Citation: | XU Feifei, LI Yueqi, LIN Jun, et al. Research Progress of in Vitro Models for Bioaccessibility and Bioavailability and Their Applications in Food Contaminants Exposure Assessment[J]. Science and Technology of Food Industry, 2021, 42(13): 395−403. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070049. |
[1] |
中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 2762-2017 食品安全国家标准 食品中污染物限量[S]. 北京: 中国标准出版社, 2017: 1.
|
[2] |
刘兆平, 李凤琴, 贾旭东. 食品中化学物风险评估原则和方法[M]. 北京: 人民卫生出版社, 2012: 18.
|
[3] |
Xing G H, Yang Y, Chan J K Y, et al. Bioaccessibility of polychlorinated biphenyls in different foods using anin vitro digestion method[J]. Environmental Pollution,2008,156(3):1218−1226. doi: 10.1016/j.envpol.2008.03.020
|
[4] |
Yu Y X, Li J L, Zhang X Y, et al. Assessment of the bioaccessibility of polybrominated diphenyl ethers in foods and the correlations of the bioaccessibility with nutrient contents[J]. Journal of Agricultural and Food Chemistry,2010,58(1):301−308. doi: 10.1021/jf9036358
|
[5] |
Qu X, Khutoryanskiy V V, Stewart A, et al. Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude[J]. Biomacromolecules,2006,7(12):3452−3459. doi: 10.1021/bm0604000
|
[6] |
Shen H T, Starr J, Han J L, et al. The bioaccessibility of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) in cooked plant and animal origin foods[J]. Environment International,2016,94:33−42. doi: 10.1016/j.envint.2016.05.003
|
[7] |
Wu W L, Deng X L, Zhou S J, et al. Levels, congener profiles, and dietary intake assessment of polychlorinated dibenzo-p-dioxins/dibenzofurans and dioxin-like polychlorinated biphenyls in beef, freshwater fish, and pork marketed in Guangdong Province, China[J]. Science of the Total Environment,2018,615:412−421. doi: 10.1016/j.scitotenv.2017.09.273
|
[8] |
徐笠, 陆安祥, 王纪华, 等. 食物中重金属的生物可给性和生物有效性的研究方法和应用进展[J]. 生态毒理学报,2017,12(1):89−97.
|
[9] |
Paustenbach D J. The practice of exposure assessment: A state-of-the-art review[J]. Journal of Toxicology and Environmental Health Part B,2000,3(3):179−291. doi: 10.1080/10937400050045264
|
[10] |
Ruby M V, Davi A, Link T E, et al. Development of an in vitro screening test to evaluate the invivo bioaccessibility of ingested mine-waste lead[J]. Environmental Science and Technology,1993,27(13):2870−2877. doi: 10.1021/es00049a030
|
[11] |
Ruby M V, Davis A, Schoof R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science and Technology,1996,30(2):422−430. doi: 10.1021/es950057z
|
[12] |
Ruby M, Schoof R, Brattin W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental Science and Technology,1999,33(21):3697−3705. doi: 10.1021/es990479z
|
[13] |
Basta N, Gradwohl R. Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure[J]. Journal of Soil Contamination,2000,9(2):149−164. doi: 10.1080/10588330008984181
|
[14] |
Rotard W, Christmann W, Knoth W, et al. Investigation on the absorption availability of PCDD/PCDF from industriogenic soil: Model experiments on absorption assessment after oral ingestion[J]. Organohalogen Compounds,1992,10:199−200.
|
[15] |
Oomen A G, Hack A, Minkus M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants[J]. Environmental Science and Technology,2002,36(15):3326−34. doi: 10.1021/es010204v
|
[16] |
Hack A, Selenka F. Mobilization of PAH and PCB from contaminated soil using a digestive tract model[J]. Toxicology letters,1996,88(1–3):199−210.
|
[17] |
Molly K, Woestyne M V, Verstraete W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem[J]. Applied Microbiology and Biotechnology,1993,39(2):254−258. doi: 10.1007/BF00228615
|
[18] |
Molly K, Woestyne M V, Smet I D, et al. Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities[J]. Microbial Ecology in Health and Disease,1994,7(7):191−200.
