ZHANG Yingying, MAO Xianghong, ZHANG Jianying. Analysis of Protein, Fat and Fatty Acid Composition of Walnut Resources in Hebei Province [J]. Science and Technology of Food Industry, 2021, 42(13): 292−298. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070374.
Citation: ZHANG Yingying, MAO Xianghong, ZHANG Jianying. Analysis of Protein, Fat and Fatty Acid Composition of Walnut Resources in Hebei Province [J]. Science and Technology of Food Industry, 2021, 42(13): 292−298. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070374.

Analysis of Protein, Fat and Fatty Acid Composition of Walnut Resources in Hebei Province

More Information
  • Received Date: July 28, 2020
  • Available Online: May 10, 2021
  • Objective: In order to master the president situation of walnut resources in Hebei Province and provide scientific basis for breeding and germplasm innovation. Methods: The contents of protein, fat and fatty acid composition of 103 walnut resources distributed in Hebei Province were determined. The data obtained were processed using correlation analysis, cluster analysis and so on to reveal the variation and genetic diversity of walnut resources in Hebei Province.Results: The average contents of fat and protein were 62.15% and 16.66%, respectively, and the average contents of unsaturated fatty acids such as oleic acid and linoleic acid were 17.31% and 64.56%, respectively. The variation coefficient of 9 indexes ranged from 7.40% to 31.41%, among which the variation coefficient of oleic acid was the largest and the variation coefficient of linoleic acid was the smallest. The Shannon Wiener index ranged from 1.89 to 2.10, and the diversity index of protein was the highest. Correlation analysis showed that the content of oleic acid was significantly negatively correlated with linoleic acid and α-linolenic acid (P<0.01), and positively correlated with arachidonic acid (P<0.01).The components of unsaturated fatty acids were closely related. At the Euclidean distance of 9.75, 103 resources were divided into five groups (I, II, III, IV and V), each group contains 38, 4, 24, 16 and 24 resources, respectively. Resources in group II had high fat, high protein and high linoleic acid contents. Resources in group Ⅴ had high oleic acid and low linoleic acid contents. Conclusion: In this study, 103 walnut resources have rich genetic diversity and obvious resource characteristics. ‘Wang yongjiu’, ‘Shi wenhai’, ‘Wang chun an’ and ‘Zao shuo’ can be used as high protein, high fat and high linoleic acid resources for the development and utilization of walnut oil resources in Hebei Province.
  • [1]
    李敏, 刘媛, 孙翠, 等. 核桃营养价值研究进展[J]. 中国粮油学报,2009,24(6):166−170.
    [2]
    刘浩, 周闲容, 于小娜, 等. 作物种质资源品质性状鉴定评价现状与展望[J]. 植物遗传资源学报,2014,15(1):215−221.
    [3]
    李亚兰, 潘存德, 范江涛, 等. 基于坚果表型性状的新疆核桃种质资源多样性与分类[J]. 西南农业学报,2019,2(9):1986−1994.
    [4]
    邓凤彬, 罗立新, 虎海防, 等. 新疆野核桃坚果表型性状多样性分析研究[J]. 果树学报,2018,35(3):175−284.
    [5]
    肖良俊, 吴涛, 陈少瑜, 等. 昭通市核桃种质资源坚果表型特征及多样性研究[J]. 西南农业学报,2018,31(11):2255−2260.
    [6]
    徐永杰, 韩华柏, 王滑, 等. 大巴山区核桃实生居群的坚果表型和遗传多样性[J]. 林业科学,2016,52(5):111−119.
    [7]
    吴涛, 陈少瑜, 肖良俊, 等. 基于SSR标记的云南省核桃种质资源遗传多样性研究和核心种质构建[J]. 植物遗传资源学报,2020,21(3):767−774.
    [8]
    Wang Hua, Wu Wanbo, Pan Gang, et al. Analysis of genetic diversity and relationships among 86 Persian walnut (Juglans regia L.) genotypes in Tibet using morphological traits and SSR markers[J]. The Journal of Horticultural Science and Biotechnology,2016,90(5):563−570.
