ZHAO Chuanyan, YIN Yongqi, YANG Zhengfei, et al. Optimization of Preparation Technology of Crystallized Malt by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(9): 186−193. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070322.
Citation: ZHAO Chuanyan, YIN Yongqi, YANG Zhengfei, et al. Optimization of Preparation Technology of Crystallized Malt by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(9): 186−193. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070322.

Optimization of Preparation Technology of Crystallized Malt by Response Surface Methodology

More Information
  • Received Date: July 26, 2020
  • Available Online: March 03, 2021
  • In order to improve the quality and crystallization rate of crystalline malt, this study optimized the pre-saccharification and kilning processes in the preparation of crystalline malt through single factor and response surface experiments. The free amino nitrogen content and reducing sugar content were used as indices to study the effect of pre-saccharification process on crystalline malt. At the same time, the coking process was optimized with moisture content, crystallization rate and color as indices. The results showed that the green malt with a germination time of 72 h was selected, the protein was rested at 45 ℃ for 1.5 h, and the saccharification was carried out at pH = 6.0 and temperature of 66.4 ℃ for 2.0 h. Under these conditions, the reducing sugar content was the highest and the saccharification effect was the best. Further the malt was baked at 127 °C for 27 min to obtain a crystalline malt with a moisture content of 3.75%, a chromaticity of (158.9 ± 1.19) EBC, and a crystallization rate of 99%. Compared with commercially available crystalline malt, the crystalline malt can be completely crystallized inside, the crystalline quality is better, and other quality indicators have been significantly optimized.
  • [1]
    陈之贵, 张五九. 特种麦芽研究综述[J]. 啤酒科技,2001(6):13−15.
    [2]
    任光辉. 认识结晶麦芽与焦香麦芽[J]. 啤酒科技,2017(5):61−64.
    [3]
    Carvalho D O, Gendal L H, Andersen M L, et al. High molecular weight compounds generated by roasting barley malt are pro-oxidants in metal-catalyzed oxidations[J]. European Food Research and Technology,2016,242(9):1545−1553. doi: 10.1007/s00217-016-2655-7
    [4]
    黄琳, 葛秀琪, 张元夫, 等. 精酿啤酒专用麦芽的研究进展[J]. 中国酿造,2020,39(2):7−12. doi: 10.11882/j.issn.0254-5071.2020.02.002
    [5]
    Vandecan S M G, Daems N, Schouppe N, et al. Formation of flavor, color, and reducing power during the production process of dark specialty malts[J]. Journal of the American Society of Brewing Chemists,2011,69(3):150−157. doi: 10.1094/ASBCJ-2011-0626-01
    [6]
    秦奔, 刘春凤, 郑飞云,等. 特种麦芽的研制开发及应用[J]. 啤酒科技,2018(3):8−14.
    [7]
    Gerrard J A. The Maillard reaction in food: Progress made, challenges ahead—Conference Report from the Eighth International Symposium on the Maillard Reaction[J]. Trends in Food Science & Technology,2006,17(6):324−330.
    [8]
    Muir D D. The Maillard reaction: Chemistry, biochemistry and implications[J]. International Journal of Dairy Technology,2007,60(1):59−61.
    [9]
    Coghe S, Gheeraert B, Michiels A, et al. Development of Maillard reaction related characteristics during malt roasting[J]. Journal of the Institute of Brewing,2006,112(2):148−156. doi: 10.1002/j.2050-0416.2006.tb00244.x
    [10]
    Jie-Ting Geng, Kigen Takahashi, Toshiki Kaido, et al. Relationship among pH, generation of free amino acids, and Maillard browning of dried Japanese common squid Todarodes pacificus meat[J]. Food Chemistry,2019,283:324−330. doi: 10.1016/j.foodchem.2019.01.056
