YANG Taohua, ZHANG Qingwen, GONG Xiao, et al. Comparison of Volatile Components of Different Annona Varieties Based on Headspace Phase-Ion Mobility Chromatography [J]. Science and Technology of Food Industry, 2021, 42(16): 249−254. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090230.
Citation: YANG Taohua, ZHANG Qingwen, GONG Xiao, et al. Comparison of Volatile Components of Different Annona Varieties Based on Headspace Phase-Ion Mobility Chromatography [J]. Science and Technology of Food Industry, 2021, 42(16): 249−254. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090230.

Comparison of Volatile Components of Different Annona Varieties Based on Headspace Phase-Ion Mobility Chromatography

More Information
  • Received Date: September 22, 2020
  • Available Online: June 08, 2021
  • Gas-ion mobility chromatography(GC-IMS) was used to analyze the composition and content of volatile components in four types of Annona squamosa(linqin), Annona squamosa(damu), Red Custard Apple and Soursop, combined with principal component analysis(PCA) carried out statistical analysis on aroma components, and found that the higher content of Annona apple, Annona apple and Red custard apple were terpenes such as limonene, myrcene, camphene, γ-terpinene, etc. Substances in soursop were mainly esters such as ethyl propionate, ethyl caprylate, hexyl butyrate, methyl caprylate, and ethyl caproate. The four groups of samples had good dispersion in the PCA chart, and the cumulative variance contribution rate of the first two principal components was 91.986%. PCA could effectively distinguish the four sugar apple samples. By comparing the aroma components of different sweet apples, their characteristic aroma components were obtained, it provided data support for the aroma research of the whole variety of sweet apples.
  • [1]
    Ferreira L, Perestrelo R, Camara J S. Comparative analysis of the volatile fraction from Annona cherimola Mill. cultivars by solid-phase microextraction and gas chromatography-quadrupole mass spectrometry detection[J]. Talanta,2009,77(3):1087−1096. doi: 10.1016/j.talanta.2008.08.011
    [2]
    Kishimoto T, Noba S, Yako N, et al. Simulation of Pilsner-type beer aroma using 76 odor-active compounds[J]. Journal of Bioscience and Bioengineering,2018,126(3):330−338. doi: 10.1016/j.jbiosc.2018.03.015
    [3]
    Grosch W. Detection of potent odorants in foods by aroma extract dilution analysis[J]. Trends in Food Science and Technology,1993,4(3):68−73. doi: 10.1016/0924-2244(93)90187-F
    [4]
    Peris M, Escuder-Gilabert L. A 21st century technique for food control: Electronic noses[J]. Analytica Chimica Acta,2009,638(1):1−15. doi: 10.1016/j.aca.2009.02.009
    [5]
    Hernández-Mesa M, Ropartz D, A M García-Campaa, et al. Ion Mobility spectrometry in food analysis: Principles, current applications and future trends[J]. Molecules,2019,24(15):2706. doi: 10.3390/molecules24152706
    [6]
    J Dallüge, Beens J, Brinkman U. Comprehensive two-dimensional gas chromatography: A powerful and versatile analytical tool[J]. Journal of Chromatography A,2003,1000(1):69−108.
    [7]
    Arce L, Gallegos J, Garrido-Delgado R, et al. Ion mobility spectrometry a versatile analytical tool for metabolomics applications in food science[J]. Current Metabolomics,2014,2(4):264−271.
    [8]
    Verkouteren J R, Staymates J L. Reliability of ion mobility spectrometry for qualitative analysis of complex, multicomponent illicit drug samples[J]. Forensic Science International,2011,206(1):190−196.
    [9]
    Allafchian A R, Majidian Z, Ielbeigi V, et al. A novel method for the determination of three volatile organic compounds in exhaled breath by solid-phase microextraction-ion mobility spectrometry[J]. Analytical and Bioanalytical Chemistry,2016,408(3):839−847. doi: 10.1007/s00216-015-9170-8
    [10]
    Ruzsanyi V, Mochalski P, Schmid A, et al. Ion mobility spectrometry for detection of skin volatiles[J]. Journal of Chromatography B,2012,911(1):84−92.
    [11]
    Garrido-Delgado R, Arce L, A V Guamán, et al. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools[J]. Talanta,2011,84(2):471−479. doi: 10.1016/j.talanta.2011.01.044
    [12]
    Cavanna D, Zanardi S, Dall'Asta C, et al. Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness[J]. Food Chemistry,2019:691−696.
    [13]
    Arroyo-Manzanares N, Martín-Gómez A, Jurado-Campos N, et al. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace-gas chromatography-ion mobility spectrometry[J]. Food Chemistry,2018:65−73.
    [14]
    Sun X, Gu D, Fu Q, et al. Content variations in compositions and volatile component in jujube fruits during the blacking process[J]. Food Science & Nutrition,2019,7(4):1387−1395.
    [15]
    Wang X, Yang S, He J, et al. A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry[J]. Food Research International,2019,119(May):960−967.
    [16]
    陈通, 陆道礼, 陈斌. GC-IMS技术结合化学计量学方法在食用植物油分类中的应用[J]. 分析测试学报,2017,36(10):1235−1239. doi: 10.3969/j.issn.1004-4957.2017.10.012
    [17]
    陈通, 吴志远, 王正云, 等. 基于气相离子迁移谱和化学计量学方法判别肉的种类[J]. 中国食品学报,2019,19(7):221−226.
    [18]
    李亚会, 龚霄, 任芳, 等. 基于气相离子迁移谱分析不同贮藏条件下番荔枝的风味变化[J]. 食品工业科技,2019,40(18):263−266, 272.
    [19]
    杨帆, 刘野, 王蓓, 等. 顶空-气相色谱-离子迁移谱法和全二维气相色谱-嗅闻-质谱法分析新鲜和热处理西瓜汁的气味化合物[C]// 中国食品科学技术学会. 中国食品科学技术学会第十七届年会摘要集. 中国食品科学技术学会: 中国食品科学技术学会, 2020: 2.
    [20]
    于怀智, 姜滨, 孙传虎, 等. 顶空气相离子迁移谱技术对不同产地水蜜桃的气味指纹分析[J]. 食品与发酵工业,2020,46(16):231−235.
    [21]
    李湘, 江靖, 李高阳, 单杨, 朱向荣. 基于气相-离子迁移谱结合化学计量学分析不同采后处理对柑橘果皮挥发性化合物的影响[J/OL]. 食品科学: 1-12[2021-06-02]. http://kns.cnki.net/kcms/detail/11.2206.ts.20201123.1001.014.html.
    [22]
    Wang S, Chen H, Sun B. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC–IMS)[J]. Food Chemistry,2020,315:126158. doi: 10.1016/j.foodchem.2019.126158
    [23]
    Ge S, Chen Y, Ding S, et al. Changes in volatile flavor compounds of peppers during hot air drying process based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS)[J]. Journal of the ence of Food and Agriculture,2020:100.
    [24]
    王倩倩, 覃杰, 马得草, 等. 优选发酵毕赤酵母与酿酒酵母混合发酵增香酿造爱格丽干白葡萄酒[J]. 中国农业科学,2018,51(11):2178−2192. doi: 10.3864/j.issn.0578-1752.2018.11.015
    [25]
    王星晨. 基于优选胶红酵母与酿酒酵母混合酒精发酵的葡萄酒增香酿造研究[D]. 杨凌: 西北农林科技大学, 2018.
    [26]
    Da C , RÉMDF Felipe, Da C. Study of the physicochemical characteristics of soursop powder obtained by spray-drying[J]. Food Science and Technology International,2015,34(4):663−666. doi: 10.1590/1678-457X.6380
    [27]
    Cheong K W, Tan R P, Mirhosseini R, et al. Equilibrium headspace analysis of volatile flavor compounds extracted from soursop (Annona muricata) using solid-phase microextraction[J]. Food Research International,2010,43(5):1267−1276. doi: 10.1016/j.foodres.2010.03.001
    [28]
    李华, 王华, 袁春龙. 葡萄酒化学[M]. 北京: 科学出版社, 2005: 132−135.
    [29]
    蔡建. 发酵前处理工艺对天山北麓'赤霞珠'葡萄酒香气改良研究[D]. 北京: 中国农业大学, 2014.
  • Cited by

