LIU Xiao, ZHU Chenglong, PANG Yuehong, et al. Fluorescence Aptasensor for 17 β -Estradiol Determination Based on Black Phosphorus Nanosheets [J]. Science and Technology of Food Industry, 2021, 42(11): 248−254. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090046.
Citation: LIU Xiao, ZHU Chenglong, PANG Yuehong, et al. Fluorescence Aptasensor for 17 β -Estradiol Determination Based on Black Phosphorus Nanosheets [J]. Science and Technology of Food Industry, 2021, 42(11): 248−254. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090046.

Fluorescence Aptasensor for 17β-Estradiol Determination Based on Black Phosphorus Nanosheets

More Information
  • Received Date: September 09, 2020
  • Available Online: April 05, 2021
  • A fluorescence aptasensor for quantitative detection of 17β-estradiol was constructed. Black phosphorus nanosheets (BPNs) were prepared by ultrasound-assisted aqueous phase exfoliation using black phosphorus crystal (BP) as fluorescence receptors. A 17β-estradiol fluorescence aptasensor was constructed between FAM labeled aptamers and BPNs based on the fluorescence resonance energy transfer (FRET). After optimization of BPNs concentration, FAM-Apt concentration and reaction time, samples of tap water and milk were determined. The results showed that the prepared BPNs had independent lamellar structure and uniform particle size.With the concentrations of BPNs and FAM-Apt were 10 μg/mL and 7.5 nmol/L respectively, the linear range of the sensor was 1.5~60 ng/mL and the detection limit was 1.0 ng/mL. The recoveries of tap water and milk were 91.2%~104.8% and 87.5%~104.3%. The relative standard deviation (RSD) were 4.99%~10.53% and 4.48%~11.24%, respectively. This method with simple, high sensitive and strong specificity could be completed within 30 min and could realize quantitative detection of E2 in actual samples.
  • [1]
    Omar T F T, Ahmad A, Aris A Z, et al. Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds[J]. Trac-Trends in Analytical Chemistry,2016,85:241−259. doi: 10.1016/j.trac.2016.08.004
    [2]
    Caupos E, Mazellier P, Croue J P. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight[J]. Water Research,2011,45(11):3341−3350. doi: 10.1016/j.watres.2011.03.047
    [3]
    Noppe H, Le Bizec B, Verheyden K, et al. Novel analytical methods for the determination of steroid hormones in edible matrices[J]. Analytica Chimica Acta,2008,611(1):1−16. doi: 10.1016/j.aca.2008.01.066
    [4]
    Parodi P W. Impact of cows’ milk estrogen on cancer risk[J]. International Dairy Journal,2012,22(1):3−14. doi: 10.1016/j.idairyj.2011.08.006
    [5]
    Ren S Y, Li Q F, Li Y, et al. Upconversion fluorescent aptasensor for bisphenol A and 17β-estradiol based on a nanohybrid composed of black phosphorus and gold, and making use of signal amplification via DNA tetrahedrons[J]. Microchimica Acta,2019,186(3):151. doi: 10.1007/s00604-019-3266-3
    [6]
    Pezzolato M, Maurella C, Varello K, et al. High sensitivity of a histological method in the detection of low-dosage illicit treatment with 17 beta-estradiol in male calves[J]. Food Control,2011,22(10):1668−1673. doi: 10.1016/j.foodcont.2011.03.027
    [7]
    Lu H Z, Xu S F. Mesoporous structured estrone imprinted Fe3O4@SiO2@mSiO2 for highly sensitive and selective detection of estrogens from water samples by HPLC[J]. Talanta,2015,144:303−311. doi: 10.1016/j.talanta.2015.06.017
    [8]
    Guedes-Alonso R, Santana-Viera S, Sosa-Ferrera Z, et al. Molecularly imprinted solid-phase extraction coupled with ultra high performance liquid chromatography and fluorescence detection for the determination of estrogens and their metabolites in wastewater[J]. Journal of Separation Science,2015,38(22):3961−3968. doi: 10.1002/jssc.201500764
    [9]
    Janssens G, Mangelinckx S, Courtheyn D, et al. Simultaneous detection of androgen and estrogen abuse in breeding animals by gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) evaluated against alternative methods[J]. Journal of Agricultural and Food Chemistry,2015,63(34):7574−7581. doi: 10.1021/acs.jafc.5b02746
    [10]
    Wang S H, Zhuang H S, Du L Y, et al. Determination of estradiol by biotin-avidin-amplified electrochemical enzyme immunoassay[J]. Analytical Letters,2007,40(5):887−896. doi: 10.1080/00032710701242089
    [11]
    Long F, Zhu A, Shi H C, et al. Hapten-grafted graphene as a transducer for homogeneous competitive immunoassay of small molecules[J]. Analytical Chemistry,2014,86(6):2862−2866. doi: 10.1021/ac500347n
    [12]
    Huang H L, Shi S, Gao X, et al. A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17 beta-estradiol detection[J]. Biosensors & Bioelectronics,2016,79:198−204.
    [13]
