WU Wanqin, JIANG Feng, FAN Xiaolong, et al. Determination of Rosin in Meat and Their Products by High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(12): 279−286. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080257.
Citation: WU Wanqin, JIANG Feng, FAN Xiaolong, et al. Determination of Rosin in Meat and Their Products by High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(12): 279−286. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080257.

Determination of Rosin in Meat and Their Products by High Performance Liquid Chromatography-Tandem Mass Spectrometry

More Information
  • Received Date: August 25, 2020
  • Available Online: April 01, 2021
  • To establish a method for the determination of rosin in meat and their products by using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), the sample was extracted by ultrasonic instrument with acetonitrile. The extracts were then purified through solid-phase extraction (SPE) with C18 cartridges. The target of dehydroabietic acid was analyzed by HPLC-MS/MS, and quantified by internal standard method. The separation was performed on a Waters ACQUITY HSS T3 column (2.1 mm×100 mm, 1.8 μm) with isometric elution using 0.1%(v/v)formic acid aqueous solution-acetonitrile (30:70) as the mobile phase.The analysis of dehydroabietic acid was detected under electrospray positive ionization mode and the multiple reaction monitoring(MRM) mode. The dehydroabietic acid demonstrated good linearity in the range of 5~400 ng/mL, with the correlation coefficient values (r) being higher than 0.99. The limits of detection (LODs) and limits of quantification (LOQs) were found to be 80 and 200 μg/kg. The recoveries at three spiked levels (200, 400 and 2000 μg/kg) in blank matrix were in the range of 96.05%~104.17% with the relative standard deviations between 0.62%~3.68% (n=6). The analysis results of actual samples showed that the number of positive samples of dehydroabietic acid accounted for 16.67% of the total samples, and the residual content was in the range of 390.15~1850.03 μg/kg. The method was convenient, rapid, accurate and efficient. It could be employed for accurate determination of rosin in meat and their products.
  • [1]
    Kamaya Y, Tokita N, Suzuki K. Effects of dehydroabietic acid and abietic acid on survival, reproductionand growth of the crustacean Daphnia magna[J]. Ecotoxicology and environmental safety,2005,61(1):83−88. doi: 10.1016/j.ecoenv.2004.07.007
    [2]
    Maria V L, Correia A C, Santos M A. Anguilla anguilla L. genotoxic and liver biotransformation responses to abietic acid exposure[J]. Ecotoxicology and Environmental Safety,2004,58(2):202−210. doi: 10.1016/j.ecoenv.2003.12.005
    [3]
    Pandelides Z, Guchardi J, Holdway D. Dehydroabietic acid (DHAA) alters metabolic enzyme activity and the effects of 17β-estradiol in rainbow trout (Oncorhynchus mykiss)[J]. Ecotoxicology & Environmental Safety,2014,101(mar.):168−176.
    [4]
    Sunzel B, Soderberg T A, Reuterving C O, et al. Neutralizing effect of zinc oxide on dehydroabietic acid induced toxicity on humanpolymorphonuclear leukocytes[J]. Biological Trace Element Research,1991,31(1):257−266.
    [5]
    Toivola D M, Isomaa B. Effects of dehydroabietic acid on erythrocyte membrane[J]. Chemico-Biological Interactions,1991,79(1):65−78. doi: 10.1016/0009-2797(91)90053-A
    [6]
    Singh A K, Chandra R. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards[J]. Aquatic Toxicology,2019,211:202−216. doi: 10.1016/j.aquatox.2019.04.007
    [7]
