Citation: | YAN Wenjia, JIA Xin, YAN Jinxin, et al. Research Progress in Preparation and Application of Emulsion Microgel Particle[J]. Science and Technology of Food Industry, 2021, 42(15): 383−388. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070201. |
[1] |
Prakash A, Baskaran R, Paramasivam N, et al. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review[J]. Food Research International,2018,111:509−523. doi: 10.1016/j.foodres.2018.05.066
|
[2] |
刘贝, 陆剑锋, 姜绍通, 等. 维生素D2明胶微球的制备工艺研究及性能表征[J]. 中国食品添加剂,2017(5):68−74. doi: 10.3969/j.issn.1006-2513.2017.05.005
|
[3] |
汪鸿. 微胶囊技术在高不饱和脂肪酸油脂中的研究进展[J]. 食品安全导刊,2017(33):37. doi: 10.3969/j.issn.1674-0270.2017.33.025
|
[4] |
Wei Z, Huang Q. Assembly of protein-polysaccharide complexes for delivery of bioactive ingredients: A perspective paper[J]. Journal of Agricultural and Food Chemistry,2019,67(5):1344−1352. doi: 10.1021/acs.jafc.8b06063
|
[5] |
Bao C, Jiang P, Chai J, et al. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models[J]. Food Research International,2019,120:130−140. doi: 10.1016/j.foodres.2019.02.024
|
[6] |
Torres O, Murray B, Sarkar A. Design of novel emulsion microgel particles of tuneable size[J]. Food Hydrocolloids,2017,71:47−59. doi: 10.1016/j.foodhyd.2017.04.029
|
[7] |
Lin D, Kelly A L, Miao S. Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels[J]. Trends in Food Science & Technology,2020,102:123−137.
|
[8] |
Harper J M, Clark J P. Food extrusion[J]. Critical Reviews in Food Science & Nutrition,1979,11(2):155−215.
|
[9] |
Egan T, O’Riordan D, O’Sullivan M, et al. Cold-set whey protein microgels as pH modulated immobilisation matrices for charged bioactives[J]. Food Chemistry,2014,156:197−203. doi: 10.1016/j.foodchem.2014.01.109
|
[10] |
Lin D, Kelly A L, Maidannyk V, et al. Effect of concentrations of alginate, soy protein isolate and sunflower oil on water loss, shrinkage, elastic and structural properties of alginate-based emulsion gel beads during gelation[J]. Food Hydrocolloids,2020:105998.
|
[11] |
Sung M R, Xiao H, Decker E A, et al. Fabrication, characterization and properties of filled hydrogel particles formed by the emulsion-template method[J]. Journal of Food Engineering,2015,155:16−21. doi: 10.1016/j.jfoodeng.2015.01.007
|
[12] |
Egan T, Jacquier J C, Rosenberg Y, et al. Cold-set whey protein microgels for the stable immobilization of lipids[J]. Food Hydrocolloids,2013,31(2):317−324. doi: 10.1016/j.foodhyd.2012.11.008
|
[13] |
Moakes R J A, Sullo A, Norton I T. Preparation and rheological properties of whey protein emulsion fluid gels[J]. RSC Advances,2015,5(75):60786−60795. doi: 10.1039/C5RA12684C
|
[14] |
Moakes R J A, Sullo A, Norton I T. Preparation and characterisation of whey protein fluid gels: The effects of shear and thermal history[J]. Food Hydrocolloids,2015,45:227−235. doi: 10.1016/j.foodhyd.2014.11.024
|
[15] |
McClements D J. Enhanced delivery of lipophilic bioactives using emulsions: A review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility[J]. Food & Function,2018,9(1):22−41.
|
[16] |
Laing D G, Jinks A. Flavour perception mechanisms[J]. Trends in Food Science & Technology,1996,7(12):387−389.
