DU Rong, YU Ruining, YUAN Hao, et al. Research Progress on Detection Methods of Contaminants in Food Based on Fluorescence Immunoassay[J]. Science and Technology of Food Industry, 2021, 42(16): 388−396. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080149.
Citation: DU Rong, YU Ruining, YUAN Hao, et al. Research Progress on Detection Methods of Contaminants in Food Based on Fluorescence Immunoassay[J]. Science and Technology of Food Industry, 2021, 42(16): 388−396. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080149.

Research Progress on Detection Methods of Contaminants in Food Based on Fluorescence Immunoassay

More Information
  • Received Date: August 16, 2020
  • Available Online: June 06, 2021
  • In recent years, there’s a trend that the maximum limit of food contaminant is decreasing. Therefore, the development of more rapid and sensitive methods for the detection of food contaminants is a great requirement. Fluorescence immunoassay is one of the current fastest developing detection methods, which has been widely applied in the detection of various food contaminants and other fields. It has the advantage of high sensitivity, fast detection speed, simple operation, satisfactory accuracy, etc. This review offers an overview of fluorescence-immunoassay-based methods for the detection of contaminants in food based on different fluorescent labeling materials. Three types of common fluorescent labeling materials (including ordinary fluorescent microspheres, quantum dots and time-resolved fluorescent materials) and three types of new fluorescent labeling materials (containing up-conversion luminescence nanomaterials, magnetic fluorescent nanomaterials and fluorescent proteins) are introduced with the comparison in their optical features and analytical performance. In additon, the detection methods of contaminants in food based on fluorescence immunoassay (FIA) are introduced, the latest progress of fluorescence immunoassay in food contaminants detection is also summarized.
  • [1]
    常世明. 仪器分析法在食品中化学污染物检测方面的应用[J]. 食品安全导刊,2019(27):89.
    [2]
    张春霞. 仪器分析法在食品中化学污染物检测方面的应用[J]. 食品安全质量检测学报,2018,9(11):2762−2766. doi: 10.3969/j.issn.2095-0381.2018.11.036
    [3]
    AlFaris Nora Abdullah, Wabaidur Saikh Mohammad, Alothman Zeid Abdullah, et al. Fast and efficient immunoaffinity column cleanup and liquid chromatography-tandem mass spectrometry method for the quantitative analysis of aflatoxins in baby food and feeds[J]. Journal of Separation Science,2020,43(11):2079−2087. doi: 10.1002/jssc.201901307
    [4]
    李青, 蓝梦哲, 宋光林, 等. 液相色谱-串联质谱法测定焙烤食品中多种防腐剂含量[J]. 食品与发酵工业,2020,46(11):283−287.
    [5]
    陈克云, 张红霞, 王艳丽, 等. 气相色谱-质谱法测定食品中的3-乙酰基-2, 5-二甲基噻吩[J]. 中国食品添加剂,2020,31(5):101−106.
    [6]
    张国民, 温素素. 气相色谱-质谱法测定食品中17种邻苯二甲酸酯类塑化剂的含量[J]. 理化检验(化学分册),2020,56(1):46−54.
    [7]
    Chen Y S, Yang Y L, Xie Q, et al. Homogeneous immunoassay for alpha-fetoprotein based on the quenching of the fluorescence of quantum dots by antibody labelled with complexed copper ion tags[J]. Microchimica Acta,2020,187(4):1−7.
    [8]
    Min Min Than, Jetsada Ruangsuriya, Chairat Uthaipibull, et al. Expression of fluorescent tagged recombinant erythroferrone protein[J]. Asian Pacific Journal of Tropical Biomedicine,2018,8(7):360−364. doi: 10.4103/2221-1691.237079
    [9]
    Ding Y, Chen H, Yang Q, et al. A fluorescence polarization immunoassay for detection of thiacloprid in environmental and agricultural samples[J]. RSC Advances,2019,9(63):36825−36830. doi: 10.1039/C9RA04776J
    [10]
    胥传来, 王利兵. 食品免疫化学与分析[M]. 北京: 科学出版社, 2009: 86−88.
    [11]
    李晓婷. 荧光免疫试纸条定量检测仪的设计与开发[D]. 杭州: 浙江大学, 2014.
    [12]
    任姿静, 张迎红, 吕鑫, 等. 竞争免疫荧光分析法高灵敏、高选择性检测赭曲霉毒素[J]. 聊城大学学报(自然科学版),2019,32(6):66−70.
    [13]
    汤轶伟, 张宏, 崔芷萌, 等. 荧光标记免疫层析技术在食品安全检测中的应用研究进展[J]. 食品工业科技,2018,39(2):314−319.
    [14]
    张勇. 猪尿基质对胶体金免疫层析法和时间分辨荧光微球免疫层析法的影响[D]. 南昌: 南昌大学, 2018.
