Citation: | HUI Yuanyuan, WANG Bini, ZHANG Fuxin, et al. An Electrochemical Aptasensor for Detection of Aflatoxin M1 Based on Reduced Graphene Oxide [J]. Science and Technology of Food Industry, 2021, 42(14): 249−256. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090147. |
[1] |
Yugender G K, Catanante G L, Hayat A, et al. Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages[J]. Sensors and Actuators B Chemical,2015,235:466−473.
|
[2] |
Inoue T, Nagatomi Y, Uyama A, et al. Degradation of aflatoxin B1 during the fermentation of alcoholic beverages[J]. Toxins,2013,5(7):1219−1229. doi: 10.3390/toxins5071219
|
[3] |
Sugiyama K, Hiraoka H, Sugitakonishi Y. Aflatoxin M1 contamination in raw bulk milk and the presence of aflatoxin B1 in corn supplied to dairy cattle in Japan[J]. Shokuhinseigaku Zasshi Journal of the Food Hygienic Society of Japan,2008,49(5):352−359. doi: 10.3358/shokueishi.49.352
|
[4] |
Rodríguez-Blanco M, Ramos A J, Prim M, et al. Usefulness of the analytical control of aflatoxins in feedstuffs for dairy cows for the prevention of aflatoxin M1 in milk[J]. Mycotoxin Research,2019,36:11−22.
|
[5] |
Nguyen B H, Tran L D, Do Q P, et al. Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor[J]. Materials Science and Engineering: C,2013,33(4):2229−2234. doi: 10.1016/j.msec.2013.01.044
|
[6] |
Mollarasouli F, Asadpour-Zeynali K, Campuzano S, et al. Non-enzymatic hydrogen peroxide sensor based on graphene quantum dots-chitosan/methylene blue hybrid nanostructures[J]. Electrochimica Acta,2017,246:303−314. doi: 10.1016/j.electacta.2017.06.003
|
[7] |
Linting Z, Ruiyi L, Zaijun L, et al. An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition[J]. Sensors and Actuators B: Chemical,2012,174:359−365. doi: 10.1016/j.snb.2012.06.051
|
[8] |
凌强. 石墨烯负载金属氧化物复合材料的制备及应用研究[D]. 南京: 南京大学, 2014.
|
[9] |
Agharkar M, Kochrekar S, Hidouri S, et al. Trends in green reduction of graphene oxides, issues and challenges: A review[J]. Materials Research Bulletin,2014,59:323−328. doi: 10.1016/j.materresbull.2014.07.051
|
[10] |
Iravani S. Green synthesis of metal nanoparticles using plants[J]. Green Chemistry,2011,13(10):2638−2642. doi: 10.1039/c1gc15386b
|
[11] |
Weng X, Wu J, Ma L, et al. Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide[J]. Chemical Engineering Journal,2019,359(2):976−981.
|
[12] |
Kuila T, Bose S, Khanra P, et al. A green approach for the reduction of graphene oxide by wild carrot root[J]. Carbon,2012,50(3):914−921. doi: 10.1016/j.carbon.2011.09.053
|
[13] |
Kartick B, Srivastava S K, Srivastava. Green synthesis of graphene[J]. Journal of Nanoence & Nanotechnology,2013,13(6):4320.
|
[14] |
Mahmoud A T, Behzad H. Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications[J]. Rsc Advances,2013,3(32):13365−13370. doi: 10.1039/c3ra40856f
|
[15] |
Song J, Bi J, Chen Q, et al. Assessment of sugar content, fatty acids, free amino acids, and volatile profiles in jujube fruits at different ripening stages[J]. Food Chemistry,2019,270(11):344−352.
|
[16] |
王丽玲, 蒲云峰, 李雁琴, 等. 红枣中γ-氨基丁酸的研究进展[J]. 食品科学技术学报,2019,37(6):23−28. doi: 10.3969/j.issn.2095-6002.2019.06.004
|
[17] |
Wojdy O A, Figiel A, Legua P, et al. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method[J]. Food Chemistry,2016,207:170−179. doi: 10.1016/j.foodchem.2016.03.099
|
[18] |
Wang B N, Cao W, Gao H, et al. Simultaneous determination of six phenolic compounds in jujube by lc-ecd[J]. Chromatographia,2010,71(7-8):703−707. doi: 10.1365/s10337-010-1485-1
|
[19] |
Pawlowska A M, Camangi F, Bader A, et al. Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) willd (rhamnaceae) fruits[J]. Food Chemistry,2009,112(4):858−862. doi: 10.1016/j.foodchem.2008.06.053
|
[20] |
黄婉玉. 超滤对红枣汁理化性质和抗氧化活性的影响[D]. 西安: 西北大学, 2010.
|
[21] |
王毕妮. 红枣多酚的种类及抗氧化活性研究[D]. 杨凌: 西北农林科技大学, 2011.
|
[22] |
Hamid J S, Mohammad R, Mohammad D N, et al. A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode[J]. Biosensors and Bioelectronics,2018,117:487−492. doi: 10.1016/j.bios.2018.06.055
|
[23] |
Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society,1958,208:1334−1339.
|
[24] |
Allen M J, Tung V C, Kaner R B. Honeycomb carbon: A review of graphene[J]. Chemical Reviews,2009,110(1):132−145.
