TANG Yayuan, HE Xuemei, SUN Jian, et al. Physicochemical Properties and Antioxidant Activities of Different Se-proteins from Selenium-enriched Rice[J]. Science and Technology of Food Industry, 2021, 42(9): 44−50. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070183.
Citation: TANG Yayuan, HE Xuemei, SUN Jian, et al. Physicochemical Properties and Antioxidant Activities of Different Se-proteins from Selenium-enriched Rice[J]. Science and Technology of Food Industry, 2021, 42(9): 44−50. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070183.

Physicochemical Properties and Antioxidant Activities of Different Se-proteins from Selenium-enriched Rice

More Information
  • Received Date: July 15, 2020
  • Available Online: March 15, 2021
  • Objective:Different kinds of Se-proteins from selenium-enriched rice were used as raw materials to analyze their physicochemical properties and antioxidant activities. Methods: Water-soluble proteins (WSP), salt-soluble proteins (SSP), ethanol-soluble proteins (ESP) and alkali-soluble proteins (ASP) were prepared by Osborne classification method. The protein content and selenium content of Se-proteins, as well as the molecular weight distribution of Se-proteins were determined. The characteristic groups were conducted by ultraviolet (UV) spectrum and Fourier transform infrared (FT-IR) spectroscopy. The composition of seleno-amino acids in ASP from selenium-enriched rice was performed by liquid chromatography-mass spectrometry (LC-MS) method. On this basis, the total antioxidant capacity (T-AOC) and DPPH free radical scavenging capacity of Se-proteins were further analyzed. Results: Among all Se-proteins, ASP had maximum protein and selenium contents (P<0.05). Three Se-amino acids in ASP from selenium-enriched rice were identified and determined, including selenocysteine (300.22 ± 6.88 µg/kg) and methylselenocysteine (170.19 ± 2.87 µg/kg), as well as a small quantity of selenomethionine. There were obvious dose-response relationships between three Se-proteins and antioxidant capacity. ASP possessed the highest T-AOC and DPPH radical scavenging capacity among all Se-proteins. Through the correlation analysis between the antioxidant activity and the selenium content of Se-proteins, there were extremely significant positive correlation (P<0.01). Conclusion: ASP as selenium-enriched rice extract could be the most ideal protein to be further purified and studied.
  • [1]
    聂婷婷, 李晖. 硒与心血管疾病相关性的研究进展[J]. 中国食物与营养,2019,25(9):9−13. doi: 10.3969/j.issn.1006-9577.2019.09.002
    [2]
    Wang Y L, Fang W F, Huang Y, et al. Reduction of selenium-binding protein 1 sensitizes cancer cells to selenite via elevating extracellular glutathione: A novel mechanism of cancer-specific cytotoxicity of selenite[J]. Free Radical Biology and Medicine,2015,79(3):186−196.
    [3]
    张兰兰, 孙冬雪, 庞立欣, 等 外源硒对谷子植株体内谷胱甘肽过氧化物酶及品质的影响[J]. 江苏农业科学, 2018, 46(19): 59-62.
    [4]
    黄开勋, 刘琼, 徐辉碧. 硒蛋白的抗氧化性研究与第21个氨基酸的发现[J]. 无机化学学报,2008,24(8):1213−1218.
    [5]
    Fang Y, Catron B, Zhang Y F, et al. Distribution and in vitro availability of selenium in selenium-containing storage protein from selenium-enriched rice utilizing optimized extraction[J]. Journal of Agricultural and Food Chemistry,2010,58(17):9731−9738. doi: 10.1021/jf100934p
    [6]
    方建军, 祝华明, 方芳, 等. 富硒大米中硒形态分析[J]. 食品研究与开发,2012,33(9):146−150.
    [7]
    王程, 王悦, 隋春红, 等. 硒化大米蛋白抗氧化性活性研究[J]. 食品工业科技,2016,37(10):165−170.