    [15]
    李梅, 刘颖, 尹静. 荧光微球在生物检测中的应用研究进展[J]. 解放军预防医学杂志,2014(2):176−177.
    [16]
    程敏, 张凯义, 谭丽容, 等. 基于荧光微球的免疫层析法快速检测黄曲霉毒素B1[J]. 食品工业科技,2018,39(23):272−275, 281.
    [17]
    Zhang H Y, Luo J X, et al. Portable multiplex immunochromatographic assay for quantitation of two typical algae toxins based on dual-color fluorescence microspheres[J]. Journal of Agricultural and Food Chemistry,2019,67(21):6041−6047. doi: 10.1021/acs.jafc.9b00011
    [18]
    Zhou J W, Zou X M, Song S H, et al. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues[J]. Journal of Agricultural and Food Chemistry,2018,66(6):1307−1319. doi: 10.1021/acs.jafc.7b05119
    [19]
    韩玉凤. 基于量子点标记免疫分析技术建立火锅底料中吗啡检测方法的研究[D]. 镇江: 江苏大学, 2017.
    [20]
    尹致丹. 量子点荧光免疫法测定牛奶中氨苄青霉素残留的研究[D]. 北京: 中国农业科学院, 2019.
    [21]
    于彩霞. 量子点荧光免疫技术在食品沙门氏菌污染检测中的应用[D]. 南京: 南京农业大学, 2018.
    [22]
    Duan H, Li Y, Shao Y N, et al. Multicolor quantum dot nanobeads for simultaneous multiplex immunochromatographic detection of mycotoxins in maize[J]. Sensors and Actuators B-Chemical,2019,291(4):411−417.
    [23]
    廖芸. 基于荧光量子点的有机磷农药多残留免疫分析方法研究[D]. 海口: 海南大学, 2019.
    [24]
    邵艳娜. 荧光免疫层析试纸条定量检测肌酸激酶同工酶和真菌毒素[D]. 南昌: 南昌大学, 2019.
    [25]
    Lu T Y, Zhan S N, Zhou Y F, et al. Fluorescence ELISA based on CAT-regulated fluorescence quenching of CdTe QDs for sensitive detection of FB1[J]. Analytical Methods,2018,10(48):5797−5802. doi: 10.1039/C8AY02065E
    [26]
    Zhou Y F, Xiong S C, Zhang K K, et al. Quantum bead-based fluorescence-linked immunosorbent assay for ultrasensitive detection of aflatoxin M1 in pasteurized milk, yogurt, and milk powder[J]. Journal of Dairy Science,2019,102(5):3985−3993. doi: 10.3168/jds.2018-16109
    [27]
    徐威. 量子点荧光共振能量转移体系的建立及其均相免疫检测黄曲霉毒素B1的研究[D]. 南昌: 南昌大学, 2015.
    [28]
    Willard D M, Carillo L L, Jung J, et al. CdSeZnS quantum dots as resonance energy transfer donors in a model protein binding assay[J]. Nano Letters,2001,1(9):469−474. doi: 10.1021/nl015565n
    [29]
    He Y S, Pan C G, Cao H X, et al. Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid[J]. Sensors and Actuators B Chemical,2018,265:371−377. doi: 10.1016/j.snb.2018.03.080
    [30]
    解肖鹏, 张雷. 时间分辨荧光免疫分析技术的研究进展[J]. 食品与药品,2012,14(5):203−206. doi: 10.3969/j.issn.1672-979X.2012.05.015
    [31]
    辛甜甜, 郭松林, 王艺磊, 等. 时间分辨荧光免疫分析的新进展[J]. 理化检验(化学分册),2017,53(1):112−118.
    [32]
    Uehara M, Lapcik O, Hampl R, et al. Rapid analysis of phytoestrogens in human urine by time-resolved fluoroimmunoassay[J]. Steriod Biochem Mol Biol,2000,72(5):273−282. doi: 10.1016/S0960-0760(00)00045-5
    [33]
    朱建国. 粮油中真菌毒素和农药残留多组分检测技术研究[D]. 北京: 中国农业科学院, 2016.
    [34]
    Bacigalupo M, Meroni G, Secundo F, et. al. Antibodies conjugated with new highly luminescent Eu3+ and Tb3+ chelates as markers for time resolved immunoassays. Application to simultaneous determination of clenbuterol and free cortisol in horse urine[J]. Talanta,2010,80(2):954−958.
    [35]
    Sheng E Z, Shi H Y, Zhou L L, et al. Dual-labeled time-resolved fluoroimmunoassay for simultaneous detection of clothianidin and diniconazole in agricultural samples[J]. Food Chemistry,2016,192:525−530. doi: 10.1016/j.foodchem.2015.07.023
    [36]
    Zhou B, Zhang K, Zhang J, et al. A novel and sensitive method for the detection of enrofloxacin in food using time-resolved fluoroimmunoassay[J]. Toxicology Mechanisms & Methods,2013,23(5):323−328.
