Citation: | DONG Juncen, GAO Sunan, CHEN Jianchu. Application Progress and Prospect of Light-emitting Diode Light Technology in Food Preservation[J]. Science and Technology of Food Industry, 2021, 42(16): 374−380. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080116. |
[1] |
Maclean M, Macgregor S J, Anderson J G, et al. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array[J]. Applied and Environmental Microbiology,2009,75(7):1932−7. doi: 10.1128/AEM.01892-08
|
[2] |
Bhavya M L, Umesh Hebbar H. Pulsed light processing of foods for microbial safety[J]. Food Quality and Safety,2017,1(3):187−202. doi: 10.1093/fqsafe/fyx017
|
[3] |
D'souza C, Yuk H-G, Khoo G H, et al. Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety[J]. Comprehensive Reviews in Food Science and Food Safety,2015,14(6):719−40. doi: 10.1111/1541-4337.12155
|
[4] |
王美霞, 刘斌, 关文强, 等. Led红蓝光照射强度对采后西兰花保鲜品质的影响[J]. 食品科技,2017,42(6):42−46.
|
[5] |
Kim M J, Adeline Ng B X, Zwe Y H, et al. Photodynamic inactivation of Salmonella enterica enteritidis by 405±5 nm light-emitting diode and its application to control Salmonellosis on cooked chicken[J]. Food Control,2017:305−315.
|
[6] |
Josewin S W, Kim M J, Yuk H G. Inactivation of Listeria monocytogenes and Salmonella spp. on cantaloupe rinds by blue light emitting diodes (LEDs)[J]. Food Microbiology,2018,76(DEC.):219−25.
|
[7] |
Srimagal A, Ramesh T, Sahu J K. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk[J]. LWT-Food Science and Technology,2016,71:378−85. doi: 10.1016/j.lwt.2016.04.028
|
[8] |
Ghate V, Kumar A, Kim M J, et al. Effect of 460 nm light emitting diode illumination on survival of Salmonella spp. on fresh-cut pineapples at different irradiances and temperatures[J]. Journal of Food Engineering,2017,196(Mar):130−8.
|
[9] |
詹丽娟, 李颖. 光照技术在果蔬采后贮藏保鲜中的应用[J]. 食品与发酵工业,2016,42(8):268−72.
|
[10] |
范林林, 左进华, 高丽朴. Led应用于蔬菜保鲜领域的研究进展[J]. 安徽农业科学,2017,45(8):89−92, 97. doi: 10.3969/j.issn.0517-6611.2017.08.031
|
[11] |
靖林丹. 钼钒酸盐荧光粉的合成及发光性能研究[D]. 广州: 广东工业大学, 2016.
|
[12] |
Robert C, Morrow. Led lighting in horticulture[J]. HortScience: A Publication of the American Society for Horticultural Science,2008, 43(7):1947−1950.
|
[13] |
Tewolde F T, Lu N, Shiina K, et al. Nighttime supplemental led inter-lighting improves growth and yield of single-truss tomatoes by enhancing photosynthesis in both winter and summer[J]. Frontiers in Plant Science,2016,7(113).
|
[14] |
Wozniak A, Grinholc M. Combined antimicrobial activity of photodynamic inactivation and antimicrobials–state of the art[J]. Frontiers in Microbiology,2018,9(930).
|
[15] |
Luksiene Z, Zukauskas A. Prospects of photosensitization in control of pathogenic and harmful micro-organisms[J]. Journal of Applied Microbiology,2010,107(5):1415−1424.