    Botalova, O, Schwarzbauer, J. Geochemical characterization of organic pollutants in effluents discharged from various industrial sources to riverine systems[J]. Water Air Soil Pollut,2011,221:77−98. doi: 10.1007/s11270-011-0771-3
    [8]
    Severin I, Souton E, Dahbi L, et al. Use of bioassays to assess hazard of food contact material extracts: State of the art[J]. Food and Chemical Toxicology,2017,105:429−447. doi: 10.1016/j.fct.2017.04.046
    [9]
    中华人民共和国农业部. NY 467-2001畜禽屠宰卫生检疫规范[S]. 北京: 中国农业出版社, 2001.
    [10]
    全国人民代表大会常务委员会. 中华人民共和国食品安全法[S]. 北京: 中国法制出版社, 2018.
    [11]
    张苏珍, 卞欢, 刘芳, 等. 肉鸭经松香脱毛后表皮松香残留的薄层色谱检测研究[J]. 江西农业学报,2013,25(5):117−119. doi: 10.3969/j.issn.1001-8581.2013.05.035
    [12]
    李安琪, 王艳宏, 笔雪艳. 常用松香酸检查方法的对比分析及在三种中成药中的应用[J]. 中医药学报,2017,45(1):47−50. doi: 10.3969/j.issn.1002-2392.2017.01.013
    [13]
    魏福祥, 刘红梅, 赵小伟, 等. 红外光谱法测定松香酸、液体石蜡混合物[J]. 河北科技大学院学报,1996,17(3):34−37.
    [14]
    管鸿才. 一种真假食用松香的鉴别方法[J]. 质量与检测,2018(7):227, 256.
    [15]
    宋湛谦. 马尾松松香中混杂湿地松松香的检测方法[J]. 林产化学与工业,2005,25(增刊 1):137−138.
    [16]
    Peng G, Roberts J C. Solubility and toxicity of resin acids[J]. Water Research,2000,34(10):2779−2785. doi: 10.1016/S0043-1354(99)00406-6
    [17]
    刘伟华. 松香药材中松香酸的含量测定方法[J]. 医药论坛杂志,2012,32(24):46−47.
    [18]
    张苏珍, 耿志明, 王道营, 等. 固相萃取-高效液相色谱法检测肉鸭表皮组织中的松香酸[J]. 食品科学,2014,35(4):82−85. doi: 10.7506/spkx1002-6630-201404017
    [19]
    杜盼盼, 耿志明, 任双, 等. 高效液相色谱法检测猪蹄(耳)表皮中的脱氢松香酸[J]. 江苏农业科学,2016,44(11):309−312.
    [20]
    张苏珍, 耿志明, 王道营, 等. 肉鸭表皮组织中脱氢枞酸残留的SPE-HPLC检测方法[J]. 食品科学,2014,35(16):101−104. doi: 10.7506/spkx1002-6630-201416019
    [21]
    Kersten P J, Kopper B J, Raffa K F, et al. Rapid analysis of abietanes in conifers[J]. Journal of Chemical Ecology,2006,32(12):2679−2685. doi: 10.1007/s10886-006-9191-z
    [22]
    Nilsson U, Berglund N, Lindahl F, et al. SPE and HPLC/UV of resin acids in colophonium containing products[J]. Journal of Separation Science,2008,31(15):2784−2790. doi: 10.1002/jssc.200800210
    [23]
    Zhu Y Z, Zhang S Z, Geng Z M, et al. Analysis of abietic acid and dehydroabietic acid residues in raw ducks and cooked ducks[J]. Poultry Science,2014,93(10):2663−2667. doi: 10.3382/ps.2014-04045
    [24]
    Ozaki A, Yamaguchi Y, Fujita T, et al. Safety assessment of paper and board foodpackaging: Chemical analysis and genotoxicity of possible contaminants in packaging[J]. Food Additives and Contaminants,2005,22(10):1053−1060. doi: 10.1080/02652030500090885
    [25]
    Mitani K, Fujioka M, Uchida A, et al. Analysis of abietic acid and dehydroabietic acid in food samples by in- tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry[J]. Journal of Chromatography A,2007,1146(1):61. doi: 10.1016/j.chroma.2007.01.118
    [26]
    汤祝华, 余欢欢, 刘霜霜, 等. UPLC-MS/MS法检测鸭表皮中松香酸残留量[J]. 肉类工业,2017,35(16):101−104.
    [27]
    张妤琳, 曹玲, 谭力, 等. 液质联用技术用于沉香中非法掺入含松香酸类物质的检测[J]. 中成药,2011,33(5):844−847. doi: 10.3969/j.issn.1001-1528.2011.05.032
    [28]
    张艳萍, 黄婉锋, 郭智聪, 等. UPLC-MS/MS法同时测定含沉香中成药中沉香四醇和非法添加物质松香酸的含量[J]. 轻工科技,2016(11):29−32.
    [29]
    崔相勇, 穆姣姣, 周长民, 等. 高效液相色谱-串联质谱法测定花椒粉中的松香酸[J]. 中国调味品,2017,42(3):127−129. doi: 10.3969/j.issn.1000-9973.2017.03.030
    [30]
    Liu J J, Liu M G, Li X, et al. Development of ultrasonic-assisted closed in-syringe extraction and derivatization for the determination of labile abietic acid and dehydroabietic acid in cosmetics[J]. Journal of Chromatography A,2014,1371:20−29. doi: 10.1016/j.chroma.2014.10.059
    [31]
    McMartin D W, Peru K M, Headley J V, et al. Evaluation of liquid chromatography-negative ion electrospray mass spectrometry for the determination of selected resin acids in river water[J]. Journal of Chromatography A,2002,952(1):289−293.
  • Related Articles

