YANG Wenyin, ZHAO Shiming, ZHANG Xiaotong, et al. Study on the Clarification Process of Stevia Extract by Small-Aperture Ceramic Film[J]. Science and Technology of Food Industry, 2021, 42(11): 180−184. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020090012.
Citation: YANG Wenyin, ZHAO Shiming, ZHANG Xiaotong, et al. Study on the Clarification Process of Stevia Extract by Small-Aperture Ceramic Film[J]. Science and Technology of Food Industry, 2021, 42(11): 180−184. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020090012.

Study on the Clarification Process of Stevia Extract by Small-Aperture Ceramic Film

More Information
  • Received Date: September 02, 2020
  • Available Online: March 31, 2021
  • In this paper, the effect of small pore size ceramic membrane clarifying stevia extract was studied. By comparing the filtration flux, decolorization rate and yield of stevia extract with different pore size, the better pore size of ceramic membrane was determined, and the operating parameters of ceramic membrane were optimized. The results showed that the ceramic membrane of 5 nm was better. At 40 ℃, the operating pressure was 5 bar, the flow rate of the membrane surface was 4 m/s, concentrated 10 times, and the filtration effect of 30% raw liquid water was the best. The average filtration flux of ceramic membrane was 102.6 kg/(m2·h) and the yield of stevia was 99.2%. After filtration, the ceramic membrane was cleaned for 1 h by 1%~2% NaOH, and then 0.5%~1% nitric acid was used for 1 h. The recovery rate of ceramic membrane water flux could reach more than 99%, and the regeneration effect was good and could be reused. Compared with the flocculation process, the decolorization rate of ceramic membrane increased by 2.6% and the yield of stevia increased by 6.8%. Therefore, the membrane process can replace the traditional flocculation process to clarify the extract of stevia.
  • [1]
    Susan S Schiffman, E Lizabeth A Satte Ly-Mi L Ler, Ihab E Bishay, et al. Time to maximum sweetness intensity of binary and ternary blends of sweeteners[J]. Food Quality and Preference,2007,18:405−415. doi: 10.1016/j.foodqual.2006.04.007
    [2]
    StepHen D Anton, Corby K Martin, Hongmei Han, et al. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandialglucose and insulin levels[J]. Appetite,2010,55(1):37−43. doi: 10.1016/j.appet.2010.03.009
    [3]
    Koyama E, Kitazawa K, Ohori Y, et al. In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora[J]. Food & Chemical Toxicology,2003,41(3):359−374.
    [4]
    A I P, A D B, A J F C, et al. Development of rebiana, a natural, non-caloric sweetener-ScienceDirect[J]. Food and Chemical Toxicology,2008,46(7):S75−S82. doi: 10.1016/j.fct.2008.05.004
    [5]
    杨洋, 李启明, 高航, 等. 甜菊糖苷功能特性与应用现状[J]. 食品工业,2018,39(11):276−278.
    [6]
    唐婉莹, 翟宇峰. 聚合氯化铝絮凝机理探讨[J]. 南京理工大学学报 (自然科学版),1997,21(4):325−328.
    [7]
    张雪颖, 徐仲伟, 战宇. 甜叶菊提取液的絮凝工艺研究[J]. 食品研究与开发,2007,28(2):42−44.
    [8]
    邵佩霞, 徐仲伟, 王永华. 甜叶菊水提取液的高效絮凝新工艺研究[J]. 食品工业,2009(2):11−14.
    [9]
    卿石臣. 甜菊糖试生产中絮凝剂的探索[J]. 中国食品添加剂,2003(6):40−41.
    [10]
    花蓉蓉, 周恭明, 曹大伟. 壳聚糖的絮凝性能研究进展[J]. 化工进展,2008,27(3):335−339.
    [11]
    Yasukawa K, Kitanaka S, Seo S. Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbo L-13-acetate in two-stage carcino genesis in mouse skin[J]. Biol Pham Bull,2002(11):1488−1490.
    [12]
    丁红梅, 田洪, 连运河. 甜菊糖结晶提纯高RA糖工艺研究[J]. 中国食品添加剂,2013(6):44−48.
    [13]
    施克俭, 朱兰宝, 陈义明. 甜菊糖生产中高效絮凝剂的研制及其下脚料的综合利用[J]. 化工时刊,1992(1):28−29.
    [14]
    Zsirai T, Al-Jaml A K, Qiblawey H, et al. Ceramic membrane filtration of produced water: Impact of membrane module[J]. Sep Purif Technol,2016,165(1):214−221.
    [15]
    Lu J, Hofs B, Rietveld L C, et al. Optimization of submerged ceramic micromembrane filtration for surface water treatment[C]// Asia-pacific Conference on Desalination & Water Reclamation, 2010.
    [16]
    赵士明, 彭文博, 张建嵩, 等. 陶瓷膜过滤万古霉素的研究[J]. 中国酿造,2016,35(2):119−122.
    [17]
    赵士明, 王辉, 彭文博, 等. 陶瓷膜在晒制酱油生产中的应用[J]. 中国酿造,2017,36(2):39−44. doi: 10.11882/j.issn.0254-5071.2017.02.009
    [18]
    刘壮, 朱瓌之, 漆虹. 基于"絮凝-陶瓷膜耦合技术"的甜菊糖苷纯化工艺研究[J]. 膜科学与技术,2018,38(1):91−96.
    [19]
    孙福东, 王淑玲, 王英姿. 膜分离技术在中药提取与制剂研究中的应[J]. 齐鲁药事,2008,27(4):226−228.
    [20]
    陈余. 膜分离技术在中药提取分离中的应用[J]. 化学工程与装备,2013,41(2):126−128.
    [21]
    张晨, 窦彤灵, 吕晓存, 等. 陶瓷膜在水性涂料清洗废水处理中的应用研究[J]. 污染防治技术,2020(3):21−24.
    [22]
    赵士明, 彭文博, 张建嵩, 等. 膜集成技术在返魂草水提液精制中的应用[J]. 膜科学与技术,2018(4):120−126.
    [23]
    李文, 朱瓌之, 漆虹, 等. 陶瓷膜超滤净化石灰法制糖清汁[J]. 食品科学,2019,40(2):260−266.
    [24]
    王珂, 赵德智, 王德慧, 等. 陶瓷膜的污染与清洗技术进展[J]. 应用化工,2018,47(6):1296−1300. doi: 10.3969/j.issn.1671-3206.2018.06.052
    [25]
    朱传柳, 赵士明, 章小同, 等. 新型孔径陶瓷膜澄清棒酸发酵液的研究[J]. 中国抗生素杂志,2019,44(8):924−929.
  • Related Articles