|
[16] |
Kumar A, Ghate V, Kim M-J, et al. Kinetics of bacterial inactivation by 405 nm and 520 nm light emitting diodes and the role of endogenous coproporphyrin on bacterial susceptibility[J]. Journal of Photochemistry and Photobiology B: Biology,2015,149:37−44. doi: 10.1016/j.jphotobiol.2015.05.005
|
[17] |
Kumar A, Ghate V, Kim M J, et al. Antibacterial efficacy of 405, 460 and 520 nm light emitting diodes on Lactobacillus plantarum, Staphylococcus aureus and Vibrio parahaemolyticus[J]. Journal of Applied Microbiology,2016,120(1):49−56. doi: 10.1111/jam.12975
|
[18] |
Wang Y, Wang Y, Wang Y, et al. Antimicrobial blue light inactivation of pathogenic microbes: State of the art[J]. Drug Resistance Updates,2017,33-35:1−22. doi: 10.1016/j.drup.2017.10.002
|
[19] |
Kim M-J, Bang W S, Yuk H-G. 405±5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration[J]. Food Microbiology,2017,62:124−132. doi: 10.1016/j.fm.2016.10.002
|
[20] |
Kim M-J, Tang C H, Bang W S, et al. Antibacterial effect of 405±5 nm light emitting diode illumination against Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality[J]. International Journal of Food Microbiology,2017,244:82−89. doi: 10.1016/j.ijfoodmicro.2016.12.023
|
[21] |
Li X, Kim M-J, Bang W-S, et al. Anti-biofilm effect of 405 nm LEDs against Listeria monocytogenes in simulated ready-to-eat fresh salmon storage conditions[J]. Food Control,2018,84:513−521. doi: 10.1016/j.foodcont.2017.09.006
|
[22] |
Hyun J-E, Lee S-Y. Antibacterial effect and mechanisms of action of 460~470 nm light-emitting diode against Listeria monocytogenes and Pseudomonas fluorescens on the surface of packaged sliced cheese[J]. Food Microbiology,2020,86(Apr.):33−43.
|
[23] |
Mana T, Takuji N, Toshiaki K, et al. Prooxidative potential of photo-irradiated aqueous extracts of grape pomace, a recyclable resource from winemaking process[J]. Plos One,2016,11(6):e0158197.
|
[24] |
Liang J Y, Yuann J M P, Cheng C W, et al. Blue light induced free radicals from riboflavin on E. coli DNA damage[J]. Journal of Photochemistry & Photobiology B Biology,2013,119:60−64.
|
[25] |
张娜, 阎瑞香, 关文强, 等. Led单色红光对西兰花采后黄化抑制效果的影响[J]. 光谱学与光谱分析,2016,36(4):955−959.
|
[26] |
Olarte C, Sanz S, Federico Echávarri J, et al. Effect of plastic permeability and exposure to light during storage on the quality of minimally processed Broccoli and cauliflower[J]. LWT-Food Science and Technology,2009,42(1):402−411. doi: 10.1016/j.lwt.2008.07.001
|
[27] |
Ma G, Zhang L, Setiawan C K, et al. Effect of red and blue led light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest Broccoli[J]. Postharvest Biology and Technology,2014,94:97−103. doi: 10.1016/j.postharvbio.2014.03.010
|
[28] |
Dhakal R, Baek K H. Metabolic alternation in the accumulation of free amino acids and γ-aminobutyric acid in postharvest mature green tomatoes following irradiation with blue light[J]. Horticulture Environment & Biotechnology,2014,55(1):36−41.
|
[29] |
Dhakal R, Baek K H. Short period irradiation of single blue wavelength light extends the storage period of mature green tomatoes[J]. Postharvest Biology & Technology,2014,90:73−77.
|
[30] |
Kanazawa K, Hashimoto T, Yoshida S, et al. Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables[J]. Journal of Agricultural and Food Chemistry,2012,60(17):4359−4368. doi: 10.1021/jf300107s
|
[31] |
Huang J Y, Xu F, Zhou W. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit[J]. Journal of the Science of Food and Agriculture,2018,98(14):5486−5493.
|
[32] |
Darko E, Heydarizadeh P, Schoefs B, et al. Photosynthesis under artificial light: The shift in primary and secondary metabolism[J]. Philosophical Transactions of the Royal Society of London,2014,369(1640):20130243. doi: 10.1098/rstb.2013.0243
|
[33] |
Lourenço S C, Moldão-Martins M, Alves V D. Antioxidants of natural plant origins: From sources to food industry applications[J]. Molecules,2019,24(22):4132. doi: 10.3390/molecules24224132
|
[34] |
Ma G, Zhang L, Kato M, et al. Effect of blue and red led light irradiation on β-cryptoxanthin accumulation in the flavedo of citrus fruits[J]. Journal of Agricultural & Food Chemistry,2012,60(1):197−201.
|
[35] |
Kim B S, Lee H O, Kim J Y, et al. An effect of light emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry[J]. Horticulture Environment & Biotechnology,2011,52(1):35−39.
|
[36] |
Loi M, Liuzzi V C, Fanelli F, et al. Effect of different light-emitting diode (LED) irradiation on the shelf life and phytonutrient content of broccoli (Brassica oleracea L. var. italica)[J]. Food Chemistry,2019,283(JUN.15):206−214.
