WANG Kewen, LIAO Xiaojun, XU Zhenzhen. Advances in Analytical Techniques of Polyphenol-Protein Interaction [J]. Science and Technology of Food Industry, 2021, 42(14): 371−379. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070099.
Citation: WANG Kewen, LIAO Xiaojun, XU Zhenzhen. Advances in Analytical Techniques of Polyphenol-Protein Interaction [J]. Science and Technology of Food Industry, 2021, 42(14): 371−379. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070099.

Advances in Analytical Techniques of Polyphenol-Protein Interaction

More Information
  • Received Date: July 08, 2020
  • Available Online: May 23, 2021
  • The interaction between food compounds is one of the core issues in the field of food science. In this work, various analytical techniques of polyphenol-protein interaction classified by direct and indirect way are reviewed, including UV-Vis absorption spectrometry, Fourier transform infrared spectroscopy, Raman spectroscopy, atomic force microscopy, isothermal titration calorimetry, molecular docking, molecular dynamic simulation and so on. Features and examples of these analytical techniques are summarized to provide technical support for the research of polyphenol-protein interaction, as well as the other food compounds interaction. Finally, this work puts forward the strategy and future work for the study of the polyphenol-protein interaction, and discusses the practical significance of such interaction studies in food processing .
  • [1]
    金泽林, 金太花. 海藻活性物质在功能性食品中的应用研究[J]. 粮食科技与经济,2020,45(1):122−124.
    [2]
    国家自然科学基金委员会. 2020年度国家自然科学基金项目指南 [EB/OL]. 2020 [2021-04-07]. http://www.nsfc.gov.cn/publish/portal0/xmzn/2020/01/03/info77038.htm.
    [3]
    朱力杰, 张馨心, 刘秀英, 等. 界面扩张流变学性质在食品组分相互作用中的研究进展[J]. 食品工业科技,2017,38(11):363−368.
    [4]
    Czubinski J, Dwiecki K. A review of methods used for investigation of protein–phenolic compound interactions[J]. International Journal of Food Science & Technology,2017,52(3):1−13.
    [5]
    彭淳容. 数据挖掘方法用于参与代谢的小分子生物学功能预测研究[D]; 上海: 上海大学, 2012.
    [6]
    Bissantz C, Kuhn B, Stahl M. A medicinal chemist's guide to molecular interactions[J]. Journal of Medicinal Chemistry,2010,53(14):5061−5084. doi: 10.1021/jm100112j
    [7]
    Kaspchak E, Marea L I, Mafra M R. Effect of heating and ionic strength on the interaction of bovine serum albumin and the antinutrients tannic and phytic acids, and its influence on in vitro protein digestibility[J]. Food Chemistry,2018,252(30):1−8.
    [8]
    Abdulatif A-S N, Masood K J, Ajamaluddin M, et al. Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: Spectroscopic and molecular docking and MD simulation studies[J]. Journal of Molecular Liquids,2018,269:511−520. doi: 10.1016/j.molliq.2018.07.122
    [9]
    Guo N H, Wang C L, Chao Sh, et al. Integrated study of the mechanism of tyrosinase inhibition by baicalein using kinetic, multispectroscopic and computational simulation analyses[J]. International Journal of Biological Macromolecules,2018,118:57−68. doi: 10.1016/j.ijbiomac.2018.06.055
    [10]
    Sui X N, Sun H B, Qi B K, et al. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions[J]. Food Chemistry,2018,245(15):871−878.
    [11]
    Prodpran T, Benjakul S, Phatcharat S. Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein[J]. International Journal of Biological Macromolecules,2012,51(5):774−782. doi: 10.1016/j.ijbiomac.2012.07.010
    [12]
    Rawel H M, Kroll J, Huhl U C. Model studies on reactions of plant phenols with whey proteins[J]. Molecular Nutrition & Food Research,2001,45(2):72−81.
    [13]
    Rohn S, Rawel H M, Kroll J. Inhibitory Effects of plant phenols on the activity of selected enzymes[J]. Journal of Agricultural and Food Chemistry,2002,50(12):3566−3571. doi: 10.1021/jf011714b
    [14]
    Bourvellec C L, Renard C M G C. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms[J]. Critical Reviews in Food Science & Nutrition,2012,52(3):213−248.