|
[19] |
Minekus M, Marteau P, Havenaar R. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine[J]. Alternatives to Laboratory Animals: ATLA,1995,23:197−209. doi: 10.1177/026119299502300205
|
[20] |
Van de wiele T, Oomen A G, Wragg J, et al. Comparison of fivein vitro digestion models to in vivo experimental results: Lead bioaccessibility in the human gastrointestinal tract[J]. Journal of Environmental Science and Health Part A,2007,42(9):1203−1211. doi: 10.1080/10934520701434919
|
[21] |
Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment,2011,409(19):4016−4030.
|
[22] |
Praveena S M, Omar N A. Heavy metal exposure from cooked rice grain ingestion and its potential health risks to humans from total and bioavailable forms analysis[J]. Food Chemistry,2017,235:203−211. doi: 10.1016/j.foodchem.2017.05.049
|
[23] |
Yang L S, Zhang X W, Li Y H, et al. Bioaccessibility and risk assessment of cadmium from uncooked rice using anin vitro digestion model[J]. Biological Trace Element Research,2012,145(1):81−86. doi: 10.1007/s12011-011-9159-x
|
[24] |
Wang C, Duan H Y, Teng J W. Assessment of microwave cooking on the bioaccessibility of cadmium from various food matrices using an in vitro digestion model[J]. Biological Trace Element Research,2014,160(2):276−284. doi: 10.1007/s12011-014-0047-z
|
[25] |
German Institute for Standardization, DIN 19738-2004: Soil quality-Absorption availability of organic and inorganic pollutants from contaminated soil material[S]. Berlin: DE-DIN, 2004: 7.
|
[26] |
Juhasz A L, Weber J, Naidu R, et al. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies[J]. Environmental Science and Technology,2010,44(13):5240−5247. doi: 10.1021/es1006516
|
[27] |
Li H B, Cui X Y, Li K, et al. Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability[J]. Environmental Science and Technology,2014,48(15):8548−8555. doi: 10.1021/es501899j
|
[28] |
Anson N M, Selinheimo E, Havenaar R, et al. Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds[J]. Journal of Agricultural and Food Chemistry,2009,57(14):6148−6155. doi: 10.1021/jf900492h
|
[29] |
Ng J C, Juhasz A, Smith E, et al. Assessing the bioavailability and bioaccessibility of metals and metalloids[J]. Environmental Science and Pollution Research,2013,22(12):8802−8825.
|
[30] |
Smetanova L, Stetinova V, Svoboda Z, et al. Caco-2 cells, biopharmaceutics classification system (BCS) and biowaiver[J]. Acta Medica,2011,54(1):3−8.
|
[31] |
Balimane P V, Chong S. Cell culture-based models for intestinal permeability: A critique[J]. Drug Discovery Today,2005,10(5):335−343. doi: 10.1016/S1359-6446(04)03354-9
|
[32] |
Pereira C, Costa J, Sarmento B, et al. 3.3-Cell-based in vitro models for intestinal permeability studies[M]. Porto: Woodhead Publishing, 2016: 41−56.
|
[33] |
Macedo M H, Araujo F, Martinez E, et al. iPSC-derived enterocyte-like cells for drug absorption and metabolism studies[J]. Trends in Molecular Medicine,2018,24(8):696−708. doi: 10.1016/j.molmed.2018.06.001
|
[34] |
Fu J, Cui Y. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: The influence of cooking and additives[J]. Food and Chemical Toxicology,2013,59:15−221.
