DONG Shirong, WANG Li, JIANG Bingyan, et al. The Effect of Mercaptoethanol on the Interface Properties of Heat-Induced Aggregation of Soy Protein Isolate[J]. Science and Technology of Food Industry, 2021, 42(11): 30−37. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070331.
Citation: DONG Shirong, WANG Li, JIANG Bingyan, et al. The Effect of Mercaptoethanol on the Interface Properties of Heat-Induced Aggregation of Soy Protein Isolate[J]. Science and Technology of Food Industry, 2021, 42(11): 30−37. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070331.

The Effect of Mercaptoethanol on the Interface Properties of Heat-Induced Aggregation of Soy Protein Isolate

More Information
  • Received Date: July 27, 2020
  • Available Online: April 07, 2021
  • In order to investigate the effect of β-mercaptoethanol on the interface properties of soy protein isolate(SPI), the samples (10 mg/mL) were prepared by heating with or without β-mercaptoethanol (2 mmol/L) at pH7.0 and 90 ℃ for 0 and 10 h. The micromorphology and free sulfhydryl group of the samples were observed. Meanwhile, the foaming ability, foam stability, emulsifying activity, emulsifying stability, surface hydrophobicity and turbidity were evaluated. The results showed that irregular aggregations were formed from SPI and SPI with β-mercaptoethanol. The regular spherical particles were formed from SPI by heating, while both regular spherical particles and irregular aggregations were formed from SPI with β-mercaptoethanol by heating. The interface properties of SPI were improved by adding β-mercaptoethanol. Compared with those of SPI, the foaming abilities of SPI with β-mercaptoethanol and the aggregations formed from SPI with β-mercaptoethanol increased by 64.56% and 95.77%, respectively. Moreover, their emulsifying activities increased by 12.94% and 14.61%, respectively. Good emulsifying stability and foam stability of SPI with β-mercaptoethanol and the aggregations formed from SPI with β-mercaptoethanol were found during long time storage. The reason for the good interfacial property was that the higher free sulfhydryl content and surface hydrophobicity of SPI and its aggregations were obtained by the addition of β-mercaptoethanol. The empirical models of Rational function and Linear function of foam stability and emulsion stability for the 4 samples with time were established, which laid a theoretical foundation for the practical application of SPI.
  • [1]
    赵新淮, 徐红华, 姜毓君. 食品蛋白质结构、性质与功能[M]. 北京: 科学出版社, 2009: 321-323.
    [2]
    Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems[J]. Food Hydrocolloids,2003,17(1):25−39. doi: 10.1016/S0268-005X(01)00120-5
    [3]
    Juttulapa M, Piryaprasarth S, Takeuchi H, et al. Effect of high-pressure homogenization on stability of emulsions containing zein and pectin[J]. Asian Journal of Pharmaceutical Sciences,2017,12(1):21−27. doi: 10.1016/j.ajps.2016.09.004
    [4]
    Halling P J. Protein-stabilized foams and emulsions[J]. Critical Reviews in Food Science and Nutrition, 1981, 15(2): 155-203.
    [5]
    曹荣锟, 李佳泰, 王金晶, 等. 大米辅料啤酒中蛋白质疏水性与蛋白质泡沫稳定性的分析[J]. 食品与发酵工业,2018,44(9):66−70.
    [6]
    Evans M, Ratclifee I, Williams P A. Emulsion stabilisation using polysaccharide-protein complexes[J]. Current Opinion in Colloid and Interface Science,2013,18(4):272−282. doi: 10.1016/j.cocis.2013.04.004
    [7]
    李军生, 李丽娜, 程海涛. 通过打开蛋白质二硫键制备蛋白质基表面活性剂的方法: 中国, 200810166640.4[P]. 2012-02-18.
    [8]
    李荫展, 李军生, 王靖婷. 过氧化氢氧化二硫键对大豆11S蛋白表面活性的影响[J]. 中国饲料,2020(5):27−33.
    [9]
    牛祥臣, 王洪彩, 马军, 等. 食盐浓度和热处理条件对大豆蛋白凝胶特性影响的研究[J]. 食品研究与开发,2018,39(6):19−22. doi: 10.3969/j.issn.1005-6521.2018.06.004
    [10]
    Tang C H, Wang X Y, Yang X Q, et al. Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties[J]. Journal of Food Engineering,2009,92(4):432−437. doi: 10.1016/j.jfoodeng.2008.12.017
    [11]
    Bevridge T, Toma S, Nakai S. Determination of SH- and SS-groups in some food proteins using Ellman'sreagent[J]. Journal of Food Science,1974,39(1):49−51. doi: 10.1111/j.1365-2621.1974.tb00984.x
    [12]
    耿军凤, 张丽芬, 陈复生. 超声波辅助提取对花生蛋白结构与功能特性的影响[J], 食品研究与开发, 2020, 41(9): 61-69.
    [13]
    Martinez M J, Ruiz-Henestrosa V M P, Sanchez C C, et al. Foaming and surface properties of casein glycomacropeptide-gelatin mixtures as affected by their interactions in the aqueous phase[J]. Food Hydrocolloids,2013,33(1):48−57. doi: 10.1016/j.foodhyd.2013.02.016
    [14]
    Pearce K N, Kinsella J E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique[J]. Journal of Agricultural and Food Chemistry,1978,26(3):716−723. doi: 10.1021/jf60217a041
    [15]
    Hayakawa S, Nakai S. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins[J]. Journal of Food Science,2010,50(2):486−491.
    [16]
    王碧璇, 李军生, 钟新, 等. 控制性打开二硫键-葡聚糖修饰对大豆分离蛋白表面活性性能及结构的影响[J]. 中国饲料,2019(11):22−27.
    [17]
    董振, 李军生, 阎柳娟, 等. 分子动力学模拟二硫键对大豆11S球蛋白结构及表面活性的影响[J]. 山东化工,2016,45(16):1−4, 8. doi: 10.3969/j.issn.1008-021X.2016.16.001
    [18]
    Foegeding E A, Luck P, Davis J. Factors determining the physical properties ofprotein foams[J]. Food Hydrocolloids,2006,20(2):284−292.
    [19]
    Nakai S, Ho L, Helbig N, et al. Relationship between hydrophobicity and emulsifying properties of some plant proteins[J]. Canadian Institute of Food and Science and Technology Journal,1980,1(13):23−27.
    [20]
    Townsend A, Nakai S. Relationships between hydrophobicity and foaming characteristics of food proteins[J]. Journal of Food Science,2006,48(2):588−594.
  • Cited by