    [8]
    隋春红, 李校娜, 徐亚维, 等. 硒化大米蛋白抗氧化性活性研究[J]. 吉林农业科技学院学报,2017,26(3):5−9. doi: 10.3969/j.issn.1674-7852.2017.03.002
    [9]
    王程, 王丽丽, 纪朋艳, 等. 硒化高粱蛋白质的制备及其抗氧化活性[J]. 食品研究与开发,2016,37(21):4−9. doi: 10.3969/j.issn.1005-6521.2016.21.002
    [10]
    秦芸, 石沛霖, 刘维维, 等. 富硒大米肽体内抗氧化活性研究[J]. 食品工业科技,2017,38(17):305−309.
    [11]
    Wu J, Li P, Shi Y, et al. Neuroprotective effects of two selenium-containing peptides, TSeMMM and SeMDPGQQ, derived from selenium-enriched rice protein hydrolysates on Pb2+-induced oxidative stress in HT22 cells[J]. Food and Chemical Toxicology,2020,135(1):1−7.
    [12]
    岳晶念, 戚向阳, 谢笔钧, 等. 富硒大蒜中不同含硒蛋白抗氧化活性的研究[J]. 中国食品学报,2010,10(5):60−67. doi: 10.3969/j.issn.1009-7848.2010.05.009
    [13]
    张卓, 赵萍, 郭健, 等. 富硒花生中含硒蛋白的提取及其抗氧化性的研究[J]. 食品工业科技,2012,33(4):323−326.
    [14]
    杜明, 赵镭, 赵广华, 等. 富硒灵芝中不同蛋白提取物的组成特性及抗氧化活性研究[J]. 食品与发酵工业,2006,32(6):11−15. doi: 10.3321/j.issn:0253-990X.2006.06.004
    [15]
    孙媛, 蔡迪, 向琴, 等. 麦麸中四种蛋白的Osborne法提取分离及性能研究[J]. 食品工业科技,2015,36(9):136−139, 203.
    [16]
    梁潘霞, 兰秀, 刘永贤, 等. 富硒大米硒蛋白提取方法研究[J]. 西南农业学报,2017,30(11):2474−2478.
    [17]
    邹春苗, 刘静晶, 廖雪, 等. 电感耦合等离子体质谱法和氢化物原子荧光光谱法测定富硒大米中硒含量的对比分析[J]. 食品安全质量检测学报,2020,11(4):1231−1234.
    [18]
    冯明菊, 熊华, 王晓雅, 等. 富硒糙米蛋白理化特性及抗氧化活性的研究[J]. 食品工业科技,2020,41(5):34−42.
    [19]
    程利增. 茶叶硒蛋白的分离纯化、结构、有机硒形态及其抗氧化活性研究[M]. 上海: 上海师范大学, 2017.
    [20]
    蓝蔚青, 胡潇予, 阮东娜, 等. 傅里叶红外结合拉曼分析卡拉胶寡糖对南美白对虾蛋白结构影响[J]. 光谱学与光谱分析,2019,39(8):2507−2514.
    [21]
    Tie M, Sun J F, Gao Y, et al. Identification and quantitation of seleno-amino acids in mung bean sprouts by high performance liquid chromatography coupled with mass spectrometry (HPLC–MS)[J]. European Food Research and Technology,2018,244(8):491−500.
    [22]
    董亚蕾, 刘文婧, 曹进, 等. 超高效液相色谱-串联三重四级杆质谱法测定富硒食品中的硒代氨基酸[J]. 食品安全质量检测学报,2017,8(7):2401−2406. doi: 10.3969/j.issn.2095-0381.2017.07.006
    [23]
    王婷婷, 王少康, 黄桂玲, 等. 菊花主要活性成分含量及其抗氧化活性测定[J]. 食品科学,2013,34(15):95−99. doi: 10.7506/spkx1002-6630-201315020
    [24]
    胡玲玲, 李春阳, 曾晓雄, 等. 富硒发芽糙米蛋白的抗氧化活性[J]. 食品科学,2016,37(1):99−103. doi: 10.7506/spkx1002-6630-201601018
    [25]
    Tang Y Y, He X M, Sun J, et al. Polyphenols and alkaloids in by-products of longan fruits (Dimocarpus longan Lour.) and their bioactivities[J]. Molecules,2019,24(6):1−16.