|
[35] |
Seim G L, Ahn C I, Bodis M S, et al. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using anin vitro digestion/Caco-2 cell model[J]. Food and function,2013,4(8):1263−1270. doi: 10.1039/c3fo30380b
|
[36] |
Siedlikowski M, Bradley M, Kubow S, et al. Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies[J]. Environmental Research,2016,149:266−273. doi: 10.1016/j.envres.2016.02.013
|
[37] |
Rodroguez-ramiro I, Brearley C A, Bruggraber S F, et al. Assessment of iron bioavailability from different bread making processes using an in vitro intestinal cell model[J]. Food Chemistry,2017,228:91−98. doi: 10.1016/j.foodchem.2017.01.130
|
[38] |
Artursson P, Ungell A L, Froth J E. Selective paracellular permeability in two models of intestinal absorption: Cultured monolayers of human intestinal epithelial cells and rat intestinal segments[J]. Pharmaceutical Research,1993,10(8):1123−1129. doi: 10.1023/A:1018903931777
|
[39] |
Leferrec E, Chesnec C, Artusson P, et al. In vitro models of the intestinal barrier. The report and recommendations of ECVAM Workshop 46. European centre for the validation of alternative methods[J]. Alternatives to Laboratory Animals: ATLA,2001,29(6):649−668. doi: 10.1177/026119290102900604
|
[40] |
Kabeya T, Matsumura W, Iwao T, et al. Functional analysis of carboxylesterase in human induced pluripotent stem cell-derived enterocytes[J]. Biochemical and Biophysical Research Communications,2017,486(1):143−148. doi: 10.1016/j.bbrc.2017.03.014
|
[41] |
Englund G, Rorsman F, Rnnblom A, et al. Regional levels of drug transporters along the human intestinal tract: Co-expression of ABC and SLC transporters and comparison with Caco-2 cells[J]. European Journal of Pharmaceutical Sciences,2006,29(3):269−277.
|
[42] |
Moghimpour E, Tabassi S A, Ramezani M, et al. Brush border membrane vesicle and Caco-2 cell line: Two experimental models for evaluation of absorption enhancing effects of saponins, bile salts, and some synthetic surfactants[J]. Journal of Advanced Pharmaceutical Technology and Research,2016,7(3):75−79. doi: 10.4103/2231-4040.184588
|
[43] |
Takenaka T, Harada N, Kuze J, et al. Human small intestinal epithelial cells differentiated from adult intestinal stem cells as a novel system for predicting oral drug absorption in humans[J]. Drug Metabolism and Disposition the Biological Fate of Chemicals,2014,42(11):1947−1954. doi: 10.1124/dmd.114.059493
|
[44] |
Wikman-larhed A, Artursson P. Co-cultures of human intestinal goblet (HT29-H) and absorptive (Caco-2) cells for studies of drug and peptide absorption[J]. European Journal of Pharmaceutical Sciences,1995,3(3):171−183. doi: 10.1016/0928-0987(95)00007-Z
|
[45] |
Walter E, Janich S, Roessler B J, et al. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: In vitro-in vivo correlation with permeability data from rats and humans[J]. Journal of Pharmaceutical Sciences,1996,85(10):1070−1076. doi: 10.1021/js960110x
|
[46] |
Kampfer A A M, Urban P, Gioria S, et al. Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state[J]. Toxicology in Vitro,2017,45(Pt 1):31−43.
|
[47] |
Calatayud M, Dezutter O, Hernandez-sanabria E, et al. Development of a host-microbiome model of the small intestine[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology,2019,33(3):3985−3996. doi: 10.1096/fj.201801414R
|
[48] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663−676. doi: 10.1016/j.cell.2006.07.024
|
[49] |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell,2007,131(5):861−872. doi: 10.1016/j.cell.2007.11.019
|
[50] |
Iwao T, Toyota M, Miyagawa Y, et al. Differentiation of human induced pluripotent stem cells into functional enterocyte-like cells using a simple method[J]. Drug Metabolism and Pharmacokinetics,2014,29(1):44−51. doi: 10.2133/dmpk.DMPK-13-RG-005
|
[51] |
