗, 叶晓萍, 等. 安吉白茶含片的制作及其抗氧化活性评价[J]. 食品工业科技,2012,33(18):245−247, 252.
    [22]
    王亚丽, 赵文霞, 魏娟娟, 等. 微波辅助水蒸气蒸馏法提取迷迭香精油[J]. 宁夏师范学院学报,2019,40(7):43−48. doi: 10.3969/j.issn.1674-1331.2019.07.007
    [23]
    李安, 刘印, 张泽望, 等. 微波辅助提取艾纳香精油的工艺优化及抗菌活性的研究[J]. 福建农业学报,2017,32(7):751−755.
    [24]
    Chen X, Liang L, Han C. Borate suppresses the scavenging activity of gallic acid and plant polyphenol extracts on DPPH radical: A potential interference to DPPH assay[J]. LWT-Food Science and Technology,2020,131(9):1−7.
    [25]
    Bao Y, Ren X, Zhu Y, et al. Comparison of lipid radical scavenging capacity of spice extract in situ in roast beef with DPPH and peroxy radical scavenging capacities in vitro models[J]. LWT, 2020(prepublish). https://doi.org/10.1016/j.lwt.2020.109626.
  • Cited by

    Periodical cited type(10)

    1. 宋永贵,陈运丽,苏丹,李前民,李惠珍,艾志福,杨明,朱根华,陈丽玲. 龙骨-牡蛎通过调节肠道微生态增强柴胡加龙骨牡蛎汤的抗抑郁效应. 中成药. 2025(02): 625-633 .
    2. 崔雨婷,张方圆,许伟明,李子贇,胡镜清. 基于肠道菌群与冠心病的关系探讨“阴火”科学内涵. 世界中医药. 2024(09): 1279-1285 .
    3. 叶清珠,王苗苗. 植物抗菌色素在抗菌纺织品中的应用. 上海纺织科技. 2024(07): 8-11+17 .
    4. 尹东,杜丽坤,徐洪涛,任那,张天昊. 基于肠道菌群探析中医药治疗肥胖的研究进展. 西部中医药. 2024(09): 111-114 .
    5. 王其龙,杨景森,黄凯勇,朱翠. 小檗碱调控动物肠道菌群稳态的研究进展. 中国畜牧杂志. 2022(02): 23-26+31 .
    6. 罗晓璐,李丽娜,黎京荣,彭啸峰,吴鹏,朱翠. 饲喂有抗或无抗饲粮的黄羽肉鸡在不同日龄下肠道菌群的变化. 广东畜牧兽医科技. 2022(01): 6-13 .
    7. 余佳,高欣悦,付凤萍,吴建英,余琳,陈红英. 半仿生-比色法测定三黄泻心汤中总生物碱的溶出量. 湖北农业科学. 2022(03): 140-143 .
    8. 柯群华,彭晶,王胜义. 中药与肠道菌群及其代谢相关研究进展. 中兽医医药杂志. 2022(02): 35-40 .
    9. 刘良浩,蒋志滨,于海洋,吴志斌,李泠君,唐甜,高洁. 黄连素缓解肠易激综合征作用机制的研究进展. 中国病理生理杂志. 2022(05): 944-948 .
    10. 姚广丰,张奇,张楠,隋玲玲,刘佳,李威,胡铁军. 盐酸小檗碱相关杂质的合成. 辽宁化工. 2022(06): 763-765 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (293) PDF downloads (30) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return