    [15]
    Xiao J B, Kai G Y. A Review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship[J]. Critical Reviews in Food Science and Nutrition,2012,52(1):85−101. doi: 10.1080/10408398.2010.499017
    [16]
    Ulrih N P. Analytical techniques for the study of polyphenol-protein interactions[J]. Critical Reviews in Food Science & Nutrition,2017,57(10):2144−2161.
    [17]
    Liang M, Liu R, Qi W, et al. Interaction between lysozyme and procyanidin: Multilevel structural nature and effect of carbohydrates[J]. Food Chemistry,2013,138(2-3):1596−1603. doi: 10.1016/j.foodchem.2012.11.027
    [18]
    Dai T T, Chen J, Mcclements D J, et al. Protein-polyphenol interactions enhance the antioxidant capacity of phenolics: Analysis of rice glutelin-procyanidin dimer interactions[J]. Food & Function,2019,10(2):765−774.
    [19]
    赵焕焦. 黑米花色苷与三种蛋白质相互作用的研究[D]. 天津: 天津科技大学, 2017.
    [20]
    Glazer A, Smith E. Studies on the ultraviolet difference spectra of proteins and polypeptides[J]. The Journal of Biological Chemistry,1961,236:2942−2947. doi: 10.1016/S0021-9258(19)76406-0
    [21]
    Liu F G, Ma C C, Mcclements D J, et al. A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution[J]. Food Hydrocolloids,2017,63(2):625−634.
    [22]
    Al-hanish A, Stanic-vucinic D, Mihailovic J, et al. Noncovalent interactions of bovine α-lactalbumin with green tea polyphenol, epigalocatechin-3-gallate[J]. Food Hydrocolloids,2016,61(2):41−50.
    [23]
    Byler D M, Brouillette J N, Susi H. Quantitative studies of protein structure by FTIR deconvolution and curve fitting[J]. Spectroscopy,1986,1(3):29−33.
    [24]
    Kanakis C D, Hashi I, Bourassa P, et al. Milk β-lactoglobulin complexes with tea polyphenols[J]. Food Chemistry,2011,127(3):1046−1055. doi: 10.1016/j.foodchem.2011.01.079
    [25]
    Jia J, Gao X, Hao M, et al. Comparison of binding interaction between beta-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods[J]. Food Chemistry,2017,228:143−151. doi: 10.1016/j.foodchem.2017.01.131
    [26]
    Yao H, Wynendaele E, Xu X L, et al. Circular dichroism in functional quality evaluation of medicines[J]. Journal of Pharmaceutical and Biomedical Analysis,2018,147:50−64. doi: 10.1016/j.jpba.2017.08.031
    [27]
    Paul B K, Ghosh N, Mukherjee S. Binding interaction of a prospective chemotherapeutic antibacterial drug with β-lactoglobulin: Results and challenges[J]. Langmuir,2014,30(20):5921−5929. doi: 10.1021/la501252x
    [28]
    Chicón R, López-fandio R, Alonso E, et al. Proteolytic pattern, antigenicity, and serum immunoglobulin E binding of β-lactoglobulin hydrolysates obtained by pepsin and high-pressure treatments[J]. Journal of Dairy Science,2008,91(3):928−938. doi: 10.3168/jds.2007-0657
    [29]
    Stojadinovic M, Radosavljevic J, Ognjenovic J, et al. Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed[J]. Food Chemistry,2013,136(3-4):1263−1271. doi: 10.1016/j.foodchem.2012.09.040
    [30]
    Zhang Y, Chen S, Qi B, et al. Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility[J]. Food Research International,2018,106:619−625. doi: 10.1016/j.foodres.2018.01.040
    [31]
    Calero M, Gasset M. Fourier transform infrared and circular dichroism spectroscopies for amyloid studies[M]. Totowa: Humana Press, 2005: 129−151.
    [32]
    Alula M T, Mengesha Z T, Mwenesongole E. Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: A review[J]. Vibrational Spectroscopy,2018,98:50−63. doi: 10.1016/j.vibspec.2018.06.013
    [33]
    谢凤英, 马岩, 王晓君, 等. 拉曼光谱分析荞麦多酚对米糠蛋白结构的影响[J]. 食品科学,2017,38(3):50−54.
    [34]
    Liu F, Ma D, Luo X, et al. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol[J]. Food Hydrocolloids,2018,79:450−461. doi: 10.1016/j.foodhyd.2018.01.017
    [35]
    Judith D, Oliver F, Thomas H, et al. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand-protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency[J]. Plos One,2017,12(9):1−14.
