YUAN Hongxia, HOU Qianyi, DU Shan, et al. Purification and Antioxidant Properties of Anthocyanins from Jingle Lycium ruthenicum [J]. Science and Technology of Food Industry, 2021, 42(9): 173−178. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070221.
Citation: YUAN Hongxia, HOU Qianyi, DU Shan, et al. Purification and Antioxidant Properties of Anthocyanins from Jingle Lycium ruthenicum [J]. Science and Technology of Food Industry, 2021, 42(9): 173−178. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070221.

Purification and Antioxidant Properties of Anthocyanins from Jingle Lycium ruthenicum

More Information
  • Received Date: July 19, 2020
  • Available Online: March 15, 2021
  • Objective: To investigate the purification technology and antioxidation ability of Lycium ruthenicum anthocyanins from Jingle. Methods: Based on the adsorption properties of selected five macroporous resins (HPD100、D101、NKA、AB-8、HPD400) for Lycium ruthenicum anthocyanins from Jingle, the optimum purification resins were screened and the purification parameters were optimized. The antioxidant activity of crude and purified Lycium ruthenicum anthocyanins from Jingle were investigated by DPPH, hydroxyl and ABTS free radical scavenging assay. Results: HPD100 resin had good separation and purification effect. The optimum purification parameters were as follows: Sample concentration 0.2 mg/mL, sample volume 49 mL, elution volume 42 mL with 75% ethanol. After purification, the anthocyanins content was from 2.38% to17.82%. The crude and purified Lycium ruthenicum anthocyanins from Jingle showed good antioxidant activity, the IC50 values of DPPH· scavenging capacity were 0.208 and 0.011 mg/mL respectively, the IC50 values of ABTS+· scavenging capacity were 0.476 and 0.064 mg/mL respectively, the IC50 value of purified Lycium ruthenicum anthocyanins for ·OH scavenging capacity was 6.24 mg/mL. Conclusion: The macroporous resin method for purifying Lycium ruthenicum anthocyanins has good purification effect. The antioxidant capacity of the purified Lycium ruthenicum anthocyanins was significantly improved compared with the crude extracts.
  • [1]
    乔廷廷, 郭玲. 花青素来源、结构特性和生理功能的研究进展[J]. 中成药,2019,41(2):388−392. doi: 10.3969/j.issn.1001-1528.2019.02.029
    [2]
    王爱超, 李长兴, 王琦, 等. 黑枸杞花青素对C57BL/6小鼠血糖、血脂及脂肪细胞形态的影响[J]. 青海大学学报,2020,38(3):57−61.
    [3]
    Zong S, Yang L, Park H J, et al. Dietary intake of Lycium ruthenicum Murray ethanol extract inhibits colonic inflammation in dextran sulfate sodium-induced murine experimental colitis[J]. Food & Function,2020,11:2924−2937.
    [4]
    Peng Y, Yan Y, Wan P, et al. Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo[J]. Food Rresearch International,2020,130:108952. doi: 10.1016/j.foodres.2019.108952
    [5]
    Peng Y, Yan Y, Wan P, et al. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice[J]. Free Radical Biology and Medicine,2019,136:96−108. doi: 10.1016/j.freeradbiomed.2019.04.005
    [6]
    Deng K, Li Y, Xiao M, et al. Lycium ruthenicum Murr polysaccharide protects cortical neurons against oxygen-glucose deprivation/reperfusion in neonatal hypoxic-ischemic encephalopathy[J]. International Journal of Biological Macromolecules,2020,158:562−8. doi: 10.1016/j.ijbiomac.2020.04.122
    [7]
    Lu K, Wang J, Yu Y, et al. Lycium ruthenicum Murr. alleviates nonalcoholic fatty liver in mice[J]. Food Science & Nutrition, 2020, 8: 2588−2597.
    [8]
    Peng Q, Liu H, Shi S, et al. Lycium ruthenicum polysaccharide attenuates inflammation through inhibiting TLR4/NF-kappaB signaling pathway[J]. International Journal of Biological Macromolecules,2014,67:330−335. doi: 10.1016/j.ijbiomac.2014.03.023
    [9]
    同禄禄, 李梦耀, 许小英, 等. HPD-100大孔吸附树脂与聚酰胺吸附黄酮的对比研究[J]. 应用化工,2016,45(5):929−932, 936.
    [10]
    马乐, 韩军歧, 张润光, 等. 大孔吸附树脂在植物多酚分离纯化中的应用现状[J]. 食品工业科技,2015,36(12):364−367, 374.
    [11]
    吴艳立, 丁之恩, 闫晗, 等. 黑豆皮中花青素大孔吸附树脂分离纯化工艺研究[J]. 食品研究与开发,2016,37(21):50−53, 67. doi: 10.3969/j.issn.1005-6521.2016.21.012
    [12]
    赵文娟, 宋扬, 杨洪江. 大孔吸附树脂纯化黑果枸杞中的原花青素[J]. 食品工业科技,2017,38(22):189−194.
    [13]
    吕玉姣, 尹雨芳, 林强. 黑果枸杞花青素提取分离纯化和组分分析[J]. 化学世界,2016,57(10):659−667.
    [14]
    顾子杨, 崔梦迪, 李玉华, 等. 黑枸杞花色苷纯化工艺的优化与评价[J]. 中国药理学通报,2018,34(10):1373−1379. doi: 10.3969/j.issn.1001-1978.2018.10.010
    [15]
    曹叶霞, 王泽慧, 贺金凤, 等. 静乐黑枸杞多糖的提取及抗氧化性分析[J]. 食品工业科技,2019,40(14):196−202.
    [16]
    郭治羌. 野生黑枸杞人工驯化种植方法[P]. 2015-10-30, 中国, CN201510720316.2.
    [17]
    杨萍, 李哲. pH示差法与HPLC测定黑枸杞花青素方法比较[J]. 中国农机化学报,2017,38(7):74−78.
    [18]
    张玲艳, 王宏权. 黑枸杞花青素的提取及其抗氧化活性研究[J]. 食品工业,2014,35(12):88−91.
    [19]
    熊莹, 樊俊甫, 薛俊文, 等. 茶多酚超声辅助提取工艺优化及抗氧化活性研究[J]. 中国现代应用药学,2020,37(2):175−179.
    [20]
    郑璐, 胡金贵, 张佳智, 等. 扶芳藤提取物体内体外抗氧化作用研究[J]. 天然产物研究与开发,2020,32(5):742−748.
    [21]
    Roberta R, Nicoletta P G. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology and Medicine,1999,26(9/10):1231−1237.
    [22]
    葡萄皮渣中花旗松素提取工艺优化及其抗氧化能力测定[J]. 食品工业科技, 2021, 42(5): 200-205,220.
    [23]
    周巾英, 欧阳玲花, 王丽, 等. 白藜芦醇清除DPPH自由基反应的动力学[J]. 食品工业,2020,41(6):222−226.
    [24]
    王超雪, 陈瑞战, 陆娟, 等. 黑枸杞花青素不同提取工艺及抗氧化活性[J]. 食品工业,2020,41(6):24−28.
    [25]
    蔡延渠, 董碧莲, 陈利秋, 等. 桃胶多糖体内外抗氧化作用的研究[J]. 食品工业科技,2020,41(13):53−58.
    [26]
    许瑞如, 张秀玲, 李晨, 等. 微波提取桔梗根多酚工艺优化及抗氧化特性研究[J]. 食品与发酵工业,2020,46(4):187−196.
  • Related Articles

