Citation: | LIU Xiao, ZHU Chenglong, PANG Yuehong, et al. Fluorescence Aptasensor for 17 β -Estradiol Determination Based on Black Phosphorus Nanosheets [J]. Science and Technology of Food Industry, 2021, 42(11): 248−254. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090046. |
[1] |
Omar T F T, Ahmad A, Aris A Z, et al. Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds[J]. Trac-Trends in Analytical Chemistry,2016,85:241−259. doi: 10.1016/j.trac.2016.08.004
|
[2] |
Caupos E, Mazellier P, Croue J P. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight[J]. Water Research,2011,45(11):3341−3350. doi: 10.1016/j.watres.2011.03.047
|
[3] |
Noppe H, Le Bizec B, Verheyden K, et al. Novel analytical methods for the determination of steroid hormones in edible matrices[J]. Analytica Chimica Acta,2008,611(1):1−16. doi: 10.1016/j.aca.2008.01.066
|
[4] |
Parodi P W. Impact of cows’ milk estrogen on cancer risk[J]. International Dairy Journal,2012,22(1):3−14. doi: 10.1016/j.idairyj.2011.08.006
|
[5] |
Ren S Y, Li Q F, Li Y, et al. Upconversion fluorescent aptasensor for bisphenol A and 17β-estradiol based on a nanohybrid composed of black phosphorus and gold, and making use of signal amplification via DNA tetrahedrons[J]. Microchimica Acta,2019,186(3):151. doi: 10.1007/s00604-019-3266-3
|
[6] |
Pezzolato M, Maurella C, Varello K, et al. High sensitivity of a histological method in the detection of low-dosage illicit treatment with 17 beta-estradiol in male calves[J]. Food Control,2011,22(10):1668−1673. doi: 10.1016/j.foodcont.2011.03.027
|
[7] |
Lu H Z, Xu S F. Mesoporous structured estrone imprinted Fe3O4@SiO2@mSiO2 for highly sensitive and selective detection of estrogens from water samples by HPLC[J]. Talanta,2015,144:303−311. doi: 10.1016/j.talanta.2015.06.017
|
[8] |
Guedes-Alonso R, Santana-Viera S, Sosa-Ferrera Z, et al. Molecularly imprinted solid-phase extraction coupled with ultra high performance liquid chromatography and fluorescence detection for the determination of estrogens and their metabolites in wastewater[J]. Journal of Separation Science,2015,38(22):3961−3968. doi: 10.1002/jssc.201500764
|
[9] |
Janssens G, Mangelinckx S, Courtheyn D, et al. Simultaneous detection of androgen and estrogen abuse in breeding animals by gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) evaluated against alternative methods[J]. Journal of Agricultural and Food Chemistry,2015,63(34):7574−7581. doi: 10.1021/acs.jafc.5b02746
|
[10] |
Wang S H, Zhuang H S, Du L Y, et al. Determination of estradiol by biotin-avidin-amplified electrochemical enzyme immunoassay[J]. Analytical Letters,2007,40(5):887−896. doi: 10.1080/00032710701242089
|
[11] |
Long F, Zhu A, Shi H C, et al. Hapten-grafted graphene as a transducer for homogeneous competitive immunoassay of small molecules[J]. Analytical Chemistry,2014,86(6):2862−2866. doi: 10.1021/ac500347n
|
[12] |
Huang H L, Shi S, Gao X, et al. A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17 beta-estradiol detection[J]. Biosensors & Bioelectronics,2016,79:198−204.
