YANG Boruo, LI Huajian, SU Yaning, et al. Analysis of Different Proteins Affecting Water Holding Capacity of Pork Based on Microstructure and Proteomics[J]. Science and Technology of Food Industry, 2021, 42(7): 136−144. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070148.
Citation: YANG Boruo, LI Huajian, SU Yaning, et al. Analysis of Different Proteins Affecting Water Holding Capacity of Pork Based on Microstructure and Proteomics[J]. Science and Technology of Food Industry, 2021, 42(7): 136−144. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070148.

Analysis of Different Proteins Affecting Water Holding Capacity of Pork Based on Microstructure and Proteomics

More Information
  • Received Date: July 13, 2020
  • Available Online: January 27, 2021
  • In order to investigate the effects of microstructural and proteomic changes of fresh pork on their water holding capacity in the early postmortem period, the longissimus dorsi samples of pigs were divided into high drip loss group (H-group≥5.93%, n=3) and low drip loss group (L-group≤0.81%, n=3) according to the level of drip loss. The microstructure and proteomics of the two groups were compared. The difference proteins between the two groups were identified using Tandem Mass Tag (TMT) and intercellular spaces were observed using electron microscopy. The results showed that the extracellular space of H-group was significantly larger than that of L-group at 24 h after slaughter(P<0.01). The higher the expression level of glucose-phosphotransferase-1, heat shock protein 70 (Hsp70), ankyrin, selenoprotein W and laminin in postmortem muscle, the lower the drip loss and the better the water holding capacity, while the higher the expression level of phosphoglycerate mutase and transketolase, the higher the drip loss and the worse the water holding capacity.
  • [1]
    Diniz W J, Banerjee P, Regitano L C, et al. Cross talk between mineral metabolism and meat quality: A systems biology overview[J]. Physiological Genomics,2019,51(11):529−538. doi: 10.1152/physiolgenomics.00072.2019
    [2]
    肖智超, 王桂瑛, 王雪峰, 等. 云南盐津乌骨鸡与武定鸡肌肉蛋白质组学差异研究[J]. 食品工业科技,2019,40(16):102−106, 117.
    [3]
    马静, 武开乐, 库西塔别克·买买提依不拉音, 等. iTRAQ技术在动物生产中的应用[J]. 中国细胞生物学学报,2017,39(12):1599−1604.
    [4]
    金绍明, 宁霄, 曹进, 等. 非标记蛋白定量方法在掺假肉鉴别中的应用[J]. 食品安全质量检测学报,2019,10(1):71−74. doi: 10.3969/j.issn.2095-0381.2019.01.012
    [5]
    牟永颖, 顾培明, 马博, 等. 基于质谱的定量蛋白质组学技术发展现状[J]. 生物技术通报,2017,33(9):73−84.
    [6]
    赵雅娟, 苏琳, 尹丽卿, 等. 蛋白质组学技术在肉品质中的研究进展[J]. 食品工业,2016,37(4):233−236.
    [7]
    Lee S H, Kim J M, Ryu Y C, et al. Effects of morphological characteristics of muscle fibers on porcine growth performance and pork quality[J]. Korean Journal for Food Science of Animal Resources,2016,36(5):583−593. doi: 10.5851/kosfa.2016.36.5.583
    [8]
    杨汝男, 李燕清, 陈韬. 宰后猪最长肌踝蛋白降解与汁液流失的关系[J]. 食品工业科技,2018,39(20):12−17.
    [9]
    Wang Z, He F, Rao W, et al. Proteomic analysis of goat longissimus dorsi muscles with different drip loss values related to meat quality traits[J]. Food Science & Biotechnology,2016,25(2):425−431.
    [10]
    Pas M F W T, Kruijt L, Pierzchala M, et al. Identification of proteomic biomarkers in longissimus dorsi as potential predictors of pork quality[J]. Meat Science,2013,95(3):679−687. doi: 10.1016/j.meatsci.2012.12.015
    [11]
    Luca A D, Mullen A M, Elia G, et al. Centrifugal drip is an accessible source for protein indicators of pork ageing and water-holding capacity[J]. Meat Science,2011,88(2):261−270. doi: 10.1016/j.meatsci.2010.12.033
    [12]
    Gap-Don, Kim, Jin-Yeon, et al. Differential abundance of proteome associated with intramuscular variation of meat quality in porcine longissimus thoracis et lumborum muscle[J]. Meat Science,2019:85−95.
    [13]
    Sandberg A, Brance R M, Lehtio J, et al. Quantitative accuracy in mass spectrometry based proteomics of complex samples: The impact of labeling and precursor interference[J]. Journal of Proteomics,2014:133−144.
    [14]
    Warner R D, Kaufman R G, Greaser M L. Muscle protein changes post mortem in relation to pork quality traits[J]. Meat Science,1997,45(3):339−352. doi: 10.1016/S0309-1740(96)00116-7
    [15]
    Florowski T, Pisula A, Rola M, et al. Comparison of meatiness and the technological quality of pork from Polish Pulawy breed and its crosses with Polish Large White and Polish Landrace pigs[J]. Meat Science,2008,64(5):673−676.