    [1]LAI Maojia, MOU Yan, YI Yuwen, FAN Wenjiao, QIAO Xing. Correlation Analysis between Microbial Diversity and Flavor Compounds in Sichuan Fermented Sausage[J]. Science and Technology of Food Industry, 2025, 46(6): 303-314. DOI: 10.13386/j.issn1002-0306.2024040421
    [2]ZHOU Wenwen, LIU Hui, XU Zhijia, XIAO Fengqin, LI Bo, YANG Yiliu, LI Guangzhe, YAN Mingming. Content and Antioxidant Activity of Components in Different Polar Parts of Semen Ziziphi Spinosae and Their Correlation Analysis[J]. Science and Technology of Food Industry, 2023, 44(16): 288-296. DOI: 10.13386/j.issn1002-0306.2022090054
    [3]QIAO Jian, LI Guopeng, DU Liqing, WEI Changbin, LI Tianzi, MA Zhiling. Quality Determination and Correlation Analysis of Mulberry Fruits during Different Development Stages[J]. Science and Technology of Food Industry, 2021, 42(17): 24-29. DOI: 10.13386/j.issn1002-0306.2020110206
    [4]WANG Ying, DU Yan, LI Rong, JIANG Zi-tao, CHAI Ran, WANG Juan-juan. Evaluation of Antioxidant Activities in Vitro of Ethanol Extract from Perilla frutescens(L.)Britt Leaves and Correlation Analysis[J]. Science and Technology of Food Industry, 2020, 41(9): 81-87. DOI: 10.13386/j.issn1002-0306.2020.09.013
    [5]LI Ci-li, YANG Yang, CHEN Feng-lian, LIU Lin-lin, ZHANG Guang, SUN Bing-yu, SHI Yan-guo. Study on correlation between composition of mixed powder and quality characteristics of fermented rice cake[J]. Science and Technology of Food Industry, 2017, (10): 103-107. DOI: 10.13386/j.issn1002-0306.2017.10.012
    [6]GONG Zi-wei, GUO Wei-jun, SUN Wei, WANG Fen-e, WU Jian-min. Study on the correlated experiment of mechanical properties and chemical compositions of potato buds[J]. Science and Technology of Food Industry, 2015, (19): 120-123. DOI: 10.13386/j.issn1002-0306.2015.19.016
    [7]QIU Ran, GUO Jian-hua, SHI Dian-yu, XU Kai, SU Hong-xu, LU Jian. Analysis of the correlations between antioxidant properties and the regular index of malt[J]. Science and Technology of Food Industry, 2015, (17): 67-71. DOI: 10.13386/j.issn1002-0306.2015.17.005
    [8]HU Shuang-fang, WEI Ya-xi, XING Jing-jing, TONG Shi-sheng, NIU Yin-xue, LIU Ping. Correlation analysis between chemical components and sensory quality of coffee[J]. Science and Technology of Food Industry, 2013, (24): 125-129. DOI: 10.13386/j.issn1002-0306.2013.24.057
    [9]Study on the correlation between total flavonoids and anti-oxidation in bee pollens[J]. Science and Technology of Food Industry, 2013, (01): 70-73. DOI: 10.13386/j.issn1002-0306.2013.01.007
    [10]Study on the correlation between freezing point and physic-chemical properties of buffalo milk[J]. Science and Technology of Food Industry, 2012, (16): 170-173. DOI: 10.13386/j.issn1002-0306.2012.16.076
  • Cited by