    Periodical cited type(8)

    1. 王佳,丁方莉,安宇,曾雪莹,张智慧,李思楠,徐开媛,周芳,王颖,张璐,徐炳政,孙泽堃. 芸豆-蓝靛果复合发酵液制备工艺优化及其抗氧化活性. 食品工业科技. 2025(03): 222-231 . 本站查看
    2. 王虎玄,柯西娜,王聪,朱亚南,孙宏民. 苹果酵素的制备及其抗氧化功能研究. 陕西科技大学学报. 2023(03): 37-46 .
    3. 杨彬彦,党娅,黎坤怡. 蓝莓酵素复合菌种发酵工艺优化及品质分析. 中国酿造. 2023(12): 165-169 .
    4. 陈洲琴,张祝兰,程贤,林仙菊,杨煌建,严雪浪,朱爱明,连云阳. 枇杷酵素发酵过程生物学特性和主要功效酶活性研究. 福建农业科技. 2023(10): 23-28 .
    5. 秦宇蒙,王艳丽,周笑犁,董平坤,吴栋斐. 番茄酵素自然发酵过程中主要功效酶的变化. 食品工业科技. 2022(20): 60-66 . 本站查看
    6. 蒋家璇,韩盼盼,孔振杨,程陆陆,姚沛琳. 百香果酵素自然发酵过程中代谢产物及抗氧化活性研究. 农产品加工. 2022(19): 10-13+17 .
    7. 任秀秀,余冬丽,郭涛,郭正江,LUO Liu. 餐余酵素中益生菌的分离培养及鉴定. 贵州工程应用技术学院学报. 2021(03): 61-67 .
    8. 张焱梅,甘玉芬,丁学梅,马海燕,伍凤莲,冯玉兰. 植物酵素的活性功效及其食用方面的研究进展. 甘肃科技纵横. 2021(08): 25-28 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (449) PDF downloads (43) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return