    [1]ZHU Yingying, LUAN Qian, ZENG Fanzheng, WANG Xiaona, YUAN Yongjun, CAI Luyun. Progress on the Anti-inflammatory, Anti-cancer Activities and Mechanism of Action of Fucoxanthin[J]. Science and Technology of Food Industry, 2024, 45(11): 341-350. DOI: 10.13386/j.issn1002-0306.2023040267
    [2]CHEN Xiaole, LI Wenwen, CHEN Qiang, ZHANG Chaojie, LI Lingyu, ZHENG Zhenjia. Structure Analysis and Anti-inflammatory Activity Evaluation of Neutral Polysaccharides from Arctium lappa L.[J]. Science and Technology of Food Industry, 2023, 44(12): 45-54. DOI: 10.13386/j.issn1002-0306.2022080225
    [3]LIU Chuang, WU Xianhua, LIU Jing, ZHANG Rentang. Research Progress on Anti-inflammatory Activity Mechanism and Structure-activity Relationship of Plant Polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(11): 415-425. DOI: 10.13386/j.issn1002-0306.2021060210
    [4]SHI Xiaocui, CAO Donghua, LI Jia, LU Jianmei, SONG Xingzhen, LUO Mingchu, XIAO Chunfen, XU Youkai. Chemical Composition, Antioxidant and Anti-inflammatory Activities of Essential Oils of Three Cymbopogon Plants[J]. Science and Technology of Food Industry, 2021, 42(21): 83-90. DOI: 10.13386/j.issn1002-0306.2021030051
    [5]Feng ZHOU, Yangli YAN, Kai HUANG, Kanghong ZHAO, Hongqi XIE. Evaluation of in Vitro Anti-inflammatory and Antioxidant Activities and Analysis of Chemical Components in Different Extraction Parts of Lonicerae Flos[J]. Science and Technology of Food Industry, 2021, 42(8): 81-87. DOI: 10.13386/j.issn1002-0306.2020080208
    [6]LIU Yu-hui, WANG Rui-fang, AN Xiao-ping, WANG Yuan, LIU Na, YANG Yan-ping, QI Jing-wei. Study on Microbial Fermentation Technology of Corn Cob Polysaccharide and Its Monosaccharide Composition and Prebiotic Activity in Vitro[J]. Science and Technology of Food Industry, 2020, 41(5): 107-112. DOI: 10.13386/j.issn1002-0306.2020.05.018
    [7]YU Jia, ZHANG Rui-hua, WANG Sheng, XU Wen-qi, WANG Yu-lan. Comparative Studies on the Anti-Inflammatory and Uvioresistant Activity of Phycocyanin and Phycoerythrin in Nostoc sphaeroides Kutzing in Vitro[J]. Science and Technology of Food Industry, 2019, 40(17): 299-303. DOI: 10.13386/j.issn1002-0306.2019.17.049
    [8]ZHANG Tong-tong, SUI Xiao-chen, XIA Yong-mei, Khaing zar myint, CHEN Jun-ming, LIU Xiang. Anti-inflammatory and Antioxidant Activities of Steviol Glycosides[J]. Science and Technology of Food Industry, 2019, 40(8): 260-265,271. DOI: 10.13386/j.issn1002-0306.2019.08.044
    [9]ZHANG Yan-jun, LIAO Ri-quan, ZHENG Yun-yun, YIN Yan-zhen, HUANG Qiu-yuan, XU Guo-xin, HUANG En-jiao, ZHU Jing-qing, WU Cai-li. Optimization of Extraction Technology on Antioxidants in Vitro from Pitaya Flower and Evaluation of Anti-inflammatory Activities[J]. Science and Technology of Food Industry, 2018, 39(18): 137-142. DOI: 10.13386/j.issn1002-0306.2018.18.025
    [10]ZUO Li-min, LU Yu, JIANG Shi-ping, YAN Yong-qiu, TONG Ying-peng, CHEN Su-hong, WANG Ping. Study on monosaccharide compositions analysis and antioxidant activity in vitro of polysaccharides from Noni[J]. Science and Technology of Food Industry, 2017, (17): 56-60. DOI: 10.13386/j.issn1002-0306.2017.17.011
  • Cited by

    Periodical cited type(2)

    1. 赵小亮,王宝忠,康兴兴,赵雪,王海利,吴雪莹,牟翮,张晶,张伟杰. 羧甲基壳聚糖/黄芪多糖水凝胶的制备及性能表征. 时珍国医国药. 2024(02): 344-348 .
    2. 赵小亮,王宝忠,康兴兴,向紫骏,漆凯丽,张晶,张伟杰. 藏柴胡多糖提取工艺优化、结构表征及其药理活性研究. 中成药. 2024(06): 1985-1990 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (205) PDF downloads (19) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return