|
[13] |
Ming T, Wang Y, Luo J P, et al. Folding paper-based aptasensor platform coated with novel nanoassemblies for instant and highly sensitive detection of 17β-estradiol[J]. Acs Sensors,2019,4(12):3186−3194. doi: 10.1021/acssensors.9b01633
|
[14] |
Alnajrani M N, Alsager O A. Lateral flow aptasensor for progesterone: Competitive target recognition and displacement of short complementary sequences[J]. Analytical Biochemistry,2019,587:113461. doi: 10.1016/j.ab.2019.113461
|
[15] |
Tan W H, Donovan M J, Jiang J H. Aptamers from cell-based selection for bioanalytical applications[J]. Chemical Reviews,2013,113(4):2842−2862. doi: 10.1021/cr300468w
|
[16] |
Pei H, Zuo X L, Zhu D, et al. Functional DNA nanostructures for theranostic applications[J]. Accounts of Chemical Research,2014,47(2):550−559. doi: 10.1021/ar400195t
|
[17] |
Bai W H, Zhu C, Liu J C, et al. Split aptamer-based sandwich fluorescence resonance energy transfer assay for 19-nortestosterone[J]. Microchimica Acta,2016,183(9):2533−2538. doi: 10.1007/s00604-016-1905-5
|
[18] |
Kim T Y, Lim J W, Lim M C, et al. Aptamer-based fluorescent assay for simple and sensitive detection of fipronil in liquid eggs[J]. Biotechnology and Bioprocess Engineering,2020,25(2):246−254. doi: 10.1007/s12257-019-0358-1
|
[19] |
Khan I M, Niazi S, Yu Y, et al. Aptamer induced multicolored AuNCs-WS2 "turn on" FRET nano platform for dual-color simultaneous detection of aflatoxin B1 and zearalenone[J]. Analytical Chemistry,2019,91(21):14085−14092. doi: 10.1021/acs.analchem.9b03880
|
[20] |
蒋林玲, 丁立平, 房喻, 等. 荧光共振能量转移技术在生命科学和超分子科学中的应用研究进展[J]. 自然杂志,2004(6):27−32.
|
[21] |
Hu X X, Wang Y Q, Liu H Y, et al. Naked eye detection of multiple tumor-related mRNAs from patients with photonic-crystal micropattern supported dual-modal upconversion bioprobes[J]. Chemical Science,2017,8(1):466−472. doi: 10.1039/C6SC03401B
|
[22] |
张纪梅, 魏硕名, 李萍, 等. 基于量子点的分子灯塔探针的制备及其在DNA探针中的应用[J]. 纳米技术与精密工程,2009,7(6):528−531. doi: 10.3969/j.issn.1672-6030.2009.06.010
|
[23] |
Neema P M, Tomy A M, Cyriac J. Chemical sensor platforms based on fluorescence resonance energy transfer (FRET) and 2D materials[J]. Trac-Trends in Analytical Chemistry,2020,124:115797. doi: 10.1016/j.trac.2019.115797
|
[24] |
Ni X, Xia B, Wang L M, et al. Fluorescent aptasensor for 17 beta-estradiol determination based on gold nanoparticles quenching the fluorescence of Rhodamine B[J]. Analytical Biochemistry,2017,523:17−23. doi: 10.1016/j.ab.2017.01.021
|
[25] |
Yan S C, Wang B J, Wang Z L, et al. Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing[J]. Biosensors & Bioelectronics,2016,80:34−38.
|
[26] |
Gu W, Pei X Y, Cheng Y X, et al. Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect[J]. ACS Sensors,2017,2(4):576−582. doi: 10.1021/acssensors.7b00102
|
[27] |
Peng J, Lai Y Q, Chen Y Y, et al. Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir[J]. Small,2017,13(15):1603589. doi: 10.1002/smll.201603589
|
[28] |
Zhou J, Li Z J, Ying M, et al. Black phosphorus nanosheets for rapid microRNA detection[J]. Nanoscale,2018,10(11):5060−5064. doi: 10.1039/C7NR08900G
|
[29] |
Li Y, Liu Z M, Hou Y Q, et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy[J]. Acs Applied Materials & Interfaces,2017,9(30):25098−25106.
|
[30] |
Li Y, Xu J Y, Jia M M, et al. Colorimetric determination of 17 beta-estradiol based on the specific recognition of aptamer and the salt-induced aggregation of gold nanoparticles[J]. Materials Letters,2015,159:221−224. doi: 10.1016/j.matlet.2015.06.079
|
[31] |
Zheng H Y, Alsager O A, Wood C S, et al. Carbon nanotube field effect transistor aptasensors for estrogen detection in liquids[J]. Journal of Vacuum Science & Technology B,2015,33(6):06F904.
|
[32] |
Huang K J, Liu Y J, Zhang J Z, et al. Aptamer/Au nanoparticles/cobalt sulfide nanosheets biosensor for 17 beta-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification[J]. Biosensors & Bioelectronics,2015,67:184−191.
|
[33] |
Alsager O A, Kumar S, Willmott G R, et al. Small molecule detection in solution via the size contraction response of aptamer functionalized nanoparticles[J]. Biosensors & Bioelectronics,2014,57:262−268.
|