|
[25] |
Sharma A, Catanante G, Hayat A, et al. Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample[J]. Talanta,2016,158:35−41. doi: 10.1016/j.talanta.2016.05.043
|
[26] |
Dinçkaya E, Kınık Ö, Sezgintürk M K, et al. Development of an impedimetric aflatoxin m1 biosensor based on a DNA probe and gold nanoparticles[J]. Biosensors and Bioelectronics,2011,26(9):3806−3811. doi: 10.1016/j.bios.2011.02.038
|
[27] |
陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究[J]. 物理学报,2020,69(19):147−154.
|
[28] |
Goud K Y, Hayat A, Catanante G, et al. An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection[J]. Electrochimica Acta,2017,244:96−103. doi: 10.1016/j.electacta.2017.05.089
|
[29] |
Park Y, Hong Y N, Weyers A, et al. Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles[J]. Nanobiotechnology Iet,2012,43(6):69−78.
|
[30] |
Iravani S. Green synthesis of metal nanoparticles using plants[J]. Green Chemistry,2014(13):2638−2650.
|
[31] |
Zeng Y Y, Zheng A X, Wu J, et al. Horseradish peroxidase and aptamer dual-functionalized nanoprobe for the amplification detection of alpha-methylacyl-CoA racemase[J] Analytica Chimica Acta, 2015, 899: 100−105.
|
[32] |
Alguel I, Kara D. Determination and chemometric evaluation of total aflatoxin, aflatoxin B1, ochratoxin A and heavy metals content in corn flours from Turkey[J]. Food Chemistry,2014,157(15):70−76.
|
[33] |
Geleta G S, Zhao Z, Wang Z. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B1[J]. Analyst,2018,143(7):1644−1649. doi: 10.1039/C7AN02050C
|
[34] |
Qian J, Ren C C, Wang C Q, et al. Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1[J]. Biosensors and Bioelectronics,2020,166:112443. doi: 10.1016/j.bios.2020.112443
|
[35] |
Li Y Y, Liu D, Zhu C X, et al. Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin b1 in peanut[J]. Journal of Hazardous Materials,2020,387:122001−122008. doi: 10.1016/j.jhazmat.2019.122001
|
[36] |
He H R, Sun D W, Pu H B, et al. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive sers detection of aflatoxin B1[J]. Food Chemistry,2020,324:126832. doi: 10.1016/j.foodchem.2020.126832
|
[37] |
华宇, 高和杨, 聂兴娜, 周旌, 张大伟. 同位素内标-高效液相色谱-串联质谱法检测牛奶及奶粉中黄曲霉毒素M1[J]. 食品安全质量检测学报,2020,11(6):1978−1984.
|
[38] |
Istamboulié G, Paniel N, Zara L, et al. Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk[J]. Talanta,2016,146:464−469. doi: 10.1016/j.talanta.2015.09.012
|
[39] |
Niazi S, Khan I M, Yu Y. et al. et al. A novel fluorescent aptasensor for aflatoxin m1 detection using rolling circle amplification and g-C3N4 as fluorescence quencher[J]. Sensors and Actuators B-Chemical,2020,315:128049. doi: 10.1016/j.snb.2020.128049
|
1. |
裘一婧,贾彦博,江海,孙岚,陈美春,陈丽芳,余菁,林舒忆. UPLC-MS/MS测定凉果类酵素食品中的致泻类非法添加物. 发酵科技通讯. 2024(01): 1-7 .
![]() | |
2. |
赵一萌,索晓雄,刘彩霞,尚彩玲,杜晨晖,闫艳,裴香萍. 药用植物蛋白提取方法及生物活性研究进展. 食品安全质量检测学报. 2024(15): 119-126 .
![]() | |
3. |
丘梓慧,陈梓雅,陈爽,王琴,肖更生,彭进明. 超微粉碎果蔬粉的活性成分、物理特性与食品开发研究进展. 现代食品科技. 2024(11): 398-409 .
![]() | |
4. |
周勤文. 酸枣仁蛋白的提取工艺优化分析. 中国食品工业. 2023(02): 95-97+46 .
![]() | |
5. |
孟楠,秦令祥,曹源,高愿军. 超微冷冻前处理协同渗漉法提取食叶草黄酮工艺优化及其抗氧化、降血糖活性研究. 食品安全质量检测学报. 2023(13): 249-257 .
![]() | |
6. |
谭力铭,曹妍,裴海生,郝建雄,李慧颖. 酶法制备酸枣仁ACE抑制肽理化性质研究. 食品工业科技. 2022(02): 84-92 .
![]() | |
7. |
任晓婵,常婧瑶,马晓丽,孔保华,辛莹,胡公社,刘骞. 超微粉碎后粒径对大麦全粉品质特性的影响. 食品工业科技. 2022(10): 80-86 .
![]() | |
8. |
赵学旭,武蕊,衣春敏,武安琪,马培轩,单良. 沙棘果渣粉的超微冷冻粉碎制备及其理化性质与结构特性. 现代食品科技. 2022(05): 87-95 .
![]() | |
9. |
易佳,刘昆仑. 超微联合超声波优化提取米糠蛋白及其对米糠蛋白溶解性的影响. 食品研究与开发. 2022(19): 117-123 .
![]() | |
10. |
王士佳,张璐,葛善赢,李佳宸,吴学智,张佰清. 两种粉碎机型式对鹰嘴豆芽超微粉食用品质的影响. 食品安全质量检测学报. 2022(20): 6699-6705 .
![]() | |
11. |
刘晖,李光哲,肖凤琴,杨亦柳,韩荣欣,张红印,严铭铭. 酸枣仁蛋白的分离纯化及体外免疫活性. 食品科技. 2022(12): 214-220 .
![]() |