    [1]LIANG Xiaxia, YUAN Qianyun, LIU Lei, GUO Shanshan, WANG Wenbin. Recombinant Expression and Antibody Cross-reaction of the Outer Membrane Protein VP1008 and Ferric Vibrioferrin Receptor of Vibrio parahaemolyticus[J]. Science and Technology of Food Industry, 2021, 42(19): 144-151. DOI: 10.13386/j.issn1002-0306.2021030061
    [2]SUN Huai-xia, LIN Zheng-zhong, HONG Cheng-yi, HUANG Zhi-yong. Hemin/G-quadruplex-based Method for Colorimetric Detection of Ochratoxin A in Foods[J]. Science and Technology of Food Industry, 2020, 41(20): 224-229. DOI: 10.13386/j.issn1002-0306.2020.20.036
    [3]LU Min, MA Hai-le, ZHU Li-ping, HONG Chen. Adsorption Mechanism Research on Jerusalem artichoke Polysaccharide Pigment with D301-G Macroporous Resin[J]. Science and Technology of Food Industry, 2019, 40(16): 58-63,70. DOI: 10.13386/j.issn1002-0306.2019.16.010
    [4]LIU Su-yao, PANG Guang-chang, LIU Yuan. Sensing Kinetics of Umami Receptor in Rats Intestinal Mucosa[J]. Science and Technology of Food Industry, 2018, 39(23): 84-88,110. DOI: 10.13386/j.issn1002-0306.2018.23.015
    [5]XIONG Zhou-yi, MA Mei-hu, LU Su-fang, XU Hong-liang, LEI Yue-lei. Research Progress of Enzymatic and Non-Enzymatic Phosphorylation of Food Proteins[J]. Science and Technology of Food Industry, 2018, 39(21): 310-319. DOI: 10.13386/j.issn1002-0306.2018.21.055
    [6]ZHANG Ying-ying, GUO Qian, XIONG Li-xia, ZHANG Hong-xing, XIE Yuan-hong, LIU Hui, LIANG Xin-bei, LIAN Zheng-xing. Optimization of culture medium and fermentation conditions for neutral protease produced by Bacillus coagulans Liu-g[J]. Science and Technology of Food Industry, 2016, (21): 150-154. DOI: 10.13386/j.issn1002-0306.2016.21.021
    [7]XU Ting, MIAO Ming, ZHANG Tao, JIANG Bo. Optimization of the receptor reaction catalyzed by alternansucrase to produce oligosaccharide[J]. Science and Technology of Food Industry, 2014, (21): 162-166. DOI: 10.13386/j.issn1002-0306.2014.21.027
    [8]XIAO Na, TONG Ping, XIONG Li-ji, CHEN Hong-bing, GAO Jin-yan. Application of GPC/SEC coupled with laser light scattering on food proteins[J]. Science and Technology of Food Industry, 2014, (04): 384-387. DOI: 10.13386/j.issn1002-0306.2014.04.022
  • Cited by

    Periodical cited type(9)

    1. 宋德方,李洪淼,许嘉媛,赵佳怡,刘金花. 罗汉果苷零蔗糖酸奶的研制及品质分析. 辽宁农业职业技术学院学报. 2025(02): 11-14 .
    2. 李春冬,徐同,高缘,刘国强,呼日,徐伟良,马信雅,高志海,吉日嘎拉图,郭梁. 高脂酸乳与普通酸乳品质对比分析. 乳业科学与技术. 2025(02): 9-14 .
    3. 段泊安,李倩文,王晓楠,陈树兴. 山茶花低糖酸奶工艺优化及其抗氧化活性分析. 食品安全质量检测学报. 2024(09): 271-277 .
    4. 周洋,黄亚杰,文进. 响应面法优化无乳糖酸奶的配方研究. 中国酿造. 2024(06): 189-194 .
    5. 於荣荣,孙欣燕,周頔,徐升,韩彬,汤泉,董艺凝. 基于混料设计研究代糖配比及其对炼乳品质的影响. 食品安全质量检测学报. 2024(15): 147-157 .
    6. 徐广新,杨仁琴,周炜,张海霞,华惠,印伯星,王来娣. 响应面法优化桂花酒酿酸奶制备工艺. 食品安全质量检测学报. 2024(23): 145-151 .
    7. 尹丽萍,张剑林,殷娜,黎进雪,王妍凌,达菊庆,李宁,武运. 模糊数学综合评价法结合响应面法优化红葡萄酒风味发酵乳工艺. 中国酿造. 2023(01): 168-173 .
    8. 沈雍徽,陈娜,邢宇,黄威. 不同糖醇对凝固型酸奶品质的影响. 中国乳业. 2023(12): 86-91 .
    9. 谭丽丽,程雅芳,付晶晶. 罗汉果食品开发研究进展. 食品安全导刊. 2022(10): 184-186+192 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (217) PDF downloads (17) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return