ZHANG Xinru, LI Xiaodan, GUO Liping, et al. Preparation and Characterization of Cationic Konjac Glucomannan [J]. Science and Technology of Food Industry, 2021, 42(13): 59−65. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090010.
Citation: ZHANG Xinru, LI Xiaodan, GUO Liping, et al. Preparation and Characterization of Cationic Konjac Glucomannan [J]. Science and Technology of Food Industry, 2021, 42(13): 59−65. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090010.

Preparation and Characterization of Cationic Konjac Glucomannan

More Information
  • Received Date: September 02, 2020
  • Available Online: May 10, 2021
  • Cationic konjac glucomannan(CKGM) was prepared by etherifying konjac glucomannan (KGM) with 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (HAT). The effects of reaction temperature, reaction time, and the amounts of NaOH and HAT on the zeta potential of CKGM were studied. Meanwhile, the functional properties of the resultant CKGM and its electrostatic interaction with soybean protein isolate (SPI) were investigated as well. The results indicated that the zeta potential of CKGM reached the maximum of 36.0 mV when the reaction temperature was 55 ℃, the reaction time was 1.5 h, the NaOH to KGM mass ratio was 2:1, and the HAT to KGM mass ratio was 2:1. Compared with native KGM, the solubility and emulsification ability of CKGM were significantly improved and their maximum values of 78.0% and 22.7% occurred in CKGMs of zeta potential 36.0 mV and 23.3 mV respectively. FTIR analysis confirmed that the -CN group was successfully introduced into KGM under the optimized conditions, and SEM observation revealed that the modification reduced the size and wrinkle the surface of the CKGM particles. CKGM could associate with SPI through electrostatic interaction and the greatest interaction occurred in CKGM with zeta potential 36.0 mV. Therefore, CKGM obtained by HAT modification has improved functional properties and can interact with oppositely charged polyelectrolyte, which is expected to gain wide applications in the food industry as a novel polyelectrolyte.
  • [1]
    李娜, 罗学刚. 魔芋葡甘聚糖理化性质及化学改性现状[J]. 食品工业科技,2005,35(10):188−191.
    [2]
    Smith F, Srivastava H C. Constitutional studies on the glucomannan of konjak flour[J]. Journal of the American Chemical Society,1959,81(7):1715−1718. doi: 10.1021/ja01516a048
    [3]
    Li Y, Huang Q. Protein–polysaccharide complexes for effective delivery of bioactive functional food ingredients[J]. Nanotechnology and Functional Foods,2015,21(9):224−246.
    [4]
    Song Y, Zheng Q. Ecomaterials based on food proteins and polysaccharides[J]. Polymer Reviews,2014,54(3):514−571. doi: 10.1080/15583724.2014.887097
    [5]
    余若海, 谢笔钧. 魔芋葡甘露聚糖—丙烯腈接枝共聚反应的研究[J]. 天然产物研究与开发,1990(2):46−50.
    [6]
    潘廷跳, 陈丽萍, 王博华, 等. 魔芋葡甘聚糖的改性研究进展[J]. 中国粮油学报,2012,27(6):124−128. doi: 10.3969/j.issn.1003-0174.2012.06.026
    [7]
    Tang R P, Du Y M, Yu G C. Blend films from konjac glucomannan and carboxylmethyl starch solutions and their water vapor barrier activity[J]. Polymeric Materials Science & Engineering,2003,19(4):231−244.
    [8]
    肖蕊, 张华江, 石云娇, 等. 羧甲基化处理对魔芋葡甘聚糖成膜性能影响的研究[J]. 食品工业科技,2015,36(15):58−66.
    [9]
    于树明, 杨建洲, 郑军政. 3-氯-2-羟丙基三甲基氯化铵的制备[J]. 化学世界,2012,33 (1):13−15.
    [10]
    Chen Z G, Zong M H, Li G J. Lipase-catalyzed acylation of konjac glucomannan in organic media[J]. Process Biochemistry,2006,41(7):1514−1520. doi: 10.1016/j.procbio.2006.02.013
    [11]
    Liu Z H, Jiao Y P, Zhang Z Y. Calcium-carboxymethyl chitosan hydrogel beads for protein drug delivery system[J]. Journal of Applied Polymer Science,2007,103(5):3164−3168. doi: 10.1002/app.24867
    [12]
    Yang B. Konjac glucomannan/polyvinyl alcohol nanofibers with enhanced skin healing properties by improving fibrinogen adsorption[J]. Materials Science & Engineering C,2020,110(7):214−225.
    [13]
    Jin W T, Song R Y, Xu W H, et al. Analysis of deacetylated konjac glucomannan and xanthan gum phase separation by film forming[J]. Food Hydrocolloids,2015,48(3):3464−3475.
    [14]
    李伟, 储长流, 邢剑, 等. 氧化-双重醚化改性淀粉/PVA的复合膜性能及其黏合性的研究[J]. 塑料工业,2019,47(1):117−125. doi: 10.3969/j.issn.1005-5770.2019.01.025
    [15]
    牛春梅, 吴文辉, 王著, 等. 阳离子魔芋葡甘聚糖的制备与表征[J]. 精细化工,2006,23(2):188−191. doi: 10.3321/j.issn:1003-5214.2006.02.022
    [16]
    杨晓鸿. 魔芋胶的交联化学改性研究[J]. 应用化工,2004,23(1):11−3.
    [17]
    张雪梅, 张玲, 高飞虎, 等. 魔芋葡甘露聚糖的结构及改性研究进展[J]. 南方农业,2014,8(16):41−42.
    [18]
    Lamprecht A, Schifer U F, Lehr A F. Characterization of microcapsules by confocal laser scanning microscopy: Structure[J]. Capsule Wall Composition and Encapsulation Rate,2000,23(7):233−241.
    [19]
    张朝辉, 徐珍珍, 李伟. 季铵阳离子醚化-十二烯基琥珀酸酯化淀粉浆料的黏附性能[J]. 纺织学报,2018,39(12):67−78.
    [20]
    汪超, 汪兰, 徐潇, 等. 魔芋葡甘聚糖的剪切流变特性研究[J]. 食品工业科技,2006(11):82−84. doi: 10.3969/j.issn.1002-0306.2006.11.024
    [21]
    Jun L. Efficient expression of human lysozyme through the increased gene dosage and co-expression of transcription factor hac1p in Pichia pastoris[J]. Current Microbiology,2020,77(5):3423−34433.
    [22]
    Janek T. Synergistic effect of hen egg white lysozyme and lysosomotropic surfactants on cell viability and membrane permeability[J]. Colloids and Surfaces B: Biointerfaces,2020,22(3):185−193.
    [23]
    Yixin W. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw[J]. Carbohydrate Polymers,2018,122(4):1825−1833.
    [24]
    陈国峰, 詹小卉, 李万峰. 魔芋葡甘聚糖醚化改性产物的流变学研究[J]. 食品工业科技,2006,21(7):73−81.
    [25]
    Turgeon S L, Schmitt C, Sanchez C. Protein–polysaccharide complexes and coacervates[J]. Current Opinion in Colloid & Interface Science,2007,12(4-5):166−178.
  • Related Articles

