DONG Juncen, GAO Sunan, CHEN Jianchu. Application Progress and Prospect of Light-emitting Diode Light Technology in Food Preservation[J]. Science and Technology of Food Industry, 2021, 42(16): 374−380. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080116.
Citation: DONG Juncen, GAO Sunan, CHEN Jianchu. Application Progress and Prospect of Light-emitting Diode Light Technology in Food Preservation[J]. Science and Technology of Food Industry, 2021, 42(16): 374−380. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080116.

Application Progress and Prospect of Light-emitting Diode Light Technology in Food Preservation

More Information
  • Received Date: August 12, 2020
  • Available Online: June 18, 2021
  • As a kind of energy-saving and environmentally friendly lighting equipment, light-emitting diodes (LED) have the characteristics of non-toxic materials, low glare, and safe touch. With the improvement of LED performance and the reduction of using cost, in recent years, scientists have begun to apply it in the field of food preservation. Research shows that LED is beneficial to food storage and preservation in many aspects. This article summarizes the characteristics and research progress of LED technology, the preservation mechanism of LED in food preservation, the problems existing in the application of this technology, and finally puts forward the application prospect of LED food preservation technology in the future to provide references for relevant researchers.
  • [1]
    Maclean M, Macgregor S J, Anderson J G, et al. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array[J]. Applied and Environmental Microbiology,2009,75(7):1932−7. doi: 10.1128/AEM.01892-08
    [2]
    Bhavya M L, Umesh Hebbar H. Pulsed light processing of foods for microbial safety[J]. Food Quality and Safety,2017,1(3):187−202. doi: 10.1093/fqsafe/fyx017
    [3]
    D'souza C, Yuk H-G, Khoo G H, et al. Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety[J]. Comprehensive Reviews in Food Science and Food Safety,2015,14(6):719−40. doi: 10.1111/1541-4337.12155
    [4]
    王美霞, 刘斌, 关文强, 等. Led红蓝光照射强度对采后西兰花保鲜品质的影响[J]. 食品科技,2017,42(6):42−46.
    [5]
    Kim M J, Adeline Ng B X, Zwe Y H, et al. Photodynamic inactivation of Salmonella enterica enteritidis by 405±5 nm light-emitting diode and its application to control Salmonellosis on cooked chicken[J]. Food Control,2017:305−315.
    [6]
    Josewin S W, Kim M J, Yuk H G. Inactivation of Listeria monocytogenes and Salmonella spp. on cantaloupe rinds by blue light emitting diodes (LEDs)[J]. Food Microbiology,2018,76(DEC.):219−25.
    [7]
    Srimagal A, Ramesh T, Sahu J K. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk[J]. LWT-Food Science and Technology,2016,71:378−85. doi: 10.1016/j.lwt.2016.04.028
    [8]
    Ghate V, Kumar A, Kim M J, et al. Effect of 460 nm light emitting diode illumination on survival of Salmonella spp. on fresh-cut pineapples at different irradiances and temperatures[J]. Journal of Food Engineering,2017,196(Mar):130−8.
    [9]
    詹丽娟, 李颖. 光照技术在果蔬采后贮藏保鲜中的应用[J]. 食品与发酵工业,2016,42(8):268−72.
    [10]
    范林林, 左进华, 高丽朴. Led应用于蔬菜保鲜领域的研究进展[J]. 安徽农业科学,2017,45(8):89−92, 97. doi: 10.3969/j.issn.0517-6611.2017.08.031
    [11]
    靖林丹. 钼钒酸盐荧光粉的合成及发光性能研究[D]. 广州: 广东工业大学, 2016.
    [12]
    Robert C, Morrow. Led lighting in horticulture[J]. HortScience: A Publication of the American Society for Horticultural Science,2008, 43(7):1947−1950.
    [13]
    Tewolde F T, Lu N, Shiina K, et al. Nighttime supplemental led inter-lighting improves growth and yield of single-truss tomatoes by enhancing photosynthesis in both winter and summer[J]. Frontiers in Plant Science,2016,7(113).
    [14]
    Wozniak A, Grinholc M. Combined antimicrobial activity of photodynamic inactivation and antimicrobials–state of the art[J]. Frontiers in Microbiology,2018,9(930).
    [15]
    Luksiene Z, Zukauskas A. Prospects of photosensitization in control of pathogenic and harmful micro-organisms[J]. Journal of Applied Microbiology,2010,107(5):1415−1424.
