HUI Yuanyuan, WANG Bini, ZHANG Fuxin, et al. An Electrochemical Aptasensor for Detection of Aflatoxin M1 Based on Reduced Graphene Oxide [J]. Science and Technology of Food Industry, 2021, 42(14): 249−256. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090147.
Citation: HUI Yuanyuan, WANG Bini, ZHANG Fuxin, et al. An Electrochemical Aptasensor for Detection of Aflatoxin M1 Based on Reduced Graphene Oxide [J]. Science and Technology of Food Industry, 2021, 42(14): 249−256. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090147.

An Electrochemical Aptasensor for Detection of Aflatoxin M1 Based on Reduced Graphene Oxide

More Information
  • Received Date: September 14, 2020
  • Available Online: May 12, 2021
  • In this study, a fast and sensitive electrochemical aptasensor for sensitive determination of AFM1 was successfully established based on reduced graphene oxide (RGO). RGO was prepared by reducing graphene oxide with jujube juice. The synthesized RGO was dropped onto the surface of GCE. AuNPs was modified on the surface of the RGO/GCE via electrodepositio. The thiolated aptamer (SH-Apt) of the AFM1 was immobilized on the surface of the AuNPs/RGO/GCE through strong Au-S bond. When AFM1 was present, AFM1 bound specifically to the aptamer forming Apt-AFM1 conjugates. The conjugates hindered electron transfer, causing a decrease of current signal. Differential pulse voltammetry (DPV) was used to monitor electrochemical signal. This electrochemical aptasensor was used to test aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), ochratoxin A (OTA) and fumonisin B1 (FB1) to ensure the electrochemical aptasensor’s specificity. This electrochemical aptasensor was used to detect 1×10−7~5×10−4 ng/mL AFM1 to ensure the electrochemical aptasensor’s sensitivity. And this electrochemical aptasensor was used to detect goat milk to evaluate the practical use of electrochemical aptasensor. The results showed that RGO had the strongest conductivity when GO to jujube juice was 2:1 (V:V) and pH value was about 11. There was a good linear relationship between electrochemical signal and logarithm of AFM1 concentration in the range of 1×10−7~5×10−4 ng/mL with a low detection limit of 3.3×10−5 pg/mL. What’s more, the developed aptasensor was specific to AFM1 and did not respond to interfering mycotoxins, which suggested that the electrochemical aptasensor possessed an excellent selectivity for AFM1 detection. AFM1 electrochemical aptamer sensor was used to determine the content of AFM1 in goat milk. It was found that the sensor had high sensitivity and good selectivity, and it was expected to be applied to the rapid and accurate detection of mycotoxins in food industry.
  • [1]
    Yugender G K, Catanante G L, Hayat A, et al. Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages[J]. Sensors and Actuators B Chemical,2015,235:466−473.
    [2]
    Inoue T, Nagatomi Y, Uyama A, et al. Degradation of aflatoxin B1 during the fermentation of alcoholic beverages[J]. Toxins,2013,5(7):1219−1229. doi: 10.3390/toxins5071219
    [3]
    Sugiyama K, Hiraoka H, Sugitakonishi Y. Aflatoxin M1 contamination in raw bulk milk and the presence of aflatoxin B1 in corn supplied to dairy cattle in Japan[J]. Shokuhinseigaku Zasshi Journal of the Food Hygienic Society of Japan,2008,49(5):352−359. doi: 10.3358/shokueishi.49.352
    [4]
    Rodríguez-Blanco M, Ramos A J, Prim M, et al. Usefulness of the analytical control of aflatoxins in feedstuffs for dairy cows for the prevention of aflatoxin M1 in milk[J]. Mycotoxin Research,2019,36:11−22.
    [5]
    Nguyen B H, Tran L D, Do Q P, et al. Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor[J]. Materials Science and Engineering: C,2013,33(4):2229−2234. doi: 10.1016/j.msec.2013.01.044
    [6]
    Mollarasouli F, Asadpour-Zeynali K, Campuzano S, et al. Non-enzymatic hydrogen peroxide sensor based on graphene quantum dots-chitosan/methylene blue hybrid nanostructures[J]. Electrochimica Acta,2017,246:303−314. doi: 10.1016/j.electacta.2017.06.003
    [7]
    Linting Z, Ruiyi L, Zaijun L, et al. An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition[J]. Sensors and Actuators B: Chemical,2012,174:359−365. doi: 10.1016/j.snb.2012.06.051
    [8]
    凌强. 石墨烯负载金属氧化物复合材料的制备及应用研究[D]. 南京: 南京大学, 2014.