    [9]
    闫思宇, 朱鹏, 龚伟, 等. 基于RAD-SNPs分析的四川核桃良种资源的遗传多样性研究[J]. 热带亚热带植物学报,2019,27(1):19−28. doi: 10.11926/jtsb.3906
    [10]
    吴涛, 陈少瑜, 宁德鲁, 等. 怒江州深纹核桃种质资源SSR遗传多样性分析[J]. 福建农林科技大学学报: 自然科学版,2019,48(2):252−258.
    [11]
    Aziz Ebrahimi, Abdolkarim Zarei, Shaneka Lawson, et al. Genetic diversity and genetic structure of Persian walnut (Juglans regia) accessions from 14 European, African, and Asian countries using SSR markers[J]. Tree Genetics & Genomes,2016,12(6):114.
    [12]
    Anthony Bernard, Teresa Barreneche, Fabrice Lheureux, et al. Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers[J]. Plos One,2018,13(11):e0208021. doi: 10.1371/journal.pone.0208021
    [13]
    王磊, 解孝满, 李文清, 等. 山东核桃主要分布区种质资源遗传多样性AFLP分析[J]. 西北林学院学报,2014,29(4):113−118.
    [14]
    余启明, 谢代祖, 蔡锦源, 等. 19种不同产地核桃的营养成分及脂肪酸的分析比较研究[J]. 食品研究与开发,2020,41(2):149−156.
    [15]
    耿树香, 宁德鲁, 韩明珠, 等. 云南核桃主要栽培品种蛋白质及脂肪酸综合评价分析[J]. 中国油脂,2019,44(10):116−120.
    [16]
    努尔买买提·阿布地热木, 龙建春, 阿力木·阿木提, 等. 温185、新新2号核桃及后代坚果脂肪酸含量比较[J]. 中国粮油学报,2018,33(11):52−60. doi: 10.3969/j.issn.1003-0174.2018.11.010
    [17]
    贺娜, 耿树香, 宁德鲁. 大理州不同品种核桃果实品质综合评价[J]. 西部林业科学,2018,47(2):117−121.
    [18]
    Cemile Yerlikaya, Sevil Yucel, Ümran Erturk, et al. Proximate composition, minerals and fatty acid composition of Juglans Regia L. genotypes and cultivars grown in Turkey[J]. Brazilian Archives of Biology and Technology,2012,55(5):677−683. doi: 10.1590/S1516-89132012000500006
    [19]
    Li Qun, Yin Rong, Zhang Qian-ru, et al. Chemometrics analysis on the content of fatty acid compositions in different walnut (Juglans regia L.) varieties[J]. European Food Research & Technology,2017,243(12):2235−2242.
    [20]
    Zhai M Z, Wang D, Tao X D, et al. Fatty acid compositions and tocopherol concentrations in the oils of 11 varieties of walnut (Juglans regia L.) grown at Xinjiang, China[J]. Journal of Pomology & Horticultural Science,2015,90(6):715−718.
    [21]
    Ebru Kafkas, Aysegul Burgut, Hatice Ozcan, et al. Fatty acid, total phenol and tocopherol profiles of some walnut cultivars: A comparative study[J]. Food and Nutrition Sciences,2017,8(12):1074−1084. doi: 10.4236/fns.2017.812079
    [22]
    梁珊珊, 吕芳德, 蒋瑶, 等. 核桃待选优株坚果品质主成分分析及综合评判[J]. 经济林研究,2015,33(3):7−12, 32.
    [23]
    Poggetti Luca, Ferfuia Claudio, Chiabà Cristina, et al. Kernel oil content and oil composition in walnut (Juglans regia L.) accessions from north-eastern Italy[J]. Journal of the Science of Food and Agriculture,2018,98(3):955−962. doi: 10.1002/jsfa.8542
    [24]
    苏彦苹, 赵爽, 李惠, 等. 26份不同基因型新疆核桃脂肪酸变异及关联分析[J]. 中国食品学报,2018,18(12):261−269.
    [25]
    马和平, 朱雪林, 刘务林, 等. 西藏核桃种质的形态特征和生化成分分析[J]. 植物遗传资源学报,2011,12(3):473−476.