    [16]
    Kumar A, Ghate V, Kim M-J, et al. Kinetics of bacterial inactivation by 405 nm and 520 nm light emitting diodes and the role of endogenous coproporphyrin on bacterial susceptibility[J]. Journal of Photochemistry and Photobiology B: Biology,2015,149:37−44. doi: 10.1016/j.jphotobiol.2015.05.005
    [17]
    Kumar A, Ghate V, Kim M J, et al. Antibacterial efficacy of 405, 460 and 520 nm light emitting diodes on Lactobacillus plantarum, Staphylococcus aureus and Vibrio parahaemolyticus[J]. Journal of Applied Microbiology,2016,120(1):49−56. doi: 10.1111/jam.12975
    [18]
    Wang Y, Wang Y, Wang Y, et al. Antimicrobial blue light inactivation of pathogenic microbes: State of the art[J]. Drug Resistance Updates,2017,33-35:1−22. doi: 10.1016/j.drup.2017.10.002
    [19]
    Kim M-J, Bang W S, Yuk H-G. 405±5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration[J]. Food Microbiology,2017,62:124−132. doi: 10.1016/j.fm.2016.10.002
    [20]
    Kim M-J, Tang C H, Bang W S, et al. Antibacterial effect of 405±5 nm light emitting diode illumination against Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality[J]. International Journal of Food Microbiology,2017,244:82−89. doi: 10.1016/j.ijfoodmicro.2016.12.023
    [21]
    Li X, Kim M-J, Bang W-S, et al. Anti-biofilm effect of 405 nm LEDs against Listeria monocytogenes in simulated ready-to-eat fresh salmon storage conditions[J]. Food Control,2018,84:513−521. doi: 10.1016/j.foodcont.2017.09.006
    [22]
    Hyun J-E, Lee S-Y. Antibacterial effect and mechanisms of action of 460~470 nm light-emitting diode against Listeria monocytogenes and Pseudomonas fluorescens on the surface of packaged sliced cheese[J]. Food Microbiology,2020,86(Apr.):33−43.
    [23]
    Mana T, Takuji N, Toshiaki K, et al. Prooxidative potential of photo-irradiated aqueous extracts of grape pomace, a recyclable resource from winemaking process[J]. Plos One,2016,11(6):e0158197.
    [24]
    Liang J Y, Yuann J M P, Cheng C W, et al. Blue light induced free radicals from riboflavin on E. coli DNA damage[J]. Journal of Photochemistry & Photobiology B Biology,2013,119:60−64.
    [25]
    张娜, 阎瑞香, 关文强, 等. Led单色红光对西兰花采后黄化抑制效果的影响[J]. 光谱学与光谱分析,2016,36(4):955−959.
    [26]
    Olarte C, Sanz S, Federico Echávarri J, et al. Effect of plastic permeability and exposure to light during storage on the quality of minimally processed Broccoli and cauliflower[J]. LWT-Food Science and Technology,2009,42(1):402−411. doi: 10.1016/j.lwt.2008.07.001
    [27]
    Ma G, Zhang L, Setiawan C K, et al. Effect of red and blue led light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest Broccoli[J]. Postharvest Biology and Technology,2014,94:97−103. doi: 10.1016/j.postharvbio.2014.03.010
    [28]
    Dhakal R, Baek K H. Metabolic alternation in the accumulation of free amino acids and γ-aminobutyric acid in postharvest mature green tomatoes following irradiation with blue light[J]. Horticulture Environment & Biotechnology,2014,55(1):36−41.
    [29]
    Dhakal R, Baek K H. Short period irradiation of single blue wavelength light extends the storage period of mature green tomatoes[J]. Postharvest Biology & Technology,2014,90:73−77.
    [30]
    Kanazawa K, Hashimoto T, Yoshida S, et al. Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables[J]. Journal of Agricultural and Food Chemistry,2012,60(17):4359−4368. doi: 10.1021/jf300107s
    [31]
    Huang J Y, Xu F, Zhou W. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit[J]. Journal of the Science of Food and Agriculture,2018,98(14):5486−5493.
    [32]
    Darko E, Heydarizadeh P, Schoefs B, et al. Photosynthesis under artificial light: The shift in primary and secondary metabolism[J]. Philosophical Transactions of the Royal Society of London,2014,369(1640):20130243. doi: 10.1098/rstb.2013.0243
    [33]
    Lourenço S C, Moldão-Martins M, Alves V D. Antioxidants of natural plant origins: From sources to food industry applications[J]. Molecules,2019,24(22):4132. doi: 10.3390/molecules24224132
    [34]
    Ma G, Zhang L, Kato M, et al. Effect of blue and red led light irradiation on β-cryptoxanthin accumulation in the flavedo of citrus fruits[J]. Journal of Agricultural & Food Chemistry,2012,60(1):197−201.
    [35]
    Kim B S, Lee H O, Kim J Y, et al. An effect of light emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry[J]. Horticulture Environment & Biotechnology,2011,52(1):35−39.