    [37]
    Tang S, Moayeri M, Chen Z, et al. Detection of anthrax toxin by an ultrasensitive immunoassay using europium nanoparticles[J]. Clinical & Vaccine Immunology,2009,16(3):408−413.
    [38]
    吕梦雨, 牛晓君, 彭志芳, 等. 时间分辨荧光免疫分析在环境中的应用进展[J]. 环境与技术,2019,42(8):95−102.
    [39]
    Hepojoki S, Hepojoki J, Hedman K, et al. Rapid homogeneous immunoassay based on time-resolved frster resonance energy transfer for serodiagnosis of acute hantavirus infection[J]. Journal of Clinical Microbiology,2015,53(2):636−640. doi: 10.1128/JCM.02994-14
    [40]
    杨伟强, 张桂云, 林华, 等. 基于碳点-铕的比率荧光探针可视化检测四环素[J]. 高等学校化学学报,2019,16(11):1241−1244.
    [41]
    陈婷婷, 杜民, 陈建国, 等. 上转换发光材料应用进展及其检测系统的研究[J]. 中国医疗设备,2019,34(12):151−155. doi: 10.3969/j.issn.1674-1633.2019.12.038
    [42]
    梁紫璐, 毕水莲, 罗永文, 等. 上转换发光纳米粒子表面修饰及应用研究进展[J]. 食品研究与开发,2017,38(19):216−220. doi: 10.3969/j.issn.1005-6521.2017.19.047
    [43]
    Sheng W, Shi Y J, Ma J, et al. Highly sensitive atrazine fluorescence immunoassay by using magnetic separation and upconversion nanoparticles as labels[J]. Microchimica Acta,2019,186(8):564. doi: 10.1007/s00604-019-3667-3
    [44]
    张莹莹, 钱志娟, 谢正军, 等. 基于上转换荧光纳米粒子和金纳米粒子间荧光共振能量转移的高灵敏赭曲霉毒素A检测方法研究[J]. 分析测试学报,2018(1):31−38. doi: 10.3969/j.issn.1004-4957.2018.01.005
    [45]
    刘丽红. 真菌毒素快速检测适配体试纸条的研究[D]. 无锡: 江南大学, 2018.
    [46]
    Wang M H, Liu F Q, Luo P W, et al. Upconversion fluorescence immunoassay for imidaclothiz by magnetic nanoparticle separation[J]. Analytical and Bioanalytical Chemistry,2017,409(29):6885−6892. doi: 10.1007/s00216-017-0653-7
    [47]
    Zhang B, Li H H, Pan W X, et al. Dual-color upconversion nanoparticles (UCNPs)-based fluorescent immunoassay probes for sensitive sensing foodborne pathogens[J]. Food Analytical Methods,2017,10(6):2036−2045. doi: 10.1007/s12161-016-0758-1
    [48]
    Wang S, Duan W X, Shi Y J, et al. Sensitive detection of bisphenol A in drinking water and river water using an upconversion nanoparticles-based fluorescence immunoassay in combination with magnetic separation(Article)[J]. Analytical Methods,2018,10(44):5313−5320. doi: 10.1039/C8AY01260A
    [49]
    李亚茹, 周冬根, 夏杏洲, 等. 免疫磁珠分离-实时荧光PCR快速检测虾中沙门氏菌[J]. 现代食品科技,2017,33(11):235−242.
    [50]
    黄震, 罗梅霞, 汪泽祥, 等. 免疫磁分离法高效富集牛奶中大肠杆菌O157:H7[J]. 食品安全质量检测学报,2019,10(14):4492−4497. doi: 10.3969/j.issn.2095-0381.2019.14.009
    [51]
    王甜甜, 李亚鹏, 张鹏飞, 等. 磁性荧光纳米材料的合成[J]. 广东化工,2020,47(11):8−11. doi: 10.3969/j.issn.1007-1865.2020.11.005
    [52]
    Huang Z, Xiong Z J, Chen Y, et al. Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine[J]. Journal of Agricultural and Food Chemistry,2019,67(10):3028−3036. doi: 10.1021/acs.jafc.8b06449
    [53]
    付绒, 杨春林, 胡燕燕, 等. 核壳型磁性荧光纳米复合材料的制备及其应用研究进展[J]. 化工进展,2019,38(8):3742−3755.
