XU Xiaoqing, SU Qingyu, WANG Dong, et al. Application of Multiple Factor Analysis in Sensory Studies of Food and Beverage Industry [J]. Science and Technology of Food Industry, 2021, 42(13): 427−434. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090253.
Citation: XU Xiaoqing, SU Qingyu, WANG Dong, et al. Application of Multiple Factor Analysis in Sensory Studies of Food and Beverage Industry [J]. Science and Technology of Food Industry, 2021, 42(13): 427−434. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090253.

Application of Multiple Factor Analysis in Sensory Studies of Food and Beverage Industry

More Information
  • Received Date: September 23, 2020
  • Available Online: May 10, 2021
  • Multiple factor analysis (MFA) is a method of multivariate statistical analysis that can be used to describe and summarize multi-group datasets with complex structures and sources. This method is closely related to the pinciple component analysis and has been widely used in the fields of food and beverage, cosmetics, epidemiology and ecology. This paper focuses on the theoretical basics and analyzing procedures of MFA. It also introduces recent research studies and using cases to summarize the application of MFA on projective mapping, napping, free choice profile, and consumer sensory liking driver exploration. It aims to provide guidance and reference for researchers in related fields.
  • [1]
    Escofier B, Pages J. Multiple factor analysis (AFMULT package)[J]. Computational Statistics & Data Analysis,1994,18(1):121−140.
    [2]
    Abdi H, Williams L J, Valentin D. Multiple factor analysis: Principal component analysis for multitable and multiblock data sets[J]. Wiley Interdisciplinary Reviews: Computational Statistics,2013,5(2):149−179. doi: 10.1002/wics.1246
    [3]
    Becuebertaut M, Sebastien L E. Analysis of multilingual labeled sorting tasks: Application to a cross-cultural study in wine industry[J]. Journal of Sensory Studies,2011,26(5):299−310. doi: 10.1111/j.1745-459X.2011.00345.x
    [4]
    Le S, Husson F, Pages J. Confidence ellipses applied to the comparison of sensory profiles[J]. Journal of Sensory Studies,2006,21(3):241−248. doi: 10.1111/j.1745-459X.2006.00064.x
    [5]
    Cadoret M, Le S, Pages J. Statistical analysis of hierarchical sorting data[J]. Journal of Sensory Studies,2011,26(2):96−105. doi: 10.1111/j.1745-459X.2010.00326.x
    [6]
    Pages J, Husson F. Multiple factor analysis with confidence ellipses: A methodology to study the relationships between sensory and instrumental data[J]. Journal of Chemometrics,2005,19(3):138−144. doi: 10.1002/cem.916
    [7]
    陆龙建, 陈磊, 余苓, 等. 多元因子分析在卷烟风格特征剖析中的应用[J]. 烟草科技,2012(10):36−40. doi: 10.3969/j.issn.1002-0861.2012.09.009
    [8]
    Nabiilah Salmaa Dwiranti A A, Nurul Asiah. Sensory attributes of cold brew coffee products at various resting time after roasting process[J]. Pelita Perkebunan (a Coffee and Cocoa Research Journal),2019,35(No 1):42−50. doi: 10.22302/iccri.jur.pelitaperkebunan.v35i1.349
    [9]
    Perrin L, Symoneaux R, Maître I, et al. Comparison of three sensory methods for use with the Napping® procedure: Case of ten wines from Loire valley[J]. Food Quality and Preference,2008,19(1):1−11. doi: 10.1016/j.foodqual.2007.06.005
    [10]
    区靖祥, 伍时照, 甄海, 等. 华南地区籼稻米质综合评分和分类方法的研究[J]. 华南农业大学学报,1997(3):4−9.
    [11]
    马辰. 长白山地森林土壤跳虫的分布格局及其对环境变化的响应[D]. 哈尔滨: 东北师范大学, 2019.
    [12]
    Zhang R, Xu Y, Han Z. A comparison analysis of chemical composition of aerosols in the dust and non-dust periods in Beijing[J]. Advances in Atmospheric Sciences,2004,21(2).
    [13]
    Brard M, Le S. Adaptation of the Q-methodology for the characterization of a complex concept through a set of products: From the collection of the data to their analysis[J]. Food Quality and Preference,2017,67(77-86).
