TAN Yan, WANG Guoqing, WU Jinzhu, et al. Analysis of Volatile Flavour Components in Four Pomelo Peel Essential Oils Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2021, 42(15): 256−268. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090041.
Citation: TAN Yan, WANG Guoqing, WU Jinzhu, et al. Analysis of Volatile Flavour Components in Four Pomelo Peel Essential Oils Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2021, 42(15): 256−268. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090041.

Analysis of Volatile Flavour Components in Four Pomelo Peel Essential Oils Based on GC-MS and GC-IMS

More Information
  • Received Date: September 03, 2020
  • Available Online: June 03, 2021
  • The volatile components in the peel essential oils of Mi pomelo and Shatian pomelo from Meizhou city, Guangdong province , Mi pomelo from Jinggangshan city, Jiangxi province and Four season pomelo from Fuding city, Fujian province were analyzed by Gas Chromatography-mass Spectrometry (GC-MS) and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) technology. GC-MS and GC-IMS identified 56 and 58 volatile componentsin the four kinds of pomelo peel essential oil samples, mainly terpenes, followed by alcohols and aldehydes. The results of GC-MS indicated that the unique volatile components of Meizhou Mi pomelo was terpenes, alcohols and aldehydes; the unique volatile components of Jinggang Mi pomelo was terpenes, alcohols and esters; the unique volatile components of Meizhou shatian pomelo was terpenes and the Fuding Four season pomelo was terpenes, alcohols, aldehydes, ketones and esters. GC-IMS indicated that the subjectival volatile components of Meizhou Mi pomelo was terpenes, alcohols and aldehydes, the subjectival volatile components of Jinggang Mi pomelo was alcohols, aldehydes and esters, the subjectival volatile components of Meizhou shatian pomelo was terpenes and the Fuding Four season pomelo was alcohols, ketones, esters and furan. The results of GC-MS and GC-IMS showed some differences. Most of the volatile components detected by GC-MS were larger molecules(C10~C15)at high contents, while most of the volatile components detected by GC-IMS were smaller molecules(C2~C11)at low contents, and the two technologies expanded the detection scope of the volatile components in the sample. The types and numbers of volatile components in the samples detected by GC-IMS were more than those by GC-MS. The principal component analysis and heat map clustering analysis could well distinguish four kinds of pomelo peel essential oil samples, which proved that they differed from each other to a certain extent in volatile components. The combination of GC-MS and GC-IMS could comprehensively and intuitively reflect the changes of volatile components in four kinds peel essential oil and provided scientific basis for the comprehensive utilization of the peel essential oil.
  • [1]
    张浩, 安可婧, 傅曼琴, 等. 不同提取方法与GC-MS进样方式对柚皮精油挥发性成分分析结果的影响[J]. 现代食品科技,2019,35(1):264−273, 238.
    [2]
    Geraci A, Di Stefano V, Di Martino E, et al. Essential oil components of orange peels and antimicrobial activity[J]. Natural Product Research,2017,31(6):653−659. doi: 10.1080/14786419.2016.1219860
    [3]
    侯韬, 郭胜兰, 李永生, 等. 梅州蜜柚(Honey pomelo)柚花不同部位的香气成分和水蒸气精油组成成分差异分析[J]. 现代食品科技,2019,35(7):231−238.
    [4]
    郭畅, 傅曼琴, 唐道邦, 等. 梅州4种柚子精油GC-MS分析[J]. 广东农业科学,2018,45(1):87−93.
    [5]
    Ahmed S, Rattanpal H S, Gul K, et al. Chemical composition, antioxidant activity and GC-MS analysis of juice and peel oil of grapefruit varieties cultivated in India[J]. Journal of Integrative Agriculture,2019,18(7):1634−1642. doi: 10.1016/S2095-3119(19)62602-X
    [6]
    肖作兵, 范彬彬, 牛云蔚, 等. 基于GC-MS/GC-O结合PCA分析鉴定菊花精油特征香气成分[J]. 中国食品学报,2017,17(12):287−292.