    [26]
    张涛, 高愈希, 李柏, 等. 高效液相色谱-等离子体质谱联用方法研究富硒大米中硒的形态[J]. 分析化学,2008,36(2):206−210. doi: 10.3321/j.issn:0253-3820.2008.02.014
    [27]
    Dei Piu L, Tassoni A, Serrazanetti D I, et al. Exploitation of starch industry liquid by-product to produce bioactive peptides from rice hydrolyzed proteins[J]. Food Chemistry,2014,155(13):199−206.
    [28]
    张东霞. 食用合成色素胭脂红对胰蛋白酶光谱性质的影响[J]. 食品工业科技,2017,38(13):58−63.
    [29]
    孙佳悦, 钱方, 姜淑娟, 等. 基于红外光谱分析热处理对牛乳蛋白质二级结构的影响[J]. 食品科学,2017,38(23):82−86. doi: 10.7506/spkx1002-6630-201723014
    [30]
    石宝霞, 车会莲, 赵利霞, 等. 碎米荠硒多糖的分离纯化及光谱分析[J]. 食品科学,2007,28(6):298−302. doi: 10.3321/j.issn:1002-6630.2007.06.072
    [31]
    龚如雨, 钟松臻, 张宝军, 等. 富硒、非富硒大米有机硒的组成及硒的可利用度分析[J]. 食品研究与开发,2017,38(20):11−15. doi: 10.3969/j.issn.1005-6521.2017.20.002
    [32]
    Hawkesford M J, Zhao F J. Strategies for increasing the selenium content of wheat[J]. Journal of Cereal Science,2007,46(3):282−292. doi: 10.1016/j.jcs.2007.02.006
    [33]
    Fang Y, Xu Z, Shi Y, et al. Protection mechanism of Se-containing protein hydrolysates from Se-enriched rice on Pb2+-induced apoptosis in PC12 and RAW264.7 cells[J]. Food Chemistry,2007,219(5):391−398.
    [34]
    Hu Z, Cheng Y, Suzuki N, et al. Speciation of selenium in brown rice fertilized with selenite and effects of selenium fertilization on rice proteins[J]. International Journal of Molecular Sciences,2018,19(11):1−15.
    [35]
    Zeng R, Farooq M U, Zhang G, et al. Dissecting the potential of selenoproteins extracted from selenium-enriched rice on physiological, biochemical and anti-ageing effects in vivo[J]. Biological Trace Element Research,2020,196(1):119−130. doi: 10.1007/s12011-019-01896-z
  • Cited by

    Periodical cited type(6)

    1. 李姝琪,李志恒,李华爽,柳志诚,刘永刚. 中药提取物、活性成分及复方对酒精性肝损伤保护作用的研究进展. 中成药. 2025(01): 139-147 .
    2. 任凯利,樊如燕,师艳红,张燕,郭景慧,刘玉玲. 天然产物活性成分缓解酒精性肝损伤的研究进展. 医学理论与实践. 2025(04): 576-578+582 .
    3. 覃萍,苏阳静,陈永苗,郑瑞瑶,钟佳妮,叶晓燕,葛跃伟,陈阿丽. 基于UHPLC-Q-Exactive Orbitrap-MS的三种基原溪黄草及其干预小鼠肝纤维化的血清化学研究. 中南药学. 2024(02): 296-301 .
    4. 李小敏,张佳涵,梁宏轩,黄镇江,张振霞,郑玉忠,陈良辉,刘亚群. 基于数据挖掘探究溪黄草药用成分及潜在抗癌的作用机制. 现代医药卫生. 2024(06): 930-935+940 .
    5. 吴奕霖,覃素萍,李小敏,蓝小梅,吴长亮. 壮医药治疗酒精性肝病的研究进展. 中国民族医药杂志. 2024(11): 51-55 .
    6. 王晨,宋立孝,程金来,谭余庆,杨米一,赵保胜. 葛菊护肝片调节NF-κB和Bcl-2/Bax信号通路改善酒精所致的小鼠肝脏损伤. 中国实验方剂学杂志. 2023(18): 17-25 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return