    [9]
    Agharkar M, Kochrekar S, Hidouri S, et al. Trends in green reduction of graphene oxides, issues and challenges: A review[J]. Materials Research Bulletin,2014,59:323−328. doi: 10.1016/j.materresbull.2014.07.051
    [10]
    Iravani S. Green synthesis of metal nanoparticles using plants[J]. Green Chemistry,2011,13(10):2638−2642. doi: 10.1039/c1gc15386b
    [11]
    Weng X, Wu J, Ma L, et al. Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide[J]. Chemical Engineering Journal,2019,359(2):976−981.
    [12]
    Kuila T, Bose S, Khanra P, et al. A green approach for the reduction of graphene oxide by wild carrot root[J]. Carbon,2012,50(3):914−921. doi: 10.1016/j.carbon.2011.09.053
    [13]
    Kartick B, Srivastava S K, Srivastava. Green synthesis of graphene[J]. Journal of Nanoence & Nanotechnology,2013,13(6):4320.
    [14]
    Mahmoud A T, Behzad H. Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications[J]. Rsc Advances,2013,3(32):13365−13370. doi: 10.1039/c3ra40856f
    [15]
    Song J, Bi J, Chen Q, et al. Assessment of sugar content, fatty acids, free amino acids, and volatile profiles in jujube fruits at different ripening stages[J]. Food Chemistry,2019,270(11):344−352.
    [16]
    王丽玲, 蒲云峰, 李雁琴, 等. 红枣中γ-氨基丁酸的研究进展[J]. 食品科学技术学报,2019,37(6):23−28. doi: 10.3969/j.issn.2095-6002.2019.06.004
    [17]
    Wojdy O A, Figiel A, Legua P, et al. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method[J]. Food Chemistry,2016,207:170−179. doi: 10.1016/j.foodchem.2016.03.099
    [18]
    Wang B N, Cao W, Gao H, et al. Simultaneous determination of six phenolic compounds in jujube by lc-ecd[J]. Chromatographia,2010,71(7-8):703−707. doi: 10.1365/s10337-010-1485-1
    [19]
    Pawlowska A M, Camangi F, Bader A, et al. Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) willd (rhamnaceae) fruits[J]. Food Chemistry,2009,112(4):858−862. doi: 10.1016/j.foodchem.2008.06.053
    [20]
    黄婉玉. 超滤对红枣汁理化性质和抗氧化活性的影响[D]. 西安: 西北大学, 2010.
    [21]
    王毕妮. 红枣多酚的种类及抗氧化活性研究[D]. 杨凌: 西北农林科技大学, 2011.
    [22]
    Hamid J S, Mohammad R, Mohammad D N, et al. A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode[J]. Biosensors and Bioelectronics,2018,117:487−492. doi: 10.1016/j.bios.2018.06.055
    [23]
    Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society,1958,208:1334−1339.
    [24]
    Allen M J, Tung V C, Kaner R B. Honeycomb carbon: A review of graphene[J]. Chemical Reviews,2009,110(1):132−145.
    [25]
    Sharma A, Catanante G, Hayat A, et al. Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample[J]. Talanta,2016,158:35−41. doi: 10.1016/j.talanta.2016.05.043
    [26]
    Dinçkaya E, Kınık Ö, Sezgintürk M K, et al. Development of an impedimetric aflatoxin m1 biosensor based on a DNA probe and gold nanoparticles[J]. Biosensors and Bioelectronics,2011,26(9):3806−3811. doi: 10.1016/j.bios.2011.02.038
    [27]
    陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究[J]. 物理学报,2020,69(19):147−154.
    [28]
    Goud K Y, Hayat A, Catanante G, et al. An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection[J]. Electrochimica Acta,2017,244:96−103. doi: 10.1016/j.electacta.2017.05.089
    [29]
    Park Y, Hong Y N, Weyers A, et al. Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles[J]. Nanobiotechnology Iet,2012,43(6):69−78.
    [30]
    Iravani S. Green synthesis of metal nanoparticles using plants[J]. Green Chemistry,2014(13):2638−2650.
    [31]
    Zeng Y Y, Zheng A X, Wu J, et al. Horseradish peroxidase and aptamer dual-functionalized nanoprobe for the amplification detection of alpha-methylacyl-CoA racemase[J] Analytica Chimica Acta, 2015, 899: 100−105.