    [7]
    马琦, 伯继芳, 冯莉, 等. GC-MS结合电子鼻分析干燥方式对杏鲍菇挥发性风味成分的影响[J]. 食品科学,2019,40(14):276−282. doi: 10.7506/spkx1002-6630-20180904-046
    [8]
    Gallegos J, Arce C, Jordano R, et al. Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography-ion mobility spectrometry[J]. Food Chemistry,2017,220(Apr. 1):362−370.
    [9]
    Gerhardt N, Birkenmeier M, Sanders D, et al. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling[J]. Analytical and Bioanalytical Chemistry,2017,409(16):3933−3942. doi: 10.1007/s00216-017-0338-2
    [10]
    Garrido-Delgado R, Sielemann S, Mercader-Trejo F. Direct classification of olive oils by using two types of ion mobility spectrometers[J]. Analytica Chimica Acta,2011,696(1/2):108−115.
    [11]
    杜文博. 气相离子迁移谱法在羊奶粉和驴肉鉴伪分析中的应用[D]. 保定: 河北农业大学, 2019.
    [12]
    Mansoure K, Mohammad T J, Mohammad S. Porous magnetized carbon sheet nanocomposites for dispersive solid-phase microextraction of organophosphorus pesticides prior to analysis by gas chromatography-ion mobility spectrometry[J]. Mikrochimica acta,2019,186(2):88. doi: 10.1007/s00604-018-3215-6
    [13]
    Martín-Gómez A, Arroyo-Manzanares N, Rodríguez-Estévez V, et al. Use of a non-destructive sampling method for characterization of Iberian cured ham breed and feeding regime using GC-IMS[J]. Meat Science,2019,152:146−154. doi: 10.1016/j.meatsci.2019.02.018
    [14]
    Liu D, Bai L, Feng X, et al. Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Meat Science,2020,168:108178(prepublish). doi: 10.1016/j.meatsci.2020.108178
    [15]
    Daniele C, Sandro Z, Chiara D A, et al. Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggsfreshness[J]. Food Chemistry,2019(271):691−696.
    [16]
    Garrido D R, Arce L, Guamán A V, et al. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools[J]Talanta, 2011, 84(2): 471−479.
    [17]
    孙浩. 琯溪蜜柚皮精油的制备工艺研究[D]. 厦门: 集美大学, 2013.
    [18]
    Huang H, Lin L, Chiang H, et al. Analysis of volatile compounds from different parts of Citrus grandis (L.) osbeck flowers by headspace solid-phase microextraction-gas chromatography-mass spectrometry[J]. Journal of Essential Oil Bearing Plants,2017,20(4):1057−1065. doi: 10.1080/0972060X.2017.1377112
    [19]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定: GB 5009.3-2016[S]. 北京: 中国标准出版社, 2016.
    [20]
    Zhang H, Cheng Y, Liu C. Volatile constituents of wild citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil[J]. Journal of Agricultural and Food Chemistry,2012,60(10):2617−2628. doi: 10.1021/jf2039197
    [21]
    Martosa M V, Navajas Y R, Lopez J F, et al. Antibacterialactivity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils[J]. Journal of Food Safety,2008,28(4):567−576. doi: 10.1111/j.1745-4565.2008.00131.x
    [22]
    郭畅, 傅曼琴, 徐玉娟, 等. 沙田柚皮精油分子蒸馏分离及成分分析[J]. 现代食品科技,2018,34(6):260−266.
    [23]
    李脉, 杨继国, 宁正祥, 等. 亚临界流体提取梅州金柚柚皮精油的研究[J]. 现代食品科技,2013,29(5):1068−1071.
    [24]
    洪耿德, 蒋振杰, 陈思旭, 等. D-柠檬烯纳米乳对牛肉中食源性致病菌的影响(英文)[J]. 中国农业科技导报,2019,21(5):121−128.
    [25]
    Lan W, Wang S, Chen M, et al. Developing poly(vinyl alcohol)/chitosan films incorporate with d -limonene: Study of structural, antibacterial, and fruit preservation properties[J]. Elsevier B. V,2020,145:722−732.