    [36]
    Loi M, Liuzzi V C, Fanelli F, et al. Effect of different light-emitting diode (LED) irradiation on the shelf life and phytonutrient content of broccoli (Brassica oleracea L. var. italica)[J]. Food Chemistry,2019,283(JUN.15):206−214.
    [37]
    Routray W, Orsat V, Lefsrud M. Effect of postharvest led application on phenolic and antioxidant components of blueberry leaves[J]. Chem Engineering,2018,2(4):56.
    [38]
    Kokalj D, Zlati E, Cigi B, et al. Postharvest light-emitting diode irradiation of sweet cherries (Prunus avium L.) promotes accumulation of anthocyanins[J]. Postharvest Biology and Technology,2019,148:192−199. doi: 10.1016/j.postharvbio.2018.11.011
    [39]
    Hao X, Naznin M T, Gravel V, et al. Different ratios of red and blue led light effects on coriander productivity and antioxidant properties[J]. Acta Horticulturae,2016,1134.
    [40]
    Lee M K, Arasu M V, Park S, et al. Led lights enhance metabolites and antioxidants in Chinese cabbage and kale[J]. Brazilian Archives of Biology and Technology,2016:59.
    [41]
    Alrifai Oday, Hao Xiuming, Marcone Massimo F, et al. Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables[J]. Journal of Agricultural and Food Chemistry,2019,67(22):6075−6090.
    [42]
    Steele K S, Weber M J, Boyle E A E, et al. Shelf life of fresh meat products under led or fluorescent lighting[J]. Meat Science,2016,117:75−84. doi: 10.1016/j.meatsci.2016.02.032
    [43]
    Yan Zhicheng, Zuo Jinhua, Zhou Fuhui, et al. Integrated analysis of transcriptomic and metabolomic data reveals the mechanism by which led light irradiation extends the postharvest quality of pak-choi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee)[J]. Biomolecules,2020,10:252. doi: 10.3390/biom10020252
    [44]
    Lee Y J, Ha J Y, Oh J E, et al. The effect of LED irradiation on the quality of cabbage stored at a low temperature[J]. Food ence & Biotechnology,2014,23(4):1087−1093.
    [45]
    Muneer S, Kim E J, Park J S, et al. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.)[J]. Int J Mol Sci,2014,15(3):4657−4670. doi: 10.3390/ijms15034657
    [46]
    Xu Feng, Cao Shifeng, Shi Liyu, et al. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit[J]. Journal of Agricultural and Food Chemistry,2014,62(20):4778−4783.
    [47]
    Xu F, Shi L, Chen W, et al. Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit[J]. Scientia Horticulturae,2014,175:181−186. doi: 10.1016/j.scienta.2014.06.012
    [48]
    Thwe A A, Kim Y B, Li X, et al. Effects of Light-emitting diodes on expression of phenylpropanoid biosynthetic genes and accumulation of phenylpropanoids in Fagopyrum tataricum sprouts[J]. Journal of Agricultural & Food Chemistry,2014,62(21):25.
    [49]
    Yang L, Fang S, Yang W, et al. Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus[J]. Journal of Photochemistry and Photobiology, B Biology: Official Journal of the European Society for Photobiology,2018,179:66−73. doi: 10.1016/j.jphotobiol.2018.01.002
    [50]
    Liao H L, Alferez F, Burns J K. Assessment of blue light treatments on citrus postharvest diseases[J]. Postharvest Biology & Technology,2013,81:81−88.
    [51]
    Alferez F, Liao H L, Burns J K. Blue light alters infection by penicillium digitatum in tangerines[J]. Postharvest Biology & Technology,2012,63(1):11−15.
    [52]
    贺冬仙. 高附加值植物生产的环境控制技术(三)植物工厂发展前景及高效生产[J]. 中国蔬菜,2020(1):14−16.
    [53]
    Griffiths A D, Herrnsdorf J, Mckendry J J D, et al. Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems[J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering ences,2020,378(2169):20190185.
    [54]
    华新. 飞利浦携手gsf优化农作物产量和质量[J]. 中国花卉园艺,2014(12):23. doi: 10.3969/j.issn.1009-8496.2014.20.012
    [55]
    李思楚, 杜娟. 植物照明, 建造未来的“城市农场”[J]. 可持续发展经济导刊,2019(9):104−106.
  • Cited by

    Periodical cited type(2)

    1. 果欣雨,侯蔷,吴江爱,谷守国,周璇,郑百芹,周鑫. 注水肉的类型及检测方法研究. 养殖与饲料. 2025(02): 118-122 .
    2. 韩会丽. 如何区分PSE肉、注水肉及注胶肉. 青海畜牧兽医杂志. 2024(06): 56-57+60 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (538) PDF downloads (41) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return