    [16]
    Honikel K O. Reference methods for the assessment of physical characteristics of meat[J]. Meat Science,1998,49(4):447−457. doi: 10.1016/S0309-1740(98)00034-5
    [17]
    Luo X, Zhu Y, Zhou G. Electron microscopy of contractile bands in low voltage electrical stimulation beef[J]. Meat Science,2008,80(3):948−951. doi: 10.1016/j.meatsci.2008.03.017
    [18]
    吴霜, 陈韬, 张冬怡, 等. 猪屠宰后正常肉与PSE肉中整联蛋白变化与持水性的相关性[J]. 食品工业科技,2015,36(21):64−67, 72.
    [19]
    Schäfer A, Rosenvold K, Purslow P. Physiological and structural events post mortem of importance for drip loss in pork[J]. Meat Science,2002,61(4):355−366. doi: 10.1016/S0309-1740(01)00205-4
    [20]
    雄安秀. 锚蛋白研究进展[J]. 国外医学(儿科分册),2003(3):159−161.
    [21]
    Aslan O, Hamill R M, Mullen A M, et al. Association between promoter polymorphisms in a key cytoskeletal gene (Ankyrin 1) and intramuscular fat and water-holding capacity in porcine muscle[J]. Molecular Biology Reports,2012,39(4):3903−3914. doi: 10.1007/s11033-011-1169-4
    [22]
    王州. 基于重测序研究贵州地方住猪种基因组拷贝数变异[D]. 贵阳: 贵州大学, 2019.
    [23]
    Ceasar A, Regitano L C, Koltes J E, et al. Putative regulatory factors associated with intramuscular fat content[J]. Plos One,2015,10(6):1−21.
    [24]
    Watanabe G, Motoyama M, Nakajima I, et al. Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin[J]. Asian Journal of Animal Sciences,2017,31(6):914−918.
    [25]
    宋林霞, 徐振彪. 磷酸甘油酸变位酶[J]. 生命的化学,2011(1):90−93.
    [26]
    Koning D, Harlizius B, Rattink A P, et al. Detection and characterization of quantitative trait loci for meat quality traits in pigs[J]. Journal of Animal Science,2001,79(11):2812−2819. doi: 10.2527/2001.79112812x
    [27]
    Yang H, He J, Wei W, et al. The c. −360 T>C mutation affects PGAM2 transcription activity and is linked with the water holding capacity of the longissimus lumborum muscle in pigs[J]. Meat Science,2016,122(12):139−144.
    [28]
    Prejano M, Medinal F E, Fernandes P A, et al. The catalytic mechanism of human transketolase[J]. Chem Phys Chem,2019,20(21):2881−2886. doi: 10.1002/cphc.201900650
    [29]
    Kochetov G A. et al. Structure and functioning mechanism of transketolase[J]. Proteins & Proteomics,2014,61(12):59−68.
    [30]
    谢华. 冷却猪肉汁液流失及控制研究[D]. 杨凌: 西北农林科技大学, 2006.
    [31]
    Trocino A, Zomeno C, Birolo M, et al. Impact of pre-slaughter transport conditions on stress response, carcass traits, and meat quality in growing rabbits[J]. Meat Science,2018:68−74.
    [32]
    Hu H, Chen L, Dai S, et al. Effect of glutamine on antioxidant capacity and lipid peroxidation in the breast muscle of heat-stressed broilers via antioxidant genes and Hsp70 pathway[J]. Animals,2020,10(3):404. doi: 10.3390/ani10030404
    [33]
    Wei Y, Li X, Zhang D, et al. Comparison of protein differences between high-and low-quality goat and bovine parts based on iTRAQ technology[J]. Food Chemistry,2019,289(AUG. 15):240−249.
    [34]
    Traore S, Aubry L, Gatellier P, et al. Higher drip loss is associated with protein oxidation[J]. Meat Science,2011,90(4):917−924.
    [35]
    Liu Z, Xiong Y L, Chen J. Protein oxidation enhances hydration but suppresses water-holding capacity in porcine longissimus muscle[J]. Journal of Agricultural & Food Chemistry,2010,58(19):10697−10704.
    [36]
    Jeong D W, Kim E H, Kim T S, et al. Different distributions of selenoprotein W and thioredoxin during postnatal brain development and embryogenesis[J]. Molecules and Cells,2004,17(1):156−159.
    [37]
    Li Jungang. Enhanced water-holding capacity of meat was associated with increased Sepw1 gene expression in pigs feed selenium-enriched yeast[J]. Meat Science,2011,13(1):101−112.
    [38]
    Zhang M, Wang D, Xu X, et al. Comparative proteomic analysis of proteins associated with water holding capacity in goose muscles[J]. Food Research International,2019:354−361.
  • Cited by

    Periodical cited type(4)

    1. 王芳,马银花,祁存英,熊辉岩,段瑞君. 青稞品质及其环境因子影响研究进展. 食品研究与开发. 2025(02): 217-224 .
    2. 朱镇华,李桂霞,徐晨希,尹慧,罗文,陈实. 醪糟黑青稞面包配方优化研究. 粮食加工. 2024(02): 59-64 .
    3. 张玲,郑万财,兰永丽,张文刚. 藜麦富硒萌发工艺优化及抗氧化活性研究. 食品与机械. 2024(07): 175-182 .
    4. 茹巧美,任国平,王艳. 酸化甘油-超声辅助提取杨梅花青素工艺优化及其抗氧化活性研究. 食品安全质量检测学报. 2024(13): 124-132 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (294) PDF downloads (26) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return