    Ming T, Wang Y, Luo J P, et al. Folding paper-based aptasensor platform coated with novel nanoassemblies for instant and highly sensitive detection of 17β-estradiol[J]. Acs Sensors,2019,4(12):3186−3194. doi: 10.1021/acssensors.9b01633
    [14]
    Alnajrani M N, Alsager O A. Lateral flow aptasensor for progesterone: Competitive target recognition and displacement of short complementary sequences[J]. Analytical Biochemistry,2019,587:113461. doi: 10.1016/j.ab.2019.113461
    [15]
    Tan W H, Donovan M J, Jiang J H. Aptamers from cell-based selection for bioanalytical applications[J]. Chemical Reviews,2013,113(4):2842−2862. doi: 10.1021/cr300468w
    [16]
    Pei H, Zuo X L, Zhu D, et al. Functional DNA nanostructures for theranostic applications[J]. Accounts of Chemical Research,2014,47(2):550−559. doi: 10.1021/ar400195t
    [17]
    Bai W H, Zhu C, Liu J C, et al. Split aptamer-based sandwich fluorescence resonance energy transfer assay for 19-nortestosterone[J]. Microchimica Acta,2016,183(9):2533−2538. doi: 10.1007/s00604-016-1905-5
    [18]
    Kim T Y, Lim J W, Lim M C, et al. Aptamer-based fluorescent assay for simple and sensitive detection of fipronil in liquid eggs[J]. Biotechnology and Bioprocess Engineering,2020,25(2):246−254. doi: 10.1007/s12257-019-0358-1
    [19]
    Khan I M, Niazi S, Yu Y, et al. Aptamer induced multicolored AuNCs-WS2 "turn on" FRET nano platform for dual-color simultaneous detection of aflatoxin B1 and zearalenone[J]. Analytical Chemistry,2019,91(21):14085−14092. doi: 10.1021/acs.analchem.9b03880
    [20]
    蒋林玲, 丁立平, 房喻, 等. 荧光共振能量转移技术在生命科学和超分子科学中的应用研究进展[J]. 自然杂志,2004(6):27−32.
    [21]
    Hu X X, Wang Y Q, Liu H Y, et al. Naked eye detection of multiple tumor-related mRNAs from patients with photonic-crystal micropattern supported dual-modal upconversion bioprobes[J]. Chemical Science,2017,8(1):466−472. doi: 10.1039/C6SC03401B
    [22]
    张纪梅, 魏硕名, 李萍, 等. 基于量子点的分子灯塔探针的制备及其在DNA探针中的应用[J]. 纳米技术与精密工程,2009,7(6):528−531. doi: 10.3969/j.issn.1672-6030.2009.06.010
    [23]
    Neema P M, Tomy A M, Cyriac J. Chemical sensor platforms based on fluorescence resonance energy transfer (FRET) and 2D materials[J]. Trac-Trends in Analytical Chemistry,2020,124:115797. doi: 10.1016/j.trac.2019.115797
    [24]
    Ni X, Xia B, Wang L M, et al. Fluorescent aptasensor for 17 beta-estradiol determination based on gold nanoparticles quenching the fluorescence of Rhodamine B[J]. Analytical Biochemistry,2017,523:17−23. doi: 10.1016/j.ab.2017.01.021
    [25]
    Yan S C, Wang B J, Wang Z L, et al. Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing[J]. Biosensors & Bioelectronics,2016,80:34−38.
    [26]
    Gu W, Pei X Y, Cheng Y X, et al. Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect[J]. ACS Sensors,2017,2(4):576−582. doi: 10.1021/acssensors.7b00102
    [27]
    Peng J, Lai Y Q, Chen Y Y, et al. Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir[J]. Small,2017,13(15):1603589. doi: 10.1002/smll.201603589
    [28]
    Zhou J, Li Z J, Ying M, et al. Black phosphorus nanosheets for rapid microRNA detection[J]. Nanoscale,2018,10(11):5060−5064. doi: 10.1039/C7NR08900G
    [29]
    Li Y, Liu Z M, Hou Y Q, et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy[J]. Acs Applied Materials & Interfaces,2017,9(30):25098−25106.
    [30]
    Li Y, Xu J Y, Jia M M, et al. Colorimetric determination of 17 beta-estradiol based on the specific recognition of aptamer and the salt-induced aggregation of gold nanoparticles[J]. Materials Letters,2015,159:221−224. doi: 10.1016/j.matlet.2015.06.079
    [31]
    Zheng H Y, Alsager O A, Wood C S, et al. Carbon nanotube field effect transistor aptasensors for estrogen detection in liquids[J]. Journal of Vacuum Science & Technology B,2015,33(6):06F904.
    [32]
    Huang K J, Liu Y J, Zhang J Z, et al. Aptamer/Au nanoparticles/cobalt sulfide nanosheets biosensor for 17 beta-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification[J]. Biosensors & Bioelectronics,2015,67:184−191.
    [33]
    Alsager O A, Kumar S, Willmott G R, et al. Small molecule detection in solution via the size contraction response of aptamer functionalized nanoparticles[J]. Biosensors & Bioelectronics,2014,57:262−268.
  • Cited by

    Periodical cited type(6)

    1. 郭玉龙,邵高耸,史轻舟,许焯,胡定煜,符式瑜. 纳米材料在食品检验鉴定中的应用研究进展. 山东化工. 2024(01): 91-94 .
    2. 左海根,黄芷诺,李毛英,袁小珍,杜永琴,刘小玉,陈雨. 核酸适配体在雌二醇分析中的研究进展. 理化检验-化学分册. 2023(07): 862-868 .
    3. 唐春花,杨洁,卢晓玲,陈美仑,魏铮,余鹏,赵佳. 甾体激素核酸适配体的筛选与应用. 生物化学与生物物理进展. 2023(09): 2146-2161 .
    4. 于开宁,王润忠,刘丹丹. 水环境中新污染物快速检测技术研究进展. 岩矿测试. 2023(06): 1063-1077 .
    5. 常嵘,叶巧燕,刘慧敏,郝欣雨,郭洪侠,郑楠. 牛奶中激素检测方法的研究进展. 食品安全质量检测学报. 2022(16): 5235-5243 .
    6. 史学丽,高辉,周永红,赵伟. 一种基于适配体传感器的17β-雌二醇定量分析方法. 河北工业科技. 2021(05): 431-437 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (312) PDF downloads (29) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return