    [36]
    Purslow J, Khatiwada B, Bayro M, et al. NMR Methods for structural characterization of protein-protein complexes[J]. Frontiers in Molecular Biosciences,2020,7:9. doi: 10.3389/fmolb.2020.00009
    [37]
    Faurie B, Dufourc E J, Laguerre M, et al. Monitoring the interactions of a ternary complex using NMR spectroscopy: The case of sugars, polyphenols, and proteins[J]. Analytical Chemistry,2016,88(24):12470−12478. doi: 10.1021/acs.analchem.6b03911
    [38]
    Silva M S, García-estévez I, Brandão E, et al. Molecular interaction between salivary proteins and food tannins[J]. Journal of Agricultural and Food Chemistry,2017,65(31):6415−6424. doi: 10.1021/acs.jafc.7b01722
    [39]
    李春翼, 田勇, 杨雅轩, 等. 植物多酚与蛋白质互作机制表征方法研究进展[J]. 食品与发酵工业,2019,45(13):262−268.
    [40]
    张曼, 王岸娜, 吴立根. 蛋白质, 多糖和多酚间相互作用及研究方法[J]. 粮食与油脂,2015(4):42−46. doi: 10.3969/j.issn.1008-9578.2015.03.011
    [41]
    Liu F G, Wang D, Ma C C, et al. Conjugation of polyphenols prevents lactoferrin from thermal aggregation at neutral pH[J]. Food Hydrocolloids,2016,58:49−59. doi: 10.1016/j.foodhyd.2016.02.011
    [42]
    Sneddon G C, Trimby P W, Cairney J M. Transmission Kikuchi diffraction in a scanning electron microscope: A review[J]. Materials Science and Engineering: R: Reports,2016,110:1−12. doi: 10.1016/j.mser.2016.10.001
    [43]
    Merson E, Danilov V, Merson D, et al. Confocal laser scanning microscopy: The technique for quantitative fractographic analysis[J]. Engineering Fracture Mechanics,2017,183:147−158. doi: 10.1016/j.engfracmech.2017.04.026
    [44]
    Diaz J T, Foegeding E A. Formulation of protein-polyphenol particles for applications in food systems[J]. Food & Function,2020,9(1):1−38.
    [45]
    Zou Y, Guo J, Yin S W, et al. Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles[J]. J Agric. Food Chem.,2015,63(33):7405−7414. doi: 10.1021/acs.jafc.5b03113
    [46]
    Lim C K, Lord G. Current Developments in LC-MS for Pharmaceutical Analysis[J]. Biological and Pharmaceutical Bulletin,2002,25(5):547−557. doi: 10.1248/bpb.25.547
    [47]
    Gallo M, Vinci G, Graziani G, et al. The interaction of cocoa polyphenols with milk proteins studied by proteomic techniques[J]. Food Research International,2013,54(1):406−415. doi: 10.1016/j.foodres.2013.07.011
    [48]
    Maple H J, Garlish R A, Rigau-Roca L, et al. Automated protein-ligand interaction screening by mass spectrometry[J]. J Med Chem,2012,55(2):837−851. doi: 10.1021/jm201347k
    [49]
    Riu A, Le Maire A, Grimaldi M, et al. Characterization of novel ligands of ERα, Erβ, and PPARγ: The case of halogenated bisphenol a and their conjugated metabolites[J]. Toxicol Sci,2011,122(2):372−382. doi: 10.1093/toxsci/kfr132
    [50]
    王宁. 分子光谱和等温滴定量热法研究蛋白与小分子的相互作用[D]. 郑州: 郑州大学, 2019, 80-83.
    [51]
    Pal S, Dey S K, Saha C. Inhibition of catalase by tea catechins in free and cellular state: A biophysical approach[J]. Plos One,2014,9(7):e102460. doi: 10.1371/journal.pone.0102460
    [52]
    Barrett A, Ndou T, Hughey C A, et al. Inhibition of α-amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries, and grapes[J]. Journal of Agricultural & Food Chemistry,2013,61(7):1477−86.
    [53]
    Farah J S, Silva M C, Cruz A G, et al. Differential calorimetry scanning: Current background and application in authenticity of dairy products[J]. Current Opinion in Food Science,2018,22:88−94. doi: 10.1016/j.cofs.2018.02.006
    [54]
    Sun L J, Gidley M J, Warren F J. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry[J]. Molecular Nutrition & Food Research,2017:1700324.