    Periodical cited type(7)

    1. 宁淼,乌日娜,贺凯茹,包雨飞,张钰欣,杨慧,武俊瑞. 益生菌缓解牛乳过敏的作用机制研究进展. 食品工业科技. 2025(05): 371-379 . 本站查看
    2. 梅芷晴,马浩睿,刘永峰,胡坚,舒琴. 羊乳母乳化及主要活性成分研究进展. 乳业科学与技术. 2024(04): 38-46 .
    3. 乔蕾蕾,杨敏,秦娟娟,廖海周,季伟,李茜. 酸诱导酪蛋白胶束-海藻酸钠乳液凝胶性质及其对原花青素的负载性能. 食品科学. 2023(16): 50-60 .
    4. 汤晓娜,许曦瑶,赵锋. 牛奶β-酪蛋白水解产物生物活性及A2乳制品的研究进展. 食品与发酵工业. 2023(19): 360-366 .
    5. 马小梅,苏津贤,陈遥,舒星富,张海霞,马忠仁. 动物乳中四种主要蛋白结构功能及其分离纯化方法研究进展. 西北民族大学学报(自然科学版). 2022(02): 74-79 .
    6. 钱冠林,孙敬,刘微,程娇,岳喜庆,郑艳. 双酶水解对脱脂牛乳致敏性的影响. 乳业科学与技术. 2022(04): 36-44 .
    7. 李敏,刘爱成,朱晴,陈馨萍,刘微,梁肖娜,郑艳,岳喜庆. 酶解对脱脂牛乳蛋白抗原性及感官特性的影响. 乳业科学与技术. 2022(04): 14-21 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (316) PDF downloads (39) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return