|
[17] |
Corstens M N, Berton-Carabin C C, Elichiry-Ortiz P T, et al. Emulsion-alginate beads designed to controlin vitro intestinal lipolysis: Towards appetite control[J]. Journal of Functional Foods,2017,34:319−328. doi: 10.1016/j.jff.2017.05.003
|
[18] |
Wang M, Doi T, Hu X, et al. Influence of ionic strength on the thermostability and flavor (allyl methyl disulfide) release profiles of calcium alginate microgels[J]. Food Hydrocolloids,2019,93:24−33. doi: 10.1016/j.foodhyd.2019.02.013
|
[19] |
Torres O, Murray B S, Sarkar A. Overcomingin vitro gastric destabilisation of emulsion droplets using emulsion microgel particles for targeted intestinal release of fatty acids[J]. Food Hydrocolloids,2019,89:523−533. doi: 10.1016/j.foodhyd.2018.11.010
|
[20] |
Ma D, Tu Z C, Wang H, et al. Microgel-in-microgel biopolymer delivery systems: Controlled digestion of encapsulated lipid droplets under simulated gastrointestinal conditions[J]. Journal of Agricultural and Food Chemistry,2018,66(15):3930−3938. doi: 10.1021/acs.jafc.8b00132
|
[21] |
Bokkhim H, Bansal N, Grøndahl L, et al. In-vitro digestion of different forms of bovine lactoferrin encapsulated in alginate micro-gel particles[J]. Food Hydrocolloids,2016,52:231−242. doi: 10.1016/j.foodhyd.2015.07.007
|
[22] |
Hasanvand E, Fathi M, Bassiri A, et al. Novel starch based nanocarrier for vitamin D fortification of milk: Production and characterization[J]. Food and Bioproducts Processing,2015,96:264−277. doi: 10.1016/j.fbp.2015.09.007
|
[23] |
Kuhn K R, E Silva F G D, Netto F M, et al. Production of whey protein isolate-gellan microbeads for encapsulation and release of flaxseed bioactive compounds[J]. Journal of Food Engineering,2019,247:104−114. doi: 10.1016/j.jfoodeng.2018.12.002
|
[24] |
Deng Y, Zhong G, Wang Y, et al. Quality by design approach for the preparation of fat-soluble vitamins lipid injectable emulsion[J]. International Journal of Pharmaceutics,2019,571:118717. doi: 10.1016/j.ijpharm.2019.118717
|
[25] |
Ozturk B, Argin S, Ozilgen M, et al. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility[J]. Food Chemistry,2015,187:499−506. doi: 10.1016/j.foodchem.2015.04.065
|
[26] |
Rejinold N S, Kim H K, Isakovic A F, et al. Therapeutic vitamin delivery: Chemical and physical methods with future directions[J]. Journal of Controlled Release,2019,298:83−98. doi: 10.1016/j.jconrel.2019.01.038
|
[27] |
Wang B, Vongsvivut J, Adhikari B, et al. Microencapsulation of tuna oil fortified with the multiple lipophilic ingredients vitamins A, D3, E, K2, curcumin and coenzyme Q10[J]. Journal of Functional Foods,2015,19:893−901. doi: 10.1016/j.jff.2015.03.027
|
[28] |
Teng Z, Luo Y, Wang Q. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3[J]. Food Chemistry,2013,141(1):524−532. doi: 10.1016/j.foodchem.2013.03.043
|
[29] |
Eratte D, Dowling K, Barrow C J, et al. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review[J]. Trends in Food Science & Technology,2018,71:121−131.
|
[30] |
刘婷婷, 石少侠, 段虎平, 等. 亚麻籽营养成分提取及其功能和应用研究进展[J]. 中国油脂,2020(3):20.
|
[31] |
Bakry A M, Huang J, Zhai Y, et al. Myofibrillar protein with κ-or λ-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation[J]. Food Hydrocolloids,2019,96:43−53. doi: 10.1016/j.foodhyd.2019.04.070
|
[32] |
Abbasi F, Samadi F, Jafari S M, et al. Production of omega-3 fatty acid-enriched broiler chicken meat by the application of nanoencapsultsed flaxseed oil prepared via ultrasonication[J]. Journal of Functional Foods,2019,57:373−381. doi: 10.1016/j.jff.2019.04.030
|
[33] |
Wang B, Adhikari B, Barrow C J. Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation[J]. Food Chemistry,2014,158:358−365. doi: 10.1016/j.foodchem.2014.02.135
|
[34] |
Hashim A F, Hamed S F, Hamid H A A, et al. Antioxidant and antibacterial activities of omega-3 rich oils/curcumin nanoemulsions loaded in chitosan and alginate-based microbeads[J]. International Journal of Biological Macromolecules,2019,140:682−696. doi: 10.1016/j.ijbiomac.2019.08.085
|
[35] |
Alleleyn A M E, Van Avesaat M, Troost F J, et al. Gastrointestinal nutrient infusion site and eating behavior: Evidence for a proximal to distal gradient within the small intestine?[J]. Nutrients,2016,8(3):117. doi: 10.3390/nu8030117
|
[36] |
Chen F, Deng Z, Zhang Z, et al. Controlling lipid digestion profiles using mixtures of different types of microgel: Alginate beads and carrageenan beads[J]. Journal of Food Engineering,2018,238:156−163. doi: 10.1016/j.jfoodeng.2018.06.009
|
[37] |
Guo Q, Ye A, Lad M, et al. Impact of colloidal structure of gastric digesta on in-vitro intestinal digestion of whey protein emulsion gels[J]. Food Hydrocolloids,2016,54:255−265. doi: 10.1016/j.foodhyd.2015.10.006
|
[38] |
Guo Q, Bellissimo N, Rousseau D. Role of gel structure in controlling in vitro intestinal lipid digestion in whey protein emulsion gels[J]. Food Hydrocolloids,2017,69:264−272. doi: 10.1016/j.foodhyd.2017.01.037
|
[39] |
Dias C B, Zhu X, Thompson A K, et al. Effect of the food form and structure on lipid digestion and postprandial lipaemic response[J]. Food & Function,2019,10(1):112−124.