    [55]
    Prigent S V E, Voragen A G J, Visser A J W G, et al. Covalent interactions between proteins and oxidation products of caffeoylquinic acid (chlorogenic acid)[J]. Journal of the Science of Food and Agriculture,2007,87(13):2502−2510. doi: 10.1002/jsfa.3011
    [56]
    Li J Q, Geng G Q, Myers R, et al. The chemistry and structure of calcium (alumino) silicate hydrate: A study by XANES, ptychographic imaging, and wide- and small-angle scattering[J]. Cement & Concrete Research,2019,115:367−378.
    [57]
    Neylon C. Small angle neutron and X-ray scattering in structural biology: Recent examples from the literature[J]. European Physical Journal,2008,37(5):531−41.
    [58]
    Canon F, Paté F, Cheynier V, et al. Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG[J]. Langmuir,2013,29(6):1926−1937. doi: 10.1021/la3041715
    [59]
    García-estévez I, Ramos-pineda A, Escribano T. Interactions between wine phenolic compounds and human saliva in astringency perception[J]. Food & Function,2018,9(3):1294−1309.
    [60]
    Monteleone E, Condelli N, Dinnella C, et al. Prediction of perceived astringency induced by phenolic compounds[J]. Food Quality and Preference,2004,15:761−769. doi: 10.1016/j.foodqual.2004.06.002
    [61]
    贾楠, 顾建飞, 苏明旭. 基于超声谱分析的颗粒粒度测量研究[J]. 计量学报,2019,40(3):116−121.
    [62]
    Mcrae J M, Kennedy J A. Wine and grape tannin interactions with salivary proteins and their impact on astringency: A review of current research[J]. Molecules,2011,16(3):2348−2364. doi: 10.3390/molecules16032348
    [63]
    Blundell T L, Jhoti H, Abell C. High-throughput crystallography for lead discovery in drug design[J]. Nature Reviews Drug Discovery,2002,1(1):45−54. doi: 10.1038/nrd706
    [64]
    夏雨, 焦志华, 刘海英. 茶多酚对明胶的改性作用[J]. 食品与发酵工业,2011,37(10):40−44.
    [65]
    Hulanicki A, Glab S, Ingman F. Chemical sensors: definitions and classification[J]. Pure & Applied Chemistry,1991,63(9):1247−1250.
    [66]
    Fechner P, Bleher O, Ewald M, et al. Size does matter! Label-free detection of small molecule-protein interaction[J]. Analytical and Bioanalytical Chemistry,2014,406(17):4033−4051. doi: 10.1007/s00216-014-7834-4
    [67]
    Datta S, Kanjilal B, Sarkar P. Electrochemical sensor for detection of polyphenols in tea and wine with differential pulse voltammetry and electrochemical impedance spectroscopy utilizing tyrosinase and gold nanoparticles decorated biomembrane[J]. Journal of The Electrochemical Society,2017,164(4):118−126. doi: 10.1149/2.0971704jes
    [68]
    许春华. 表面等离子共振生物传感器在食品检测中的应用现状[J]. 粮食与食品工业,2017,24(4):55−57. doi: 10.3969/j.issn.1672-5026.2017.04.016
    [69]
    Gurreiro J R L, Bochenkov V E, Runager K, et al. Molecular imprinting of complex matrices at localized surface plasmon resonance biosensors for screening of global interactions of polyphenols and proteins[J]. ACS Sensors,2016,1(3):258−264. doi: 10.1021/acssensors.5b00054
    [70]
    Naoto T, Du Ch K, Fumiaki Y, et al. Biological actions of green tea catechins on cardiac troponin C[J]. British Journal of Pharmacology,2010,161(5):1034−1043. doi: 10.1111/j.1476-5381.2010.00942.x
    [71]
    Rossetti D, Ravera F, Liggieri L. Effect of tea polyphenols on the dilational rheology of human whole saliva (HWS): Part 2, polyphenols-HWS interaction[J]. Colloids and Surfaces B: Biointerfaces,2013,110:474−479. doi: 10.1016/j.colsurfb.2013.03.004
    [72]
    Zou Y, W Zh L, Guo Jian, et al. Tunable assembly of hydrophobic protein nanoparticle at fluid interfaces with tannic acid[J]. Food Hydrocolloids,2017,63:364−371. doi: 10.1016/j.foodhyd.2016.09.010
    [73]
    庄绪静, 曹雅忠, 李克斌,等. 同源建模和分子对接方法的应用与发展[C]// 中国植物保护学会学术年会. 2011.
