WANG Shuyan, ZHAO Feng, RAO Genghui, et al. Origin Difference Analysis of Aroma Components in Jasmine Tea Based on Electronic Nose and ATD-GC-MS[J]. Science and Technology of Food Industry, 2021, 42(15): 234−239. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080064.
Citation: WANG Shuyan, ZHAO Feng, RAO Genghui, et al. Origin Difference Analysis of Aroma Components in Jasmine Tea Based on Electronic Nose and ATD-GC-MS[J]. Science and Technology of Food Industry, 2021, 42(15): 234−239. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080064.

Origin Difference Analysis of Aroma Components in Jasmine Tea Based on Electronic Nose and ATD-GC-MS

More Information
  • Received Date: August 09, 2020
  • Available Online: May 31, 2021
  • In order to investigate the origin differences of aroma components in jasmine tea, electronic nose and automatic thermal desorption-gas chromatography-mass spectrometry (ATD-GC-MS) were used to determine the jasmine tea from Fuzhou and Hengxian. Electronic nose measurement showed that the total response value of sensors to jasmine tea from Hengxian was significantly greater than jasmine tea from Fuzhou. Through multivariate data analysis of electronic nose data, the origins of jasmine tea could be quickly and effectively identified. The results of ATD-GC-MS data showed that the jasmine tea flavor (JTF) index in tea samples from Fuzhou and Hengxian was significantly different (FZ: 7.57; HX: 2.89) ( P<0.05). And the contents of 29 aroma components were also significantly different between jasmine tea from Fuzhou and Hengxian (P<0.05). These include cis-3-hexenol benzoate, α-farnesene and indole, which affected the freshness and sensitivity of aroma in jasmine tea. The aroma components of jasmine tea from Fuzhou and Hengxian were similar in species, while the content of aroma components was significantly different. Electronic nose combined with ATD-GC-MS technology can be used as an effective method for origin difference analysis of aroma components in jasmine tea.
  • [1]
    黄建锋, 杨江帆. 茉莉花茶降血糖作用的观察[J]. 福建农林大学学报(自然科学版),2016,45(1):26−29.
    [2]
    刘珺, 高水练, 杨江帆. 茉莉花茶抗抑郁的效果[J]. 福建农林大学学报(自然科学版),2014,43(2):139−145.
    [3]
    蒋慧颖, 马玉仙, 黄建锋, 等. 茉莉花茶保健功效及相关保健产品研究现状[J]. 山西农业大学学报(自然科学版),2016,36(8):604−608.
    [4]
    梅宇, 梁晓. 2018年中国茉莉花茶产销形势通报[J]. 中国茶叶加工,2019(4):21−25.
    [5]
    梅宇, 梁晓. 2019中国茉莉花茶产销形势分析报告[J]. 茶世界,2019(9):10−19.
    [6]
    福建省质量技术监督局. DB35T991-2010 地理标志产品-福州茉莉花茶[S]. 福州: 福建省质量技术监督局, 2010.
    [7]
    文钟泳, 梁萍. 横县茉莉花茶[J]. 中国质量与标准导报,2018(9):68−71. doi: 10.3969/j.issn.1004-1575.2018.09.029
    [8]
    叶乃兴, 杨广, 郑乃辉, 等. 湿窨工艺及配花量对茉莉花茶香气成分的影响[J]. 茶叶科学,2005,26(1):65−71. doi: 10.3969/j.issn.1000-369X.2005.01.011
    [9]
    Shen J X, Rana M M, Liu G F, et al. Differential contribution of jasmine floral volatiles to the aroma of scented green tea[J]. Journal of Food Quality,2017,2017:1−10.
    [10]
    Chen M C, Zhu Y J, Liu B, et al. Changes in the volatiles, chemical components, and antioxidant activities of Chinese jasmine tea during the scenting processes[J]. International Journal of Food Properties,2017,20(3):681−693. doi: 10.1080/10942912.2016.1177542
    [11]
    陈梅春, 张海峰, 朱育菁, 等. 茉莉花茶窨制过程香气形成机制的研究[J]. 食品安全质量检测学报,2016,7(4):1546−1553.