    [11]
    Yahya H, Linforth R S T, Cook D J. Flavour generation during commercial barley and malt roasting operations: A time course study[J]. Food Chemistry,2014,145:378−387. doi: 10.1016/j.foodchem.2013.08.046
    [12]
    Taş N G, Gökmen V. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study[J]. Food Chemistry,2017,221:1911−1922. doi: 10.1016/j.foodchem.2016.11.159
    [13]
    祁岩龙, 冯怀章, 于洋, 等. 美拉德反应研究进展及在食品工业中的应用[J]. 食品工业,2018,39(3):248−252.
    [14]
    韩鹏, 贠建民, 吴洪斌, 等. 焙焦温度对麦芽品质及酶活性影响[J]. 中国酿造,2008(15):44−46.
    [15]
    李红, 郭瑞涵, 张五九. 焙焦温度对麦芽品质及啤酒风味的影响[J]. 食品与发酵工业,2004,30(9):11−14. doi: 10.3321/j.issn:0253-990X.2004.09.003
    [16]
    于淼, 马明娟, 毋思敏, 等. 六款特种麦芽风味物质和感官特性分析[J/OL]. 食品工业科技: 1−12. http://kns.cnki.net/kcms/detail/11.1759.TS.20200408.1407.013.html.
    [17]
    廖加宁. 麦芽对啤酒质量的影响及控制[J]. 啤酒科技,2006(6):31−32.
    [18]
    Nikolova K T, Gabrova R, Boyadzhiev D, et al. Classification of different types of beer according to their colour characteristics[J]. Journal of Physics: Conference Series,2017,794(1):1−7.
    [19]
    顾宏, 蔡国林, 张明, 等. 结晶麦芽生产的研究进展[J]. 中外酒业,2018(13):4−9.
    [20]
    Jafari F, Movagharnejad K, Sadeghi E. Infrared drying effects on the quality of eggplant slices and process optimization using response surface methodology[J]. Food Chemistry, 2020, 333: 127423.
    [21]
    慕婷婷, 刘彩云, 邵建宁, 等. 不同浸麦方式对麦芽酶活的影响[J]. 中国酿造,2009(2):125−126. doi: 10.3969/j.issn.0254-5071.2009.02.039
    [22]
    QBT 1686-2008 啤酒麦芽[S]. 北京: 中国轻工业出版社, 2008.
    [23]
    郭有辉, 周娟, 胡露, 等. DNS光度法测定风味鱿鱼中淀粉、还原糖和蔗糖的含量[J]. 化学分册,2019,55(4):463−466.
    [24]
    Ekielski A, Mishra P K, Żelaziński T. Assessing the influence of roasting process parameters on mepiquat and chlormequat formation in dark barley malts[J]. Food and Bioprocess Technology,2018,11(6):1177−1187. doi: 10.1007/s11947-018-2087-4
    [25]
    焦健. 提高淡爽啤酒杀口力的研究[D]. 济南: 山东轻工业学院, 2012.
    [26]
    顾宏, 潘贺鹏, 张明, 等. 结晶麦芽的制备工艺优化及其品质分析[J]. 食品与发酵工业,2019,45(24):10−15.
    [27]
    周芸芸, 陈爽, 王国华, 等. 制麦过程中蛋白酶酶活力变化和蛋白质溶解情况的研究[J]. 中外酒业,2017(12):42−51. doi: 10.3969/j.issn.2096-0972.2017.12.007
    [28]
    王芝梅, 窦少华, 郭继强, 等. 小麦和酿酒大麦发芽过程中主要酶活的比较研究[J]. 酿酒科技,2008(11):20−22.
    [29]
    张伟, 张琦, 阮馨怡, 等. 响应曲面法优化小麦秸秆纤维素酶水解条件[J]. 生物质化学工程,2015,49(2):39−46. doi: 10.3969/j.issn.1673-5854.2015.02.008
    [30]
    韩鹏. 啤酒麦芽干燥工艺优化[D]. 兰州: 甘肃农业大学, 2009.
    [31]
    冯结铧, 娄华, 钟先锋, 等. 响应面分析法优化亚麻籽粕水解工艺研究[J]. 中国调味品,2019,44(8):99−104. doi: 10.3969/j.issn.1000-9973.2019.08.019
    [32]
    赵旭乐, 管斌, 孔青, 等. 麦芽制备中蛋白质组分与蛋白酶活性的相关性[J]. 麦类作物学报,2015,35(10):1445−1449. doi: 10.7606/j.issn.1009-1041.2015.10.018
    [33]
    Osman, M. A. The advantages of using natural substrate-based methods in assessing the roles and synergistic and competitive interactions of barley malt starch-degrading enzymes[J]. Journal of the Institute of Brewing,2002,108(2):204−214. doi: 10.1002/j.2050-0416.2002.tb00542.x
    [34]
    Martins S I F S, Jongen W M F, Boekel M A J S. A review of Maillard reaction in food and implications to kinetic modelling[J]. Trends in Food Science & Technology,2000,11(9-10):364−373.
    [35]
    李亚丽, 刘晓徐, 郑培华, 等. 美拉德反应研究进展[J]. 食品科技,2012,37(9):82−87.
    [36]
    吴洪斌, 贠建民, 李赟, 等. 不同干燥条件下麦芽色度与类黑精的关系研究[J]. 甘肃农业大学学报,2010,45(1):130−133. doi: 10.3969/j.issn.1003-4315.2010.01.025
    [37]
    Briggs Dennis E. 麦芽与制麦技术[M]. 北京: 中国轻工业出版社, 2005.
    [38]
    程殿林. 啤酒生产技术[M]. 北京: 化学工业出版社, 2010.
    [39]
    李琳娜, 高燕, 王晓霞, 等. 麦芽配比及酵母对全麦黑啤酒品质的影响[J]. 陕西农业科学,2019,65(1):17−20. doi: 10.3969/j.issn.0488-5368.2019.01.003
  • Related Articles