    [74]
    魏冬青, 连鹏, 顾若需. 分子模拟与计算机辅助药物设计[J]. 上海管理科学,2012(7):89−93. doi: 10.3969/j.issn.1005-9679.2012.03.021
    [75]
    Gupta M, Sharma R, Singh M, et al. Docking techniques in pharmacology: How much promising?[J]. Computational Biology & Chemistry,2018,76:210−217.
    [76]
    Scafuri B, Marabotti A, Carbone V, et al. A theoretical study on predicted protein targets of apple polyphenols and possible mechanisms of chemoprevention in colorectal cancer[J]. Scientific Reports,2016,6(1):32516. doi: 10.1038/srep32516
    [77]
    Hollingsworth S A, Dror R O. Molecular dynamics simulation for all[J]. Neuron,2018,99(6):1129−1143. doi: 10.1016/j.neuron.2018.08.011
    [78]
    Mitsutake A, Takano H. Relaxation mode analysis for molecular dynamics simulations of proteins[J]. Biophysical Reviews,2018,10(2):375−389. doi: 10.1007/s12551-018-0406-7
    [79]
    祝琳, 吴龙, 陈小强, 等. 茶多酚与多糖的相互作用: 作用机理及功能特性变化研究进展[J]. 茶叶科学,2019,39(2):93−100.
    [80]
    Annesley T M. Ion suppression in mass spectrometry[J]. Clinical Chemistry,2003,49(7):1041−1044. doi: 10.1373/49.7.1041
    [81]
    Kitova E N, El-Hawiet A, Schnier P D, et al. Reliable determinations of protein-ligand interactions by direct ESI-MS measurements. Are we there yet?[J]. Journal of Mass Spectrometry,2012,23(3):431−441.
    [82]
    田金凤, 王金晶, 郑飞云, 等. 啤酒主要组分在泡沫中的富集及其对泡持性的影响[J]. 食品与发酵工业,2017,43(9):22−27.
    [83]
    Dubeau S, Samson G, Tajmir-Riahi H-A. Dual effect of milk on the antioxidant capacity of green, Darjeeling, and English breakfast teas[J]. Food Chemistry,2010,122(3):539−545. doi: 10.1016/j.foodchem.2010.03.005
    [84]
    Serafini M, Bugianesi R, Maiani G, et al. Plasma antioxidants from chocolate[J]. Nature,2003,424(6952):1013−1013. doi: 10.1038/4241013a
    [85]
    Xu L, Diosady L L. Interactions between canola proteins and phenolic compounds in aqueous media[J]. Food Research International,2000,33(9):725−731. doi: 10.1016/S0963-9969(00)00062-4
  • Related Articles

    [1]NING Zhixue, ZHU Libin, ZHU Dan, NIU Guangcai, WEI Wenyi, XU Ruihang. Optimization of Ultrasonic-Assisted Extraction of Blackcurrant Polyphenols by Response Surface Methodology and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(22): 221-228. DOI: 10.13386/j.issn1002-0306.2022010220
    [2]LI Hong-an, LI Xia-jia-long, DENG Ze-yuan, JIANG He-dong, LI Hong-yan. Optimization of Ultrasonic-assisted Extraction of Total Flavonoids in Lithocarpus polystachyus Rehd by Response Surface Methodology and Their Antioxidant Activities[J]. Science and Technology of Food Industry, 2020, 41(23): 136-141,154. DOI: 10.13386/j.issn1002-0306.2020020192
    [3]ZHAO Ying, LIU Li-e, HAN Ping, HE Zhi-dong, ZHAO Xiao-di. Optimization of Ultrasonic Assisted Extraction Process by Response Surface Methodology and Antioxidant Activity in Vitro for Polysaccharides from Turnip[J]. Science and Technology of Food Industry, 2020, 41(7): 139-145. DOI: 10.13386/j.issn1002-0306.2020.07.024