    [14]
    Pagès J. Collection and analysis of perceived product inter-distances using multiple factor analysis: Application to the study of 10 white wines from the Loire Valley[J]. Food Quality and Preference,2005,16(7):642−649. doi: 10.1016/j.foodqual.2005.01.006
    [15]
    Kuusinen A, Patynen J, Tervo S, et al. Relationships between preference ratings, sensory profiles, and acoustical measurements in concert halls[J]. Journal of the Acoustical Society of America,2014,135(1):239−250. doi: 10.1121/1.4836335
    [16]
    Naes T, Berget I, Liland K H, et al. Estimating and interpreting more than two consensus components in projective mapping: INDSCAL vs. multiple factor analysis (MFA)[J]. Food Quality and Preference,2017,58:45−60.
    [17]
    Kostov B, Becuebertaut M, Husson F. An original methodology for the analysis and interpretation of word-count based methods: Multiple factor analysis for contingency tables complemented by consensual words[J]. Food Quality and Preference,2014,32(35-40).
    [18]
    Gutierrezsalomon A L, Gambaro A, Angulo O. Influence of sample presentation protocol on the results of consumer tests[J]. Journal of Sensory Studies,2014,29(3):219−232. doi: 10.1111/joss.12097
    [19]
    Cadena R S, Cruz A G, Netto R R, et al. Sensory profile and physicochemical characteristics of mango nectar sweetened with high intensity sweeteners throughout storage time[J]. Food Research International,2013,54(2):1670−1679. doi: 10.1016/j.foodres.2013.10.012
    [20]
    Kim S, Yang S, Cho M, et al. Understanding the drivers of liking for fresh pears: A cross-cultural investigation of Chinese and Korean panels and consumers[J]. Journal of the Science of Food and Agriculture,2019,99(11):5092−5101. doi: 10.1002/jsfa.9753
    [21]
    Dooley L M, Lee Y, Meullenet J. The application of check-all-that-apply (CATA) consumer profiling to preference mapping of vanilla ice cream and its comparison to classical external preference mapping[J]. Food Quality and Preference,2010,21(4):394−401. doi: 10.1016/j.foodqual.2009.10.002
    [22]
    Parente M E, Manzoni A V, Ares G. External preference mapping of commercial antiaging creams based on consumers' responses to a Check-All-That-Apply question[J]. Journal of Sensory Studies,2011,26(2):158−166. doi: 10.1111/j.1745-459X.2011.00332.x
    [23]
    De Morais E C, Esmerino E A, Monteiro R A, et al. Prebiotic low sugar chocolate dairy desserts: physical and optical characteristics and performance of parafac and PCA preference map[J]. Journal of Food Science,2016,81(1).
    [24]
    Risvik E, McEwan J A, Colwill J S, et al. Projective mapping: A tool for sensory analysis and consumer research[J]. Food Quality and Preference,1994,5(4):263−269. doi: 10.1016/0950-3293(94)90051-5
    [25]
    Risvik E, McEwan J A, Rødbotten M. Evaluation of sensory profiling and projective mapping data[J]. Food Quality and Preference,1997,8(1):63−71. doi: 10.1016/S0950-3293(96)00016-X
    [26]
    苏晓霞, 黄序, 黄一珍, 等. 快速描述性分析方法在食品感官评定中应用进展[J]. 食品科技,2013,38(7):298−303.
    [27]
    Morin M, Hayward L, Mcsweeney M B. Use of experienced panelists and the projective mapping task in comparison to trained panelists and naïve consumers[J]. Journal of Sensory Studies, 2018, 33(6).
    [28]
    Barcenas P, Elortondo F J P, Albisu M. Projective mapping in sensory analysis of ewes milk cheeses: A study on consumers and trained panel performance[J]. Food Research International,2004,37(7):723−729. doi: 10.1016/j.foodres.2004.02.015
    [29]
    Nestrud M A, Lawless H T. Perceptual mapping of apples and cheese using projective mapping and sorting[J]. Journal of Sensory Studies,2010,25(3):390−405. doi: 10.1111/j.1745-459X.2009.00266.x
    [30]
    田欣, 张会宁, 祁新春, 等. 快速感官分析技术在葡萄酒香气感官分析中的应用[J]. 食品与发酵工业,2019,45(21):215−220.
    [31]
    Byrnes N K, Nestrud M A, Hayes J E. Perceptual mapping of chemesthetic stimuli in naïve assessors[J]. Chemosensory Perception,2015,8(1):19−32. doi: 10.1007/s12078-015-9178-7
    [32]
    Kennedy J, Heymann H. Projective mapping and descriptive analysis of milk and dark chocolates[J]. Journal of Sensory Studies,2009,24(2):220−233. doi: 10.1111/j.1745-459X.2008.00204.x
    [33]
    Varela P, Berget I, Hersleth M, et al. Projective mapping based on choice or preference: An affective approach to projective mapping[J]. Food Research International,2017,100:241−251.
