HONG Xuepei, PANG Shuqin, ZHOU Jian, et al. Effects of Yam Gruel on Gut Microflora, Blood Glucose and Insulin in T2DM Rats[J]. Science and Technology of Food Industry, 2021, 42(14): 341−347. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090192.
Citation: HONG Xuepei, PANG Shuqin, ZHOU Jian, et al. Effects of Yam Gruel on Gut Microflora, Blood Glucose and Insulin in T2DM Rats[J]. Science and Technology of Food Industry, 2021, 42(14): 341−347. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090192.

Effects of Yam Gruel on Gut Microflora, Blood Glucose and Insulin in T2DM Rats

More Information
  • Received Date: September 17, 2020
  • Available Online: May 18, 2021
  • Objective: To investigate the effect of yam gruel on gut microflora, short chain fatty acids (SCFAs), blood glucose and insulin secretion in type 2 diabetic rats. Methods: 60 SPF Wister rats were randomly selected as blank group, and the remaining 50 rats were injected with streptozotocin (STZ) to make T2DM model. The rats were randomly divided into model group, yam gruel group, metformin group and combination group. The blank group and model group were given 5 mL normal saline, the yam gruel group was given 5 mL yam gruel every day, the metformin group was given metformin aqueous solution every day, and the combination group was given yam gruel and metformin for six weeks. The fasting blood glucose (FBG) of rats was detected every week. After the intervention, the blood glucose, fasting insulin (FINS), gut microflora composition and the content of SCFAs in feces were detected. Results: Compared with the blank group, the FBG, FINS and insulin resistance index of the model group were increased (P<0.05), the contents of acetic acid, propionic acid, butyric acid, OTUs, Chao1 index and Shannon index were significantly decreased (P<0.05), the relative abundance of Firmicutes, Verrucomicrobia, Oscellospira, Akkermansia and Clostridium decreased (P<0.05), and the relative abundance of Proteobacteria increased (P<0.05). After 4 weeks of intervention, blood glucose of rats in Yam gruel group decreased significantly (P<0.05). The FBG, FINS and HOMA-IR of the yam gruel group were significantly lower than those of model group (P<0.05). The FINS and HOMA-IR of the yam gruel group were no significant difference between metformin group, combination group. Compared with the model group, the contents of acetic acid, propionic acid and butyric acid of the yam gruel group increased (P<0.01), the OTUs, Firmicutes, Verrucomicrobia, Akkermansia and Clostridium of the yam gruel group increased, and Proteobacteria of the yam gruel group decreased (P<0.05). Conclusion: Yam gruel might improve insulin resistance and reduce blood glucose by improving intestinal microbial imbalance and increasing SCFAs content in T2DM rats.
  • [1]
    李昱, 杜余辉, 周帅, 等. 肠道微生物群在2型糖尿病病理生理学中的作用[J]. 中华糖尿病杂志,2019(3):218−221.
    [2]
    IDF. IDF Diabetes Atlas Eighth Edition 2017[R/OL]. http://www.thelancet.com/doi/story/10.1016/vid.2014.12.08.1157, 2017-02-09/[2019-2-26].
    [3]
    Kim Y A, Keogh J B, Clifton P M. Probiotics, prebiotics, synbiotics and insulin sensitivity[J]. Nutrition Research Reviews,2017,31(1):1−17.
    [4]
    贺云, 杨丽霞, 邱连利. 从肠道微生态角度探讨2型糖尿病的发病机制以及治疗措施[J]. 中国实验方剂学杂志,2020,26(15):229−234.
    [5]
    邢会霞, 刘彦民, 贺凤英, 等. 益生菌对2型糖尿病的改善作用及其作用机制[J]. 中国微生态学杂志,2018,30(10):1239−1241.
    [6]
    Winer D A, Luck H, Tsai S, et al. The intestinal immune system in obesity and insulin resistance[J]. Cell Metab,2016,23(3):413−426. doi: 10.1016/j.cmet.2016.01.003
    [7]
    闫芬芬, 李娜, 李柏良, 等. 益生菌对Ⅱ型糖尿病影响的研究进展[J]. 食品科学,2019,40(21):295−302. doi: 10.7506/spkx1002-6630-20181029-331
    [8]
    张锡纯著, 修订小组修订河北新医大学医学衷中参西录. 医学衷中参西录合订本[M]. 石家庄: 河北人民出版社, 1977: 73-74.
    [9]
    龚凌霄, 池静雯, 王静, 等. 山药中主要功能性成分及其作用机制研究进展[J]. 食品工业科技,2019,40(16):312−319.
    [10]
    庞书勤, 李婉婷, 林娟, 等. 薯蓣粥对2型糖尿病病人血糖、血脂的影响[J]. 护理研究,2017,31(16):1941−1946. doi: 10.3969/j.issn.1009-6493.2017.16.008
    [11]
    庞书勤, 辛惠明, 刘玲玉, 等. 薯蓣粥对2型糖尿病肠道内双歧杆菌及血糖影响研究[J]. 中国实用内科杂志,2017,37(3):247−250.
    [12]
    徐叔云, 卞如镰, 陈修. 药理实验方法学[M]. 第4版, 北京: 人民卫生出版社, 2006: 1861.
    [13]
    林心君, 王麒又, 辛金钟, 等. 高成模率和高稳定性的糖尿病大鼠模型制备—高脂高糖膳食+STZ体重联合体表面积法构建糖尿病大鼠模型[J]. 中国老年学杂志,2013,33(9):2051−2054. doi: 10.3969/j.issn.1005-9202.2013.09.031