    [1]XU Lan-ying, JIN Li, XU Yin, ZHANG Yi-fan, LIU Si-si, LONG Tao. Adaptability Study of the Complexation and Color Rendering Systems on Determination of Total Flavonoids in Kunlun Coreopsis tinctoria by Spectrophotometry[J]. Science and Technology of Food Industry, 2020, 41(13): 247-252. DOI: 10.13386/j.issn1002-0306.2020.13.039
    [2]ZHU Mao-mao, WANG Gang, FENG Liang. Screen of AGEs Specific Binding Components in Milk Powder by Cell Membrane Immobilized Chromatography[J]. Science and Technology of Food Industry, 2018, 39(22): 257-261,269. DOI: 10.13386/j.issn1002-0306.2018.22.045
    [3]LI Lin, HUANG Ping-ping, LI Hua-min, WANG Ya-ping, NI Wei-wei. Effect of Different Extraction Methods on the Content of EPA and DHA in Fish Oil by Gas Chromatography[J]. Science and Technology of Food Industry, 2018, 39(15): 255-259. DOI: 10.13386/j.issn1002-0306.2018.15.045
    [4]YANG Yu-kun, SONG Jia, QIAO Shen, GUO Yuan-yuan, CHANG Yuan-yuan, WANG Xing-hua. Simultaneous determination of lactic acid and acetic acid in enzyme solution by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2018, 39(10): 246-250. DOI: 10.13386/j.issn1002-0306.2018.10.045
    [5]MAO Shan-qiao, YANG Feng, HUANG Yong-chun. Analyze the influence of hydrodynamic cavitation on sucrose by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2017, (01): 189-192. DOI: 10.13386/j.issn1002-0306.2017.01.028
    [6]HAN Ting-ting, CUI He, DUAN Xiao-juan, SONG Tian, JI Hong-wei, LI Hui-xin, CAI Feng, ZHU Qian-lin. Determination of four anions in alcohol and methanol by ion chromatography[J]. Science and Technology of Food Industry, 2016, (11): 284-288. DOI: 10.13386/j.issn1002-0306.2016.11.050
    [7]HU Xiao-ke, SUN Dan-hong, WEN Jun. Determination of aflatoxins B1, B2, G1, and G2 in foods by high performance liquid chromatography with pre-column derivation[J]. Science and Technology of Food Industry, 2015, (12): 49-52. DOI: 10.13386/j.issn1002-0306.2015.12.001
    [8]GUO Chun-hai, LIU Bao-sheng, MAO Pei-xin. Determination of residues of NVP in PVPP by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2015, (04): 76-78. DOI: 10.13386/j.issn1002-0306.2015.04.007
    [9]TANG Le-pan, ZHOU Yong-yan, YU Ai-nong. Comparison of UV spectrophotometry and HPLC in determination of ascorbic acid in Maillard reaction[J]. Science and Technology of Food Industry, 2014, (10): 79-82. DOI: 10.13386/j.issn1002-0306.2014.10.008
    [10]WU Yan-lei, LIN Xiao-yang, HU Jing, ZHAO Bo, ZHU Yong-hong. Fast determination of 18 synthetic colors in foods by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2013, (24): 49-52. DOI: 10.13386/j.issn1002-0306.2013.24.024
  • Cited by