    [12]
    Li H H, Luo L Y, Ma M J, et al. Characterization of volatile compounds and sensory analysis of jasmine scented black tea produced by different scenting processes[J]. Journal of Food Science,2018,83(11):2718−2732. doi: 10.1111/1750-3841.14340
    [13]
    江昕田, 郭雅玲, 赖凌凌, 等. 电子鼻技术在不同厂家特种茉莉花茶香气判别中的应用研究[J]. 食品安全质量检测学报,2017,8(12):4760−4765. doi: 10.3969/j.issn.2095-0381.2017.12.043
    [14]
    吴亮亮, 张丹丹, 叶小辉, 等. 电子鼻在对名优茉莉花茶香气评价中的应用[J]. 福建茶叶,2016,38(6):5−6. doi: 10.3969/j.issn.1005-2291.2016.06.003
    [15]
    Wang S Y, Zhao F, Wu W X, et al. Comparison of volatiles in different jasmine tea grade samples using electronic nose and automatic thermal desorption-gas chromatography-mass spectrometry followed by multivariate statistical analysis[J]. Molecules,2020,25(2):380. doi: 10.3390/molecules25020380
    [16]
    唐夏妮, 夏益民, 雷永宏, 等. 利用茉莉花茶香气指数鉴定其窨制品质及构建决策树模型[J]. 茶叶科学,2016,36(6):646−654. doi: 10.3969/j.issn.1000-369X.2016.06.012
    [17]
    Lin J, Chen Y, Zhang P, et al. A novel quality evaluation index and strategies to identify scenting quality of jasmine tea based on headspace volatiles analysis[J]. Food Science and Biotechnology,2013,22(2):331−340. doi: 10.1007/s10068-013-0085-x
    [18]
    刘晓港. 茉莉花茶制作过程中风味成分及微生物变化研究[D]. 福州: 福州大学, 2017.
    [19]
    陈梅春, 朱育菁, 刘波, 等. 窨制原料对茉莉花茶香气品质的影响[J]. 热带作物学报,2017,38(10):1947−1955. doi: 10.3969/j.issn.1000-2561.2017.10.028
    [20]
    Shi H, Zhang M, Adhikari B. Advances of electronic nose and its application in fresh foods: A review[J]. Critical Reviews in Food Science and Nutrition,2018,58(16):2700−2710. doi: 10.1080/10408398.2017.1327419
    [21]
    Zhang L, Zeng Z D, Zhao C X, et al. A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and multivariate data analysis[J]. J Chromatogr A,2013,1313:245−252. doi: 10.1016/j.chroma.2013.06.022
    [22]
    Jumtee K, Komura H, Bamba T, et al. Predication of Japanese green tea(Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis[J]. Journal of Bioscience and Bioengineering,2011,112(3):252−255. doi: 10.1016/j.jbiosc.2011.05.008
    [23]
    Wang C, Zhang C X, Kong Y W, et al. A comparative study of volatile components in Dianhong teas from fresh leaves of four tea cultivars by using chromatography-mass spectrometry, multivariate data analysis, and descriptive sensory analysis[J]. Food Research International,2017,100:267−275. doi: 10.1016/j.foodres.2017.07.013
    [24]
    孙学颖, 辛晓琦, 刘建林, 等. 不同配料及发酵剂对羊肉发酵香肠滋味及香气成分的影响[J]. 食品工业科技,2020,41(11):21−36.
    [25]
    李文博, 罗玉龙, 刘畅, 等. 饲养方式对苏尼特羊肉挥发性风味成分和脂肪酸组成的影响[J]. 食品科学,2019,40(2):207−213.
    [26]
    Edris A E, Chizzola R, Franz C. Isolation and characterization of the volatile aroma compounds from the concrete headspace and the absolute of Jasminum sambac(L.) Ait. (Oleaceae) Xowers grown in Egypt[J]. European Food Research and Technology,2008,226(3):621−626. doi: 10.1007/s00217-007-0623-y
    [27]
    Ito Y, Sugimoto A, Kakuda T, et al. Identification of potent odorants in Chinese jasmine green tea scented with flowers of Jasminum sambac[J]. Journal of agricultural and food chemistry,2002,50(17):4878. doi: 10.1021/jf020282h
    [28]
    Xu Y Q, Wang C, Li C W, et al. Characterization of aroma-active compounds of Pu-erh tea by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation-extraction (SDE) coupled with GC-Olfactometry and GC-MS[J]. Food Analytical Methods,2016,9(5):1188−1198. doi: 10.1007/s12161-015-0303-7
    [29]
    Yang Y Q, Zhang M M, Yin H X, et al. Rapid profiling of volatile compounds in green teas using micro-chamber/thermal extractor combined with thermal desorption coupled to gas chromatography-mass spectrometry followed by multivariate statistical analysis[J]. LWT,2018,96:42−50. doi: 10.1016/j.lwt.2018.04.091
    [30]
    Chen X H, Chen D J, Jiang H, et al. Aroma characterization of Hanzhong black tea (Camellia sinensis) using solid phase extraction coupled with gas chromatography-mass spectrometry and olfactometry and sensory analysis[J]. Food Chemistry,2019,274:130−136. doi: 10.1016/j.foodchem.2018.08.124
    [31]
    Yu Y, Lyu S H, Chen D, et al. Volatiles emitted at different flowering stages of Jasminum sambac and expression of genes related to α-farnesene biosynthesis[J]. Molecules,2017,22(4).