|
[40] |
Fuhrmann P L, Sala G, Stieger M, et al. Effect of oil droplet inhomogeneity at different length scales on mechanical and sensory properties of emulsion-filled gels: Length scale matters[J]. Food Hydrocolloids,2020,101:105462. doi: 10.1016/j.foodhyd.2019.105462
|
[41] |
Lin D, Kelly A L, Maidannyk V, et al. Effect of structuring emulsion gels by whey or soy protein isolate on the structure, mechanical properties, andin-vitro digestion of alginate-based emulsion gel beads[J]. Food Hydrocolloids,2020:106165.
|
[42] |
Valdivieso-Ugarte M, Gomez-Llorente C, Plaza-Díaz J, et al. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review[J]. Nutrients,2019,11(11):2786. doi: 10.3390/nu11112786
|
[43] |
Doost A S, Nasrabadi M N, Kassozi V, et al. Recent advances in food colloidal delivery systems for essential oils and their main components[J]. Trends in Food Science & Technology,2020,99:474−486.
|
[44] |
Reineccius G A. Flavor encapsulation[J]. Food Reviews International,1989,5(2):147−176. doi: 10.1080/87559128909540848
|
[45] |
Kwan A, Davidov-Pardo G. Controlled release of flavor oil nanoemulsions encapsulated in filled soluble hydrogels[J]. Food Chemistry,2018,250:46−53. doi: 10.1016/j.foodchem.2017.12.089
|
[46] |
Shetta A, Kegere J, Mamdouh W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities[J]. International Journal of Biological Macromolecules,2019,126:731−742. doi: 10.1016/j.ijbiomac.2018.12.161
|
[1] | XIN Yu, SUN Jingmeng, ZHANG Weiyu. Research Progress of Physiological Activity and Preparations of Anthocyanins[J]. Science and Technology of Food Industry, 2021, 42(17): 413-422. DOI: 10.13386/j.issn1002-0306.2020080078 |
[2] | Hongxia YUAN, Qianyi HOU, Shan DU, Huan TIAN, Qingshan LI. Purification and Antioxidant Properties of Anthocyanins from Jingle Lycium ruthenicum[J]. Science and Technology of Food Industry, 2021, 42(9): 173-178. DOI: 10.13386/j.issn1002-0306.2020070221 |
[3] | LONG Yue-teng, XIANG Xun-chao, YAN Li-mei, YANG Bo-wen, XU Liang, YOU Hui. Optimization of Ethanol Extracting Process of Anthocyanin from Black Rice[J]. Science and Technology of Food Industry, 2018, 39(21): 172-177. DOI: 10.13386/j.issn1002-0306.2018.21.031 |
[4] | SUN Qian-yi, LU Bao-jun, ZHANG Jing. Research progress of blueberry anthocyanin[J]. Science and Technology of Food Industry, 2016, (20): 381-384. DOI: 10.13386/j.issn1002-0306.2016.20.068 |
[5] | WANG Yang, DING Long, WANG Si- qing. Study on proanthocyanidins and anthocyanins contents of Lycium ruthenicum Murr.from different areas[J]. Science and Technology of Food Industry, 2016, (13): 122-126. DOI: 10.13386/j.issn1002-0306.2016.13.016 |
[6] | SHI Juan, ZHANG Man-li, SUN Han-ju, CHEN Xiao-yan, LOU Qiu-yan, LIU Ning, WANG Xiao. Study on in vivo antioxidation of anthocyanins from black rice[J]. Science and Technology of Food Industry, 2015, (05): 348-351. DOI: 10.13386/j.issn1002-0306.2015.05.065 |
[7] | ZHAO Li-yi, LI Lu-ning, SHEN Rui-meng, ZHU Ning, SUN Ai-dong. Study on stability of acylated blueberries anthocyanins[J]. Science and Technology of Food Industry, 2014, (22): 299-303. DOI: 10.13386/j.issn1002-0306.2014.22.057 |
[8] | LI Lu-ning, CHEN Wei, ZHAO Li-yi, SUN Ai-dong. Acylation reaction of blueberry anthocyanins with gallic acid and evaluation of its antioxidant activities[J]. Science and Technology of Food Industry, 2014, (06): 102-106. DOI: 10.13386/j.issn1002-0306.2014.06.072 |
[9] | Study on the stability of premier blueberry anthocyanins[J]. Science and Technology of Food Industry, 2013, (13): 119-124. DOI: 10.13386/j.issn1002-0306.2013.13.042 |
[10] | Research progress in separation purification and component identification of anthocyanins[J]. Science and Technology of Food Industry, 2013, (03): 358-360. DOI: 10.13386/j.issn1002-0306.2013.03.054 |
1. |
甄子辰,刘阳,王珊珊,路宏朝,王令,张涛. 基于文献计量的乳酸菌细菌素研究进展分析. 食品工业科技. 2024(09): 378-388 .
![]() | |
2. |
杜丽红,袁谨怡,战俊杰,陈雨新,王可答,李杨,朱璇,张金凤. 大肠杆菌产L-酪氨酸发酵工艺优化. 食品与发酵科技. 2024(05): 16-22 .
![]() |