    Periodical cited type(13)

    1. 宗子歆,姚子昂,张玉龙,陈鑫,曹际娟,胡冰. Ⅰ型胶原蛋白的结构、提取及应用研究进展. 食品研究与开发. 2025(04): 169-176 .
    2. 龚受基,覃媚,戴梓茹,蒋红明,郭德军. 响应面法优化相思藤黄酮提取工艺及其体外抗氧化活性分析. 食品工业科技. 2024(06): 178-185 . 本站查看
    3. 罗联钰,徐清清,朱金燕,魏维鑫,吴清朋,刘家光. 超声前处理对牡蛎蛋白水解度的影响. 食品工业. 2024(04): 17-22 .
    4. 武婷,康明丽,程雅如,申彤,李依孜. 微波辅助酶法提取香菇柄蛋白工艺研究. 粮食与油脂. 2024(09): 129-134 .
    5. 张倩,张文博,陈滢竹,姜旭,汤璐,王刚,李艳丽. 榛蘑蛋白提取工艺的优化研究. 中国调味品. 2023(05): 118-124 .
    6. 窦容容,赵春青,颜子恒,桑亚新,孙纪录,亢春雨. 超声波对鲟鱼皮酸溶性胶原蛋白提取及理化特性的影响. 中国食品学报. 2023(10): 125-135 .
    7. 李璐,李鹏,孙慧娟,马凯华,马俪珍,李玲. 响应面优化超声波辅助革胡子鲶鱼鱼头汤熬煮工艺. 肉类研究. 2022(02): 27-32 .
    8. 黄可承,宫萱,唐嘉诚,陈彦婕,包建强. 水产品副产物胶原蛋白制备方法及应用. 精细化工. 2022(09): 1757-1766 .
    9. 赵琼瑜,胡鉴,李彩燕,徐树杰,宋伟. 超声波辅助鳖甲脱钙工艺优化及其对胶原蛋白生化特征的影响. 食品工业科技. 2022(22): 39-51 . 本站查看
    10. 李家柔,倪剑波,何静怡,许惠雅,井璐楠,施文正. 超声辅助酶法提取罗非鱼皮胶原蛋白及其溶解特性. 渔业现代化. 2022(06): 127-134 .
    11. 陈文娟. 响应面法优化超声协同胃蛋白酶提取鲣鱼皮胶原蛋白的工艺研究. 延边大学农学学报. 2022(04): 60-66 .
    12. 魏沈芳,张顺棠,刘昆仑,段晓杰,高立栋. 超声辅助酶法制备鸡皮胶原蛋白的工艺优化. 河南工业大学学报(自然科学版). 2022(06): 59-66 .
    13. 袁子杰,秦洋,杨凤英,邓志萍. 超声辅助技术开发新型黑茶酒. 食品科技. 2021(11): 90-97 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (273) PDF downloads (32) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return