    [1]LIU Qian, JIN Wenhui, JIAO Haotian, XIE Quanling, ZHANG Yiping, HONG Zhuan, ZHAO Yuanhui. Optimization of Extraction Process and Analysis of Monosaccharide Composition of β-1,3-xylan from Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2023, 44(16): 210-217. DOI: 10.13386/j.issn1002-0306.2022100086
    [2]CHEN Yang, WANG Peng, PAN Kaijin, WANG Zhe, XU Jian, ZHOU Junqiang, LIAO Ziwei. Optimization of the Extraction Process of Highland Barley β-glucan by Three-phase Partitioning and Its Molecular Weight Distribution[J]. Science and Technology of Food Industry, 2023, 44(14): 220-228. DOI: 10.13386/j.issn1002-0306.2022100064
    [3]LIU Xin-qi, HE Xian-zhe, LIU Jie-chun, TANG Qing-jiu, GU Fei-yan, YU Ling. Study on Optimization of Extraction Process of Barley Bran β-Glucan by Fermentation and Its Physicochemical Properties[J]. Science and Technology of Food Industry, 2020, 41(7): 49-54. DOI: 10.13386/j.issn1002-0306.2020.07.009
    [4]CHENG Chao, ZHANG Hong-hai, SHENG Wen-jun, HAN Shun-yu, WANG Jing. Extraction of β-Glucan from waste wine yeast by multiple cell-wall-broken technologies[J]. Science and Technology of Food Industry, 2016, (04): 111-116. DOI: 10.13386/j.issn1002-0306.2016.04.013
    [5]ZHU Xia, LI Ying, FU Wen-li, DU Na, XI Jing, HAN Shun-yu, SHENG Wen-jun, NIU Li-li, YANG Xue-shan. Process optimization of the alkaline enzymatic extracting heme from sheep blood[J]. Science and Technology of Food Industry, 2014, (18): 199-202. DOI: 10.13386/j.issn1002-0306.2014.18.034
    [6]DONG Xing-ye, SUN Chu, LIU Yao, WU Fei. Effect of ultrasonic treatment on oat β-glucan extraction and its properties[J]. Science and Technology of Food Industry, 2014, (16): 294-297. DOI: 10.13386/j.issn1002-0306.2014.16.056
    [7]桔皮中提取橙皮甙的优化工艺[J]. Science and Technology of Food Industry, 1999, (06): 33-34. DOI: 10.13386/j.issn1002-0306.1999.06.072
    [8]一品红红色素的提取及其稳定性研究[J]. Science and Technology of Food Industry, 1999, (06): 24-26. DOI: 10.13386/j.issn1002-0306.1999.06.068
    [9]大蒜油提取的比较研究[J]. Science and Technology of Food Industry, 1999, (05): 16-18. DOI: 10.13386/j.issn1002-0306.1999.05.004
    [10]黄刺玫叶片中黄酮物质的提取和分析[J]. Science and Technology of Food Industry, 1999, (05): 14-15. DOI: 10.13386/j.issn1002-0306.1999.05.003

Catalog

    Article Metrics

    Article views (310) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return