    [4]HAO Ke-xin, HU Wen-zhong, ZHANG Qing-jie, WANG Ao-sheng, YU Jiao-xue, GUO Bin-mei, HOU Meng-yang. Optimization of the Ultrasonic-assisted Extraction of Total Flavonoids from Citrus aurantium L. var daidai by Response Surface Methodology and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2019, 40(24): 159-164,171. DOI: 10.13386/j.issn1002-0306.2019.24.026
    [5]CAO Xiao-yan, YANG Hai-tao. Optimization of Ultrasonic Assisted Extraction Technology of Polyphenol by Response Surface Methodology from Capsella bursa-pastoris and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2019, 40(2): 223-228,232. DOI: 10.13386/j.issn1002-0306.2019.02.038
    [6]WANG Yan-ping, YANG Hui-hui, QIAN Zhi-wei, SUN Rui-lin, LI Dong. Optimization of ultrasonic-assisted extraction of procyanidins from purple yam by response surface methodology and antioxidant activity[J]. Science and Technology of Food Industry, 2017, (13): 181-185. DOI: 10.13386/j.issn1002-0306.2017.13.034
    [7]WANG Yao-hui, WANG Jing-xue, QIU Xian-chuang, LI Fang, LI Chen. Optimization of ultrasonic-assisted extraction process of polysaccharides from Pleurotus nebrodensis by response surface methodology and evaluation of antioxidant activity in vitro[J]. Science and Technology of Food Industry, 2017, (10): 247-252. DOI: 10.13386/j.issn1002-0306.2017.10.039
    [8]LIU Yang, ZHAO Jing, LIANG Li, YU Guo-yong, LI Quan-hong. Optimization of ultrasonic-assisted alcohol extraction of polyphenols from dandelion and their antioxidant activity[J]. Science and Technology of Food Industry, 2017, (02): 287-292. DOI: 10.13386/j.issn1002-0306.2017.02.047
    [9]KOU Liang, LI Lu, LU Li-na, KANG Shu-he. Optimization of extraction of total flavonoids from Caragana korshinskii kom with ultrasound technology by response surface analysis and evaluation of its antioxidant activity in vitro[J]. Science and Technology of Food Industry, 2016, (17): 225-231. DOI: 10.13386/j.issn1002-0306.2016.17.036
    [10]YANG Zhe, WAN Shan, ZHANG Qiao-hui, DONG Shi-bin, NING Ya-ping, WANG Jian-zhong. Study on optimization of extraction of total flavonoids from shell of wild apricot by response surface methodology and its antioxidant activity[J]. Science and Technology of Food Industry, 2015, (06): 279-284. DOI: 10.13386/j.issn1002-0306.2015.06.053
  • Cited by

    Periodical cited type(9)

    1. 韩科,王夜梅,周胡怿,梁道崴,赵其阳,焦必宁. 腈吡螨酯在橙汁加工过程中的残留行为. 食品与发酵工业. 2022(12): 24-29 .
    2. 郭芫君,黄茜,王鸟,占如意,陈露婷,郝香兰,孟信刚. 甲氧基丙烯酸酯类杀菌剂残留检测方法研究进展. 北方农业学报. 2022(03): 81-88 .
    3. 梁亚杰,李晓梅,许春琦,杜颖,孙玉龙,王金玲,纪明山. 戊唑醇和吡唑醚菌酯在苹果中的残留行为及膳食暴露风险评估. 果树学报. 2021(05): 771-781 .
    4. 刘炜,刘行,王艺多,杨晓凤,尹全,张富丽. 清洗方法对葡萄中四种农药残留的去除效果分析. 湖北农业科学. 2021(17): 116-120 .
    5. 郝莉花,范莹莹,李瑜,张平,王克林,李家寅. 不同加工方式对果蔬中农药残留的影响. 食品工业. 2021(10): 223-227 .
    6. 杨振. 果蔬洗涤剂的研究与发展综述. 盐科学与化工. 2020(05): 1-4 .
    7. 张娟,秦锦云. 食品/农产品中甲氧基丙烯酸酯类农药残留分析研究进展. 农学学报. 2020(05): 67-71 .
    8. 刘炜,刘行,张富丽,杨晓凤,尹全,张义蓉,刘茜. 超高效液相色谱-串联质谱法快速测定黄瓜中8种甲氧基丙烯酸酯类杀菌剂的残留. 食品科技. 2020(11): 306-311 .
    9. 过尘杰. 不同清洗方式对水果农残的影响. 科技资讯. 2019(33): 186-187 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (885) PDF downloads (87) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return