    [34]
    Pages J, Cadoret M, Le S. The sorted napping: A new holistic approach in sensory evaluation[J]. Journal of Sensory Studies,2010,25(5):637−658. doi: 10.1111/j.1745-459X.2010.00292.x
    [35]
    Park H, Le S, Hong J, et al. Sensory perception of yackwa (Korean traditional fried cookie) by consumer groups of different age using the sorted napping procedure[J]. Journal of Sensory Studies,2014,29(6):425−434. doi: 10.1111/joss.12123
    [36]
    Carroll J D, Chang J. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition[J]. Psychometrika,1970,35(3):283−319. doi: 10.1007/BF02310791
    [37]
    Schlich P. Defining and validating assessor compromises about product distances and attribute correlations[M]. Multivariate analysis of data in sensory sciences. New York: Elsevier. 1996: 229-230.
    [38]
    Tucker L R. The extension of factor analysis in three-dimensional matrices.[M]//GULLIKSEN N F H. Contributions to mathematical psychology. New York: Holt, Rinehart and Winston. 1964.
    [39]
    Nestrud M A, Lawless H T. Perceptual mapping of citrus juices using projective mapping and profiling data from culinary professionals and consumers[J]. Food Quality and Preference,2008,19(4):431−438. doi: 10.1016/j.foodqual.2008.01.001
    [40]
    Tomic O, Berget I, Naes T. A comparison of generalised procrustes analysis and multiple factor analysis for projective mapping data[J]. Food Quality and Preference,2015,43(34-46).
    [41]
    Reinbach H C, Giacalone D, Ribeiro L M, et al. Comparison of three sensory profiling methods based on consumer perception: CATA, CATA with intensity and Napping[J]. Food Quality and Preference,2014,32(32):160−166.
    [42]
    Williams A A, Langron S P. The use of free-choice profiling for the evaluation of commercial ports[J]. Journal of the Science of Food and Agriculture,1984,35(5):558−568. doi: 10.1002/jsfa.2740350513
    [43]
    De Jong S, Heidema J, Der Knaap H C M V. Generalized procrustes analysis of coffee brands tested by five European sensory panels[J]. Food Quality and Preference,1998,9(3):111−114. doi: 10.1016/S0950-3293(97)00041-4
    [44]
    Gower J C. Generalized procrustes analysis[J]. Psychometrika,1975,40(1):33−51. doi: 10.1007/BF02291478
    [45]
    Liu J, Bredie W L P, Sherman E, et al. Comparison of rapid descriptive sensory methodologies: Free-choice profiling, flash profile and modified flash profile[J]. Food Research International,2018,106:892−900.
    [46]
    He W, Chung H Y. Multivariate relationships among sensory, physicochemical parameters, and targeted volatile compounds in commercial red sufus (Chinese fermented soybean curd): Comparison of QDA® and Flash Profile methods[J]. Food Research International,2019,125:108548.
    [47]
    Ares G, Gimenez A, Barreiro C, et al. Use of an open-ended question to identify drivers of liking of milk desserts. Comparison with preference mapping techniques[J]. Food Quality and Preference,2010,21(3):286−294. doi: 10.1016/j.foodqual.2009.05.006
    [48]
    Worch T. PrefMFA, a solution taking the best of both internal and external preference mapping techniques[J]. Food Quality and Preference,2013,30(2):180−191. doi: 10.1016/j.foodqual.2013.05.009
    [49]
    Pages J, Tenenhaus M. Multiple factor analysis combined with PLS path modelling. Application to the analysis of relationships between physicochemical variables, sensory profiles and hedonic judgements[J]. Chemometrics and Intelligent Laboratory Systems,2001,58(2):261−273. doi: 10.1016/S0169-7439(01)00165-4
    [50]
    Partidasedas J G, Ferreiro M N M, Vazquezoderiz M L, et al. Influence of the postharvest processing of the “Garnica” coffee variety on the sensory characteristics and overall acceptance of the beverage[J]. Journal of Sensory Studies, 2019.