    [14]
    朱华, 郭亚茜, 杜晓鹏, 等. 链脲佐菌素诱导糖尿病大鼠模型肠道菌群变化[J]. 中国实验动物学报,2018,26(3):349−356. doi: 10.3969/j.issn.1005-4847.2018.03.013
    [15]
    Yulan L, Dan C, Feng Z, et al. Preventive effect of pressed degreased walnut meal extracts on T2DM rats by regulating glucolipid metabolism and modulating gut bacteria flora[J]. Journal of Functional Foods,2020,64:103694. doi: 10.1016/j.jff.2019.103694
    [16]
    王瑾, 冉倩, 王琳, 等. 基于16S rRNA技术分析黄连酒蒸前后对正常及2型糖尿病大鼠肠道微生物的影响[J]. 中国实验方剂学杂志,2019,25(22):92−102.
    [17]
    Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: Where we are and where to go?[J]. J Nutr Biochem,2019,63:101−108. doi: 10.1016/j.jnutbio.2018.10.003
    [18]
    Wang Y, Hai B, Niu X, et al. Chronic intermittent hypoxia disturbs insulin secretion and causes pancreatic injury via the MAPK signaling pathway[J]. Biochem Cell Biol,2017,95(3):415−420. doi: 10.1139/bcb-2016-0167
    [19]
    Zhao L, Luo H, Peng Y, et al. Comprehensive relation-ships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications[J]. Endocrine,2019,66(3):526−537. doi: 10.1007/s12020-019-02103-8
    [20]
    Wei Y, Yang H, Zhu C, et al. Hypoglycemic effect of ginsenoside Rg5 mediated partly by modulating gut microbiota dysbiosis in diabetic db/db mice[J]. Journal of agricultural and food chemistry,2020,68(18):5107−5117.
    [21]
    郭丽璇, 胡琼英, 熊大迁. 肠道菌群调控2型糖尿病发生发展的研究进展[J]. 实用医学杂志,2020,36(9):1142−1147. doi: 10.3969/j.issn.1006-5725.2020.09.006
    [22]
    Anastasiia V Ropot, Andrei M Karamzin, Oleg V Sergeyev. Cultivation of the next-generation probiotic akkermansia muciniphila, methods of its safe delivery to the intestine, and factors contributing to its growth in vivo[J]. Current Microbiology,2020,77(8):1363−1372. doi: 10.1007/s00284-020-01992-7
    [23]
    Bu F, Zhang S, Duan Z, et al. A critical review on the relationship of herbal medicine, Akkermansia muciniphila, and human health[J]. Biomedicine & Pharmacotherapy,2020,128:110352.
    [24]
    Depommier C, Van H M, Everard A, et al. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice[J]. Gut Microbes,2020,11(5):1231−1245. doi: 10.1080/19490976.2020.1737307
    [25]
    Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nature Medicine,2019,25(7):1096−1103. doi: 10.1038/s41591-019-0495-2
    [26]
    Zhang L, Qin Q, Liu M, et al. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats[J]. Pathogens and Disease,2018,76(4).
    [27]
    李昱, 孔祥阳. 肠道微生物及益生菌治疗对2型糖尿病的影响[J]. 生命的化学,2018,38(4):507−514.
    [28]
    Koh A, Vadder F D, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332−1345. doi: 10.1016/j.cell.2016.05.041
    [29]
    孟德欣, 于莲, 李雪欣, 等. 纳米山药多糖合生元结肠靶向微生态调节剂对大鼠肠道菌群的影响[J]. 中国新药杂志,2016,25(23):2756−2760.
    [30]
    Yaping S, Tong L, Yanpo S, et al. Integrated metabolomics and 16S rRNA sequencing to investigate the regulation of Chinese yam on antibiotic-induced intestinal dysbiosis in rats[J]. Artificial Cells,2019,47(1):3382−3390. doi: 10.1080/21691401.2019.1649271
    [31]
    李亚娟, 顾晓琦, 沈小璇, 等. 胰岛素治疗糖尿病过程中配合山药食疗的效果分析[J]. 世界中医药,2016,11(12):2665−2668. doi: 10.3969/j.issn.1673-7202.2016.12.037
    [32]
    周国佩, 吴帆, 朱金华, 等. 乌梅丸对2型糖尿病模型大鼠肠道菌群、炎性因子及短链脂肪酸的影响[J]. 中国实验方剂学杂志,2020,26(10):8−15.
    [33]
    Xiao S, Liu C, Chen M, et al. Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites[J]. Applied Microbiology and Biotechnology,2020,104(1):303−317. doi: 10.1007/s00253-019-10174-w
  • Related Articles

    [1]cover[J]. Science and Technology of Food Industry, 2022, 43(24).
    [2]cover[J]. Science and Technology of Food Industry, 2022, 43(22).
    [3]cover[J]. Science and Technology of Food Industry, 2022, 43(19).
    [4]cover[J]. Science and Technology of Food Industry, 2022, 43(18).
    [5]cover[J]. Science and Technology of Food Industry, 2022, 43(17).
    [6]cover[J]. Science and Technology of Food Industry, 2022, 43(13).
    [7]cover[J]. Science and Technology of Food Industry, 2022, 43(11).
    [8]Cover[J]. Science and Technology of Food Industry, 2022, 43(9).
    [9]cover[J]. Science and Technology of Food Industry, 2022, 43(8).
    [10]cover[J]. Science and Technology of Food Industry, 2022, 43(7).

Catalog

    Article Metrics

    Article views (233) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return