    [54]
    Huang Z, Peng J, Han J J, et al. A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7[J]. Food Chemistry,2019,276:333−341. doi: 10.1016/j.foodchem.2018.09.164
    [55]
    杨晓玫, 姚拓, 师尚礼. 荧光蛋白标记研究进展[J]. 草业学报,2019,28(10):209−216. doi: 10.11686/cyxb2019020
    [56]
    王盛, 钟伏弟, 吴祖建, 等. R-藻红蛋白免疫荧光探针标记方法的探索[J]. 福建农林大学学报(自然科学版),2004,33(2):206−209.
    [57]
    Riikka P, Francisco A-T, Sergio C, et al. Homogeneous quenching immunoassay for fumonisin B1 based on gold nanoparticles and an epitope-mimicking yellow fluorescent protein[J]. ACS nano,2018,12(11):11333−11342. doi: 10.1021/acsnano.8b06094
    [58]
    吴萍, 顾铭, 戚艺华, 等. 桥式生物素-亲合素标记提高藻胆蛋白免疫荧光法灵敏度的研究[J]. 细胞与分子免疫学杂志,2001,17(4):321−323. doi: 10.3321/j.issn:1007-8738.2001.04.008
  • Related Articles

    [1]XU Liyi, YU Hongda, JIANG Dongyi, ZHENG Jingshao, LIN Jiawei, HUANG Wei. Effects of the Mixing Ratio of Purple Rice and Indica Rice on the Properties of Mixed Powder and the Quality of Purple Rice Noodles[J]. Science and Technology of Food Industry, 2022, 43(17): 114-121. DOI: 10.13386/j.issn1002-0306.2021120267
    [2]ZHU Yuting, HU Zhihe, HUO Chenchen, MI Chunying. Effect of Adding Compound Sugar on the Quality of Solidified Yogurt[J]. Science and Technology of Food Industry, 2022, 43(12): 268-282. DOI: 10.13386/j.issn1002-0306.2021090082
    [3]TIAN Li, ZHAO Yuhui, ZHANG Li, SONG Yuxia. Formulation Optimization and Protein Nutrition Evaluation of Agriophyllum sargassum Compound Meal Replacement Powder[J]. Science and Technology of Food Industry, 2022, 43(1): 213-219. DOI: 10.13386/j.issn1002-0306.2021040196
    [4]ZHONG Yadong, PAN Meng, XU Dechang, SUN Yonggan, HU Jielun, NIE Shaoping, ZHONG Hongguang, YAO Meixiang, XIE Mingyong. Ameliorative Effect of Poria cocos-Yam Riched Rice Paste and Hericium erinaceus Biscuit on Rats with Functional Dyspepsia[J]. Science and Technology of Food Industry, 2021, 42(22): 355-362. DOI: 10.13386/j.issn1002-0306.2021020065
    [5]LIU Ming, YUE Chong-hui, ZHU Yun-heng, TAN Bin, MENG Ning, LIU Yan-xiang, ZAN Xue-mei. Effect of the Ratio of Amylose to Amylopectin in Brown Rice Compound Powder on the Quality and Structure of Extruded Instant Porridge[J]. Science and Technology of Food Industry, 2020, 41(1): 73-78. DOI: 10.13386/j.issn1002-0306.2020.01.013
    [6]ZHANG Wen-ling-zi, ZHANG Ze-sheng, LIU Ya-ping, WANG Meng, GAO Wen-ge. Hypolipidemic Activity of Hawthorn,Sterol Ester and Functional Red Yeast Rice Compound[J]. Science and Technology of Food Industry, 2019, 40(20): 316-324. DOI: 10.13386/j.issn1002-0306.2019.20.051
    [7]AN Ding, ZHANG Qiu-jun, NI Hui, JIANG Ze-dong, XIAO An-feng. Study on Compound of Agar to Exploit Yoghourt Stabilizer[J]. Science and Technology of Food Industry, 2018, 39(15): 219-222,233. DOI: 10.13386/j.issn1002-0306.2018.15.039
    [8]CHEN Zi-han, JIANG Ji-hong, JU Xiu-yun, LIU Jin-juan. The bioactive compounds and their antioxidant activity of kinds of edible rice[J]. Science and Technology of Food Industry, 2018, 39(3): 71-75,81. DOI: 10.13386/j.issn1002-0306.2018.03.015
    [9]YAN Na, GAO Xue-yan, WANG Ru-hua, WANG Fang, HUA Ze-tian. Research progress in polyphenol compounds in rice[J]. Science and Technology of Food Industry, 2015, (19): 374-378. DOI: 10.13386/j.issn1002-0306.2015.19.068
    [10]Screening of phytopathogenic fungi by minor ginsenoside compound K production and optimization of biotransformation conditions[J]. Science and Technology of Food Industry, 2013, (11): 160-164. DOI: 10.13386/j.issn1002-0306.2013.11.020

Catalog

    Article Metrics

    Article views (431) PDF downloads (39) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return