    [26]
    王东风. D-柠檬烯对酒精性肝损伤大鼠脂质代谢影响的研究[D]. 青岛: 青岛大学, 2015.
    [27]
    Zhang B, Wang H, Yang Z, et al. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway[J]. Human & Experimental Toxicology,2020,39(12):1596−1606.
    [28]
    Khalili M, Attar M, Amirlatifi R, et al. Effects of dietary myrcene administration on antioxidant gene responses in common carp (Cyprinus carpio), exposed to copper sulphate[J]. Aquaculture Research,2020,51(4):1653−1659. doi: 10.1111/are.14511
    [29]
    张蕾, 王杰, 罗理勇, 等. 老鹰茶特征性香气成分分析[J]. 食品科学,2019,40(10):220−228. doi: 10.7506/spkx1002-6630-20180128-384
    [30]
    何丽芝, 王婧, 赵振东, 等. 3-蒈烯资源及其生物活性应用研究进展[J]. 林产化学与工业,2011,31(3):122−126.
    [31]
    于文峰. 琯溪蜜柚皮中精油提取及色素分离工艺研究[D]. 无锡: 江南大学, 2011.
    [32]
    李敏杰, 陆兆新, 赵海珍. 超声波辅助-盐析-水蒸气蒸馏法提取葛缕子精油的研究[J]. 食品工业科技,2013,34(11):99−103, 107.
    [33]
    牛丽影, 郁萌, 刘夫国, 等. 香橼精油的组成及香气活性成分的GC-MS-O分析[J]. 食品与发酵工业,2013,39(4):186−191.
    [34]
    宋诗清, 童彦尊, 冯涛, 等. 金佛手香气物质的多维分析及其特征香气物质的确定[J]. 食品科学,2017,38(24):94−100. doi: 10.7506/spkx1002-6630-201724015
    [35]
    李贵节, 张群琳, 何雅静, 等. 三种晚熟甜橙冷磨精油挥发性及主体香气成分的比较分析[J]. 食品与发酵工业,2020,46(5):284−291.
    [36]
    Zhang G, Bai J, Xi M, et al. Soil quality assessment of coastal wetlands in the Yellow River Delta of China based on the minimum data set[J]. Ecological Indicators,2016,66(Jul.):458−466.
    [37]
    Roman Rodríguez-Maecker, Vyhmeister E, Meisen S, et al. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry[J]. Analytical and Bioanalytical Chemistry,2017,409(28):6595−6603. doi: 10.1007/s00216-017-0613-2
    [38]
    汤酿, 刘静宜, 陈小爱, 等. 基于GC-MS和GC-IMS联用法分析不同采收期广佛手精油挥发性成分[J/OL]. 食品科学: 1−17[2020-12-07]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201120.1640.158.html.
    [39]
    樊杉杉, 管桂坤, 苏雅芝, 等. 采用GC-O-MS结合香气活力值分析兰陵美酒香气活性组分特征[J]. 食品与发酵工业,2021,47(1):243−249.
    [40]
    冯堃, 秦昭, 王文蜀, 等. 5种柚皮精油成分及油脂抗氧化和抑菌活性[J]. 食品科技,2018,43(11):255−261.
    [41]
    Chen T, Cao Y, Liu F, et al. Quality evaluation of tangerine peel volatile oils from different origins by GC-MS fingerprint and PCA[J]. Modern Food Science and Technology,2017,33(2):217−222.
  • Cited by

    Periodical cited type(2)

    1. 杨春霞,王芳焕. 贺兰山东麓产区酿酒葡萄中高氯酸盐暴露风险评估. 食品安全质量检测学报. 2024(08): 298-305 .
    2. 陈秋宇,梁江,王小丹,张磊,魏晟. 我国重点和非重点地区居民膳食中高氯酸盐暴露风险概率评估. 中国食品卫生杂志. 2023(12): 1740-1748 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (2207) PDF downloads (191) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return