    [51]
    Le S, Husson F. Sensominer: A package for sensory data analysis[J]. Journal of Sensory Studies,2008,23(1):14−25. doi: 10.1111/j.1745-459X.2007.00137.x
    [52]
    Escoufier Y. Le traitement des variables vectorielles[J]. Biometrics,1973,29(4):751. doi: 10.2307/2529140
  • Related Articles

    [1]SUN Renjie, HE Qin, WU Dezhi. Visual Analysis of Dendrobium candidum Related Research Based on CiteSpace Knowledge Map and Patent Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(20): 322-330. DOI: 10.13386/j.issn1002-0306.2022120168
    [2]SU Qingyu, CHANG Xiaomin, LIU Yaran, XU Xiaoqing, LI Jiaze, ZHU Yuxuan, SONG Hao, ZHU Baoqing. Current Status Research of Projective Mapping in Food Research and Development[J]. Science and Technology of Food Industry, 2022, 43(16): 390-399. DOI: 10.13386/j.issn1002-0306.2021070202
    [3]YANG Xin, QIN Lina, JIANG Xianzhang. Analysis of Codon Usage Bias in the Genome of Trichoderma reesei[J]. Science and Technology of Food Industry, 2022, 43(6): 141-149. DOI: 10.13386/j.issn1002-0306.2021110338
    [4]WANG Zu-lian, CHEN Qing, GAO Jia, LUO Fang-yao, TANG Yue-ming, TIAN Yu-xiao, GUO Yun-jian. Effect of Packaging Film Permeability on the Quality of MAP Storage of Hotbed Chives during Cold Storage[J]. Science and Technology of Food Industry, 2021, 42(1): 304-311. DOI: 10.13386/j.issn1002-0306.2020030031
    [5]ZHOU Ting, HE Dan, HUANG Hui, HAO Shu-xian, LI Lai-hao, WEI Ya, CEN Jian-wei. Effect and analysis of MAP on volatile flavor compounds in sturgeon(Huso dauricused × sturger schrenckii) caviar[J]. Science and Technology of Food Industry, 2016, (15): 260-264. DOI: 10.13386/j.issn1002-0306.2016.15.042
    [6]WANG Dong, WANG Zhe- di, MA Yue, LI Qi. Impact of serving conditions on consumer preferences for Chinese rice wine[J]. Science and Technology of Food Industry, 2016, (03): 127-130. DOI: 10.13386/j.issn1002-0306.2016.03.018
    [7]JIANG Li-hong, ZHOU Ying-zhe, HONG Qing, LIU Xiao-ming, TIAN Feng-wei, ZHAO Jian-xin, ZHANG Hao, CHEN Wei. Flavor characteristics and consumer preference for the commercial aged Cheddar cheese[J]. Science and Technology of Food Industry, 2014, (23): 275-281. DOI: 10.13386/j.issn1002-0306.2014.23.050
    [8]CHANG Xiang-yang, HU Hao. Research of consumer behavior for food safety attributes in the view of choice experiment[J]. Science and Technology of Food Industry, 2014, (11): 273-277. DOI: 10.13386/j.issn1002-0306.2014.11.051
    [9]Research on preservation effect influence of pre-preparing method on fresh beef products packaged in MAP[J]. Science and Technology of Food Industry, 2013, (02): 310-314. DOI: 10.13386/j.issn1002-0306.2013.02.080
    [10]Research on quadric orthogonal regression experiment on MAP craft of waxberry[J]. Science and Technology of Food Industry, 2012, (19): 326-328. DOI: 10.13386/j.issn1002-0306.2012.19.066
  • Cited by

    Periodical cited type(6)

    1. 杨蕾,冯洪涛,何雪峰,杨乾栩,蒋梦菲,张涛. 基于MFA的消费者与专家卷烟抽吸感知及风味感知分析. 中国市场. 2024(28): 99-102 .
    2. 常晓敏,赵慧敏,张悦,刘佳妮,李玄烨,李晓龙,初柏君,王翔宇,朱保庆. 桌布法结合极化投影地图法剖析葵花籽油香味特征. 食品安全质量检测学报. 2023(13): 184-192 .
    3. 侯姣靓. XLSTAT在感官评价数据分析中的应用. 上海轻工业. 2023(03): 130-133 .
    4. 单冰淇,刘松昱,王春光,游睿晗,宋昊,钟葵,史波林,朱保庆. 开放式提问调查在食品研究与开发中的研究现状. 食品工业科技. 2022(12): 468-474 . 本站查看
    5. 陈亦新,兰义宾,问亚琴,刘雅冉,陈奎汛,宋昊,朱保庆. 自选特性排序剖面法在食品研究与开发中的应用及研究现状. 食品工业科技. 2022(13): 475-483 . 本站查看
    6. 苏庆宇,常晓敏,刘雅冉,许晓青,李佳泽,朱雨萱,宋昊,朱保庆. 投影地图法在食品研究与开发中的研究现状. 食品工业科技. 2022(16): 390-399 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (410) PDF downloads (41) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return