    [32]
    Alguel I, Kara D. Determination and chemometric evaluation of total aflatoxin, aflatoxin B1, ochratoxin A and heavy metals content in corn flours from Turkey[J]. Food Chemistry,2014,157(15):70−76.
    [33]
    Geleta G S, Zhao Z, Wang Z. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B1[J]. Analyst,2018,143(7):1644−1649. doi: 10.1039/C7AN02050C
    [34]
    Qian J, Ren C C, Wang C Q, et al. Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1[J]. Biosensors and Bioelectronics,2020,166:112443. doi: 10.1016/j.bios.2020.112443
    [35]
    Li Y Y, Liu D, Zhu C X, et al. Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin b1 in peanut[J]. Journal of Hazardous Materials,2020,387:122001−122008. doi: 10.1016/j.jhazmat.2019.122001
    [36]
    He H R, Sun D W, Pu H B, et al. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive sers detection of aflatoxin B1[J]. Food Chemistry,2020,324:126832. doi: 10.1016/j.foodchem.2020.126832
    [37]
    华宇, 高和杨, 聂兴娜, 周旌, 张大伟. 同位素内标-高效液相色谱-串联质谱法检测牛奶及奶粉中黄曲霉毒素M1[J]. 食品安全质量检测学报,2020,11(6):1978−1984.
    [38]
    Istamboulié G, Paniel N, Zara L, et al. Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk[J]. Talanta,2016,146:464−469. doi: 10.1016/j.talanta.2015.09.012
    [39]
    Niazi S, Khan I M, Yu Y. et al. et al. A novel fluorescent aptasensor for aflatoxin m1 detection using rolling circle amplification and g-C3N4 as fluorescence quencher[J]. Sensors and Actuators B-Chemical,2020,315:128049. doi: 10.1016/j.snb.2020.128049
  • Cited by

    Periodical cited type(11)

    1. 裘一婧,贾彦博,江海,孙岚,陈美春,陈丽芳,余菁,林舒忆. UPLC-MS/MS测定凉果类酵素食品中的致泻类非法添加物. 发酵科技通讯. 2024(01): 1-7 .
    2. 赵一萌,索晓雄,刘彩霞,尚彩玲,杜晨晖,闫艳,裴香萍. 药用植物蛋白提取方法及生物活性研究进展. 食品安全质量检测学报. 2024(15): 119-126 .
    3. 丘梓慧,陈梓雅,陈爽,王琴,肖更生,彭进明. 超微粉碎果蔬粉的活性成分、物理特性与食品开发研究进展. 现代食品科技. 2024(11): 398-409 .
    4. 周勤文. 酸枣仁蛋白的提取工艺优化分析. 中国食品工业. 2023(02): 95-97+46 .
    5. 孟楠,秦令祥,曹源,高愿军. 超微冷冻前处理协同渗漉法提取食叶草黄酮工艺优化及其抗氧化、降血糖活性研究. 食品安全质量检测学报. 2023(13): 249-257 .
    6. 谭力铭,曹妍,裴海生,郝建雄,李慧颖. 酶法制备酸枣仁ACE抑制肽理化性质研究. 食品工业科技. 2022(02): 84-92 . 本站查看
    7. 任晓婵,常婧瑶,马晓丽,孔保华,辛莹,胡公社,刘骞. 超微粉碎后粒径对大麦全粉品质特性的影响. 食品工业科技. 2022(10): 80-86 . 本站查看
    8. 赵学旭,武蕊,衣春敏,武安琪,马培轩,单良. 沙棘果渣粉的超微冷冻粉碎制备及其理化性质与结构特性. 现代食品科技. 2022(05): 87-95 .
    9. 易佳,刘昆仑. 超微联合超声波优化提取米糠蛋白及其对米糠蛋白溶解性的影响. 食品研究与开发. 2022(19): 117-123 .
    10. 王士佳,张璐,葛善赢,李佳宸,吴学智,张佰清. 两种粉碎机型式对鹰嘴豆芽超微粉食用品质的影响. 食品安全质量检测学报. 2022(20): 6699-6705 .
    11. 刘晖,李光哲,肖凤琴,杨亦柳,韩荣欣,张红印,严铭铭. 酸枣仁蛋白的分离纯化及体外免疫活性. 食品科技. 2022(12): 214-220 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (285) PDF downloads (29) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return