    [32]
    Chen S, Liu H H, Zhao X M, et al. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture[J]. Food Research International,2019,128:1−29.
    [33]
    Zhou H C, Hou Z W, Wang D X, et al. Large scale preparation, stress analysis, and storage of headspace volatile condensates from Jasminum sambac flowers[J]. Food Chemistry,2019,286:170−178. doi: 10.1016/j.foodchem.2019.01.202
    [34]
    安会敏, 欧行畅, 熊一帆, 等. 茉莉花茶特征香气成分研究[J]. 茶叶科学,2020,40(2):225−237. doi: 10.3969/j.issn.1000-369X.2020.02.009
  • Cited by

    Periodical cited type(13)

    1. 孙永进,曾惠梅,黄静,赵云龙,蔡锦源,孙松. 吴茱萸多糖的分离纯化、结构表征及体外降脂活性. 食品工业科技. 2025(08): 33-42 . 本站查看
    2. 王磊,李国龙,唐志书,宋忠兴,袁书会,刘红波,史鑫波,陈佳昕. 不同生长时期酸枣果肉多糖相对分子质量分布和单糖组成及抗氧化活性研究. 食品工业科技. 2024(07): 1-7 . 本站查看
    3. 夏谍,李铭,丁俞珍,邓萌玥,位盼盼,晏子俊,张磊,陈彤. 不同脱色方法对三七多糖物理性质及体外抗氧化活性的影响. 化学研究与应用. 2024(03): 509-521 .
    4. 李瑶,熊彩明,张佳乐,冯学珍,冯书珍. 磷酸化裙带菜多糖的制备及结构表征和生物活性分析. 食品科学. 2024(07): 35-42 .
    5. 郭雅娟,范军刚,李建珍. 不同干燥方式对骏枣中香气成分的影响. 中国调味品. 2024(04): 173-177 .
    6. 刘春阳,白金波,杨尚青,史进阳,秦亚敏,吴德玲,解松子. 枳椇子多糖的酸提取工艺优化及其理化性质与抗氧化活性研究. 食品与发酵工业. 2024(09): 148-156 .
    7. 魏炳琦,高小雨,刘延鑫,王义翠. 红枣多糖的结构、生物学活性及产品开发进展. 食品工业科技. 2024(12): 1-9 . 本站查看
    8. 董小强,文畅,许金丹,史乐雪,胡玉龙,李杰明,董春红,丁侃. 鼠李科植物枣多糖的活性机制及其结构特征研究进展. 中国药科大学学报. 2024(04): 443-453 .
    9. 吴喆,朱佳敏,刘军,符小玉,娄磊,涂亦娴,秦新政,艾合买提江·艾海提. 红枣主要活性成分及其功能活性研究进展. 现代食品科技. 2024(09): 359-369 .
    10. 张雅施,李文文,宗爱珍,左兆河,郑振佳,张斌. 菊芋多糖锌的制备及其抗氧化活性评价. 食品工业科技. 2023(12): 251-259 . 本站查看
    11. 刘迎欣,伊娟娟,邵怡雯,崔燕,李雪,王金柱,郝利民,鲁吉珂. 布拉氏酵母发酵山药多糖的分离鉴定与体外生物活性探究. 食品工业科技. 2023(14): 154-162 . 本站查看
    12. 石训,石勇,孙晓瑞. 基于文献计量的枣多糖研究趋势分析. 现代食品. 2023(21): 55-58 .
    13. 代琪,白苑丁,叶俏波,杨小艳,赵小勤,王欣. 不同产地大枣化学成分及其药理作用研究进展. 中国药物评价. 2023(06): 506-511 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return