Iwao T, Kodama N, Kondo Y, et al. Generation of enterocyte-like cells with pharmacokinetic functions from human induced pluripotent stem cells using small-molecule compounds[J]. Drug Metabolism and Disposition,2015,43(4):603−610. doi: 10.1124/dmd.114.062604
|
[52] |
Negoro R, Takayama K, Nagamoto Y, et al. Modeling of drug-mediated CYP3A4 induction by using human iPS cell-derived enterocyte-like cells[J]. Biochemical and Biophysical Research Communications,2016,472(4):631−636. doi: 10.1016/j.bbrc.2016.03.012
|
[53] |
Schweinlin M, Wilhelm S, Schwedhelm I, et al. Development of an advanced primary human in vitro model of the small intestine[J]. Tissue Engineering Part C,2016,22(9):873−883. doi: 10.1089/ten.tec.2016.0101
|
[54] |
Zhuang P, Zhang C, Li Y, et al. Assessment of influences of cooking on cadmium and arsenic bioaccessibility in rice, using an in vitro physiologically-based extraction test[J]. Food Chemistry,2016,213:206−214. doi: 10.1016/j.foodchem.2016.06.066
|
[55] |
Intawongse M, Dean J R. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil[J]. Environmental Pollution,2008,152(1):60−72. doi: 10.1016/j.envpol.2007.05.022
|
[56] |
Koch I, Dee J, House K, et al. Bioaccessibility and speciation of arsenic in country foods from contaminated sites in Canada[J]. Science of the Total Environment,2013,449:1−8. doi: 10.1016/j.scitotenv.2013.01.047
|
[57] |
Llorente-mirandes T, Llorens-munoz M, Funes-collado V, et al. Assessment of arsenic bioaccessibility in raw and cooked edible mushrooms by a PBET method[J]. Food Chemistry,2016,194:849−856. doi: 10.1016/j.foodchem.2015.08.047
|
[58] |
Cai X, Chen X, Yin N, et al. Estimation of the bioaccessibility and bioavailability of Fe, Mn, Cu, and Zn in Chinese vegetables using the in vitro digestion/Caco-2 cell model: the influence of gut microbiota[J]. Food and Function,2017,8(12):4592−4600 (in Chinese). doi: 10.1039/C7FO01348E
|
[59] |
Shi Y H, Xiao J J, Feng R P, et al. In-vitro bioaccessibility of five pyrethroids after human ingestion and the corresponding gastrointestinal digestion parameters: A contribution for human exposure assessments[J]. Chemosphere,2017,182:517−524. doi: 10.1016/j.chemosphere.2017.05.081
|
[60] |
Versantvoort C H, Oomen A G, Van de kamp E, et al. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food[J]. Food and Chemical Toxicology,2005,43(1):31−40. doi: 10.1016/j.fct.2004.08.007
|
[61] |
王亦欣. 大米中镉的生物可及性和体内外生物利用率研究[D]. 武汉: 武汉轻工业大学, 2019: 10-37.
|
[62] |
Motta E L, Scott P M. Bioaccessibility of total bound fumonisin from corn flakes[J]. Mycotoxin Research,2009,25(4):229. doi: 10.1007/s12550-009-0032-0
|
[63] |
Torres-escribano S, Denis S, Blanquet-diot S, et al. Comparison of a static and a dynamic in vitro model to estimate the bioaccessibility of As, Cd, Pb and Hg from food reference materialsFucus sp. (IAEA-140/TM) and Lobster hepatopancreas (TORT-2)[J]. The Science of the total environment,2011,409(3):604−611. doi: 10.1016/j.scitotenv.2010.10.021
|
[64] |
Meca G, Manes J, Font G, et al. Study of the potential toxicity of commercial crispy breads by evaluation of bioaccessibility and bioavailability of minorFusarium mycotoxins[J]. Food and Chemical Toxicology,2012,50(2):288−294. doi: 10.1016/j.fct.2011.10.055
|
[65] |
Prosperini A, Meca G, Font G, et al. Bioaccessibility of enniatins A, A1, B, and B1 in different commercial breakfast cereals, cookies, and breads of Spain[J]. Journal of Agricultural and Food chemistry,2013,61(2):456−461. doi: 10.1021/jf3044023
|
[66] |
陆敏, 余应新, 张东平, 等. 胡萝卜中滴滴涕对人体生物有效性影响因素的体外研究[J]. 环境化学,2009,28(2):220−224. doi: 10.3321/j.issn:0254-6108.2009.02.013
|
[67] |
Schmite B F P, Bitobrovec A, Hacke A C M, et al. In vitro bioaccessibility of Al, Cu, Cd, and Pb following simulated gastro-intestinal digestion and total content of these metals in different Brazilian brands of yerba mate tea[J]. Food Chemistry,2019,281:285−293. doi: 10.1016/j.foodchem.2018.12.102