    Periodical cited type(7)

    1. 孟新涛,许铭强,张婷,古丽米热·祖努纳,牛逍瞳,郭金宝,刘国庆,马燕. 基于GC-IMS技术分析新疆不同品种核桃油挥发性成分的差异. 中国油脂. 2025(03): 102-109 .
    2. 古丽米热·祖努纳,孟新涛,叶朵朵,付慧鑫,乔雪,乔雅洁,张婷. 不同储藏温度下鲜羊肉品质及风味的变化. 现代食品科技. 2025(03): 203-221 .
    3. 乔雪,乔雅洁,付慧鑫,孟新涛,张婷. 低压静电场辅助解冻对牛肉品质的影响. 食品工业科技. 2024(17): 48-56 . 本站查看
    4. 杨秉坤,剧柠,丁雨红,郭蓉,龚绵红. 沙棘酸奶挥发性风味物质的GC-IMS表征. 食品工业科技. 2023(13): 308-315 . 本站查看
    5. 张凡,张宇帆,苏心悦,徐文雅,安焕炯,马倩云,孙剑锋,王颉,王文秀. 基于顶空气相离子迁移谱的干腐病马铃薯挥发性成分分析. 食品科学. 2022(06): 317-323 .
    6. 王福成,米思,李劲松,王雨行,王向红. 基于气相色谱-离子迁移谱技术分析不同包装条件对黄瓜风味的影响. 食品工业科技. 2022(08): 296-304 . 本站查看
    7. 马姗,于文龙,焦英帅,刘卫华,王向红. 不同减菌处理对凡纳对虾贮藏期间品质的影响. 食品科技. 2022(03): 116-124 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (518) PDF downloads (26) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return