|
[37] |
Routray W, Orsat V, Lefsrud M. Effect of postharvest led application on phenolic and antioxidant components of blueberry leaves[J]. Chem Engineering,2018,2(4):56.
|
[38] |
Kokalj D, Zlati E, Cigi B, et al. Postharvest light-emitting diode irradiation of sweet cherries (Prunus avium L.) promotes accumulation of anthocyanins[J]. Postharvest Biology and Technology,2019,148:192−199. doi: 10.1016/j.postharvbio.2018.11.011
|
[39] |
Hao X, Naznin M T, Gravel V, et al. Different ratios of red and blue led light effects on coriander productivity and antioxidant properties[J]. Acta Horticulturae,2016,1134.
|
[40] |
Lee M K, Arasu M V, Park S, et al. Led lights enhance metabolites and antioxidants in Chinese cabbage and kale[J]. Brazilian Archives of Biology and Technology,2016:59.
|
[41] |
Alrifai Oday, Hao Xiuming, Marcone Massimo F, et al. Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables[J]. Journal of Agricultural and Food Chemistry,2019,67(22):6075−6090.
|
[42] |
Steele K S, Weber M J, Boyle E A E, et al. Shelf life of fresh meat products under led or fluorescent lighting[J]. Meat Science,2016,117:75−84. doi: 10.1016/j.meatsci.2016.02.032
|
[43] |
Yan Zhicheng, Zuo Jinhua, Zhou Fuhui, et al. Integrated analysis of transcriptomic and metabolomic data reveals the mechanism by which led light irradiation extends the postharvest quality of pak-choi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee)[J]. Biomolecules,2020,10:252. doi: 10.3390/biom10020252
|
[44] |
Lee Y J, Ha J Y, Oh J E, et al. The effect of LED irradiation on the quality of cabbage stored at a low temperature[J]. Food ence & Biotechnology,2014,23(4):1087−1093.
|
[45] |
Muneer S, Kim E J, Park J S, et al. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.)[J]. Int J Mol Sci,2014,15(3):4657−4670. doi: 10.3390/ijms15034657
|
[46] |
Xu Feng, Cao Shifeng, Shi Liyu, et al. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit[J]. Journal of Agricultural and Food Chemistry,2014,62(20):4778−4783.
|
[47] |
Xu F, Shi L, Chen W, et al. Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit[J]. Scientia Horticulturae,2014,175:181−186. doi: 10.1016/j.scienta.2014.06.012
|
[48] |
Thwe A A, Kim Y B, Li X, et al. Effects of Light-emitting diodes on expression of phenylpropanoid biosynthetic genes and accumulation of phenylpropanoids in Fagopyrum tataricum sprouts[J]. Journal of Agricultural & Food Chemistry,2014,62(21):25.
|
[49] |
Yang L, Fang S, Yang W, et al. Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus[J]. Journal of Photochemistry and Photobiology, B Biology: Official Journal of the European Society for Photobiology,2018,179:66−73. doi: 10.1016/j.jphotobiol.2018.01.002
|
[50] |
Liao H L, Alferez F, Burns J K. Assessment of blue light treatments on citrus postharvest diseases[J]. Postharvest Biology & Technology,2013,81:81−88.
|
[51] |
Alferez F, Liao H L, Burns J K. Blue light alters infection by penicillium digitatum in tangerines[J]. Postharvest Biology & Technology,2012,63(1):11−15.
|
[52] |
贺冬仙. 高附加值植物生产的环境控制技术(三)植物工厂发展前景及高效生产[J]. 中国蔬菜,2020(1):14−16.
|
[53] |
Griffiths A D, Herrnsdorf J, Mckendry J J D, et al. Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems[J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering ences,2020,378(2169):20190185.
|
[54] |
华新. 飞利浦携手gsf优化农作物产量和质量[J]. 中国花卉园艺,2014(12):23. doi: 10.3969/j.issn.1009-8496.2014.20.012
|
[55] |
李思楚, 杜娟. 植物照明, 建造未来的“城市农场”[J]. 可持续发展经济导刊,2019(9):104−106.
|
1. |
果欣雨,侯蔷,吴江爱,谷守国,周璇,郑百芹,周鑫. 注水肉的类型及检测方法研究. 养殖与饲料. 2025(02): 118-122 .
![]() | |
2. |
韩会丽. 如何区分PSE肉、注水肉及注胶肉. 青海畜牧兽医杂志. 2024(06): 56-57+60 .
![]() |