    [26]
    李瑞, 刘云, 阚欢, 等. 云南17种核桃仁主要营养成分测定及脂肪酸研究[J]. 包装工程,2019,40(7):19−25.
    [27]
    周于波, 朱鹏, 龚伟, 等. 四川核桃良种SSR指纹图谱构建及遗传多样性分析[J]. 西北植物学报,2018,38(7):1254−1261.
    [28]
    黄晓露, 赵志珩, 李开祥, 等. 广西优良核桃单株果实品质差异及综合评价研究[J]. 西南农业学报,2019,32(3):489−494.
    [29]
    国家食品药品监督管理总局. GB5009.5-2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.
    [30]
    国家食品药品监督管理总局. GB5009.6-2016 食品安全国家标准 食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016.
    [31]
    国家食品药品监督管理总局. GB5009.168-2016 食品安全国家标准 食品中脂肪酸的测定[S]. 北京: 中国标准出版社, 2016.
    [32]
    崔翠, 孙建蓉, 赵愉风, 等. 豌豆尖几个营养品质性状的遗传多样性分析及其综合评价[J]. 植物遗传资源学报,2019,20(4):932−948.
  • Cited by

    Periodical cited type(13)

    1. 孙永进,曾惠梅,黄静,赵云龙,蔡锦源,孙松. 吴茱萸多糖的分离纯化、结构表征及体外降脂活性. 食品工业科技. 2025(08): 33-42 . 本站查看
    2. 王磊,李国龙,唐志书,宋忠兴,袁书会,刘红波,史鑫波,陈佳昕. 不同生长时期酸枣果肉多糖相对分子质量分布和单糖组成及抗氧化活性研究. 食品工业科技. 2024(07): 1-7 . 本站查看
    3. 夏谍,李铭,丁俞珍,邓萌玥,位盼盼,晏子俊,张磊,陈彤. 不同脱色方法对三七多糖物理性质及体外抗氧化活性的影响. 化学研究与应用. 2024(03): 509-521 .
    4. 李瑶,熊彩明,张佳乐,冯学珍,冯书珍. 磷酸化裙带菜多糖的制备及结构表征和生物活性分析. 食品科学. 2024(07): 35-42 .
    5. 郭雅娟,范军刚,李建珍. 不同干燥方式对骏枣中香气成分的影响. 中国调味品. 2024(04): 173-177 .
    6. 刘春阳,白金波,杨尚青,史进阳,秦亚敏,吴德玲,解松子. 枳椇子多糖的酸提取工艺优化及其理化性质与抗氧化活性研究. 食品与发酵工业. 2024(09): 148-156 .
    7. 魏炳琦,高小雨,刘延鑫,王义翠. 红枣多糖的结构、生物学活性及产品开发进展. 食品工业科技. 2024(12): 1-9 . 本站查看
    8. 董小强,文畅,许金丹,史乐雪,胡玉龙,李杰明,董春红,丁侃. 鼠李科植物枣多糖的活性机制及其结构特征研究进展. 中国药科大学学报. 2024(04): 443-453 .
    9. 吴喆,朱佳敏,刘军,符小玉,娄磊,涂亦娴,秦新政,艾合买提江·艾海提. 红枣主要活性成分及其功能活性研究进展. 现代食品科技. 2024(09): 359-369 .
    10. 张雅施,李文文,宗爱珍,左兆河,郑振佳,张斌. 菊芋多糖锌的制备及其抗氧化活性评价. 食品工业科技. 2023(12): 251-259 . 本站查看
    11. 刘迎欣,伊娟娟,邵怡雯,崔燕,李雪,王金柱,郝利民,鲁吉珂. 布拉氏酵母发酵山药多糖的分离鉴定与体外生物活性探究. 食品工业科技. 2023(14): 154-162 . 本站查看
    12. 石训,石勇,孙晓瑞. 基于文献计量的枣多糖研究趋势分析. 现代食品. 2023(21): 55-58 .
    13. 代琪,白苑丁,叶俏波,杨小艳,赵小勤,王欣. 不同产地大枣化学成分及其药理作用研究进展. 中国药物评价. 2023(06): 506-511 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (354) PDF downloads (17) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return