|
[68] |
Sansano M, Heredia A, Peinado I, et al. Dietary acrylamide: What happens during digestion[J]. Food Chemistry,2017,237:58−64. doi: 10.1016/j.foodchem.2017.05.104
|
[69] |
Mnisi R L, Ndibewu P P, Mafu L D, et al. Bioaccessibility and risk assessment of essential and non-essential elements in vegetables commonly consumed in Swaziland[J]. Ecotoxicology and Environmental Safety,2017,144:396−401. doi: 10.1016/j.ecoenv.2017.06.033
|
[70] |
Laparra J M, Velez D, Barbera R, et al. Bioavailability of inorganic arsenic in cooked rice: Practical aspects for human health risk assessments[J]. Journal of Agricultural and Food Chemistry,2005,53(22):8829−8833. doi: 10.1021/jf051365b
|
[71] |
Lee S G, Kim J, Park H, et al. Assessment of the effect of cooking on speciation and bioaccessibility/cellular uptake of arsenic in rice, using in vitro digestion and Caco-2 and PSI cells as model[J]. Food and Chemical Toxicology,2018,111:597−604. doi: 10.1016/j.fct.2017.11.052
|
[72] |
Natsume Y, Satsu H, Hamada M, et al. In vitro system for assessing dioxin absorption by intestinal epithelial cells and for preventing this absorption by food substances[J]. Cytotechnology,2005,47(1−3):79−88. doi: 10.1007/s10616-005-3753-8
|
[73] |
Aziz R, Rafiq M T, Li T, et al. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702)[J]. Journal of Agricultural and Food Chemistry,2015,63(13):3599−3608. doi: 10.1021/jf505557g
|
[74] |
Peng Q, Nunes L M, Greenfield B K, et al. Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment[J]. Environment International,2016,88:261−268. doi: 10.1016/j.envint.2015.12.035
|
[75] |
Canosancho G, Perello G, Maulvault A L, et al. Oral bioaccessibility of arsenic, mercury and methylmercury in marine species commercialized in Catalonia (Spain) and health risks for the consumers[J]. Food and Chemical Toxicology,2015,86(3):34−40.
|
[76] |
Liu C, Wu L, Xue Y, et al. Effect of cooking methods on bioaccessibility of Zn, Se, Cd, Cu in sea cucumber (Apostichopus japonicus)[J]. Food Science and Biotechnology,2018,27(3):899−904. doi: 10.1007/s10068-017-0298-5
|
[77] |
Liao W, Wang G, Zhao W, et al. Change in mercury speciation in seafood after cooking and gastrointestinal digestion[J]. Journal of Hazardous Materials,2019,375:130−137. doi: 10.1016/j.jhazmat.2019.03.093
|
[78] |
Liao W, Wang G. Change of arsenic speciation in shellfish after cooking and gastrointestinal digestion[J]. Journal of Agricultural and Food Chemistry,2018,66(29):7805−7814. doi: 10.1021/acs.jafc.8b02441
|
[79] |
Van de wiele T, Chi H, Zhang Y, et al. In vitro model to assess arsenic bioaccessibility and speciation in cooked shrimp[J]. Environmental Science and Technology,2018,66(18):4710−4715.
|
[80] |
Costa S, Afonso C, Cardoso C, et al. Fatty acids, mercury, and methylmercury bioaccessibility in salmon (Salmo salar) using an in vitro model: Effect of culinary treatment[J]. Food Chemistry,2015,185:268−276. doi: 10.1016/j.foodchem.2015.03.141
|
[81] |
Dos santos fogaca F H, Soares C, Oliveira M, et al. Polycyclic aromatic hydrocarbons bioaccessibility in seafood: Culinary practices effects on dietary exposure[J]. Environmental Research,2018,164:165−172. doi: 10.1016/j.envres.2018.02.013
|
[82] |
Sobral M M C, Cunha S C, Faria M A, et al. Influence of oven and microwave cooking with the addition of herbs on the exposure to multi-mycotoxins from chicken breast muscle[J]. Food Chemistry,2019,276:274−284. doi: 10.1016/j.foodchem.2018.10.021
|
[83] |
Braga A C, Alves R N, Maulvault A L, et al. In vitro bioaccessibility of the marine biotoxin okadaic acid in shellfish[J]. Food and Chemical Toxicology,2016,89:54−59. doi: 10.1016/j.fct.2016.01.008
|
[84] |
Sobral M M C, Romero-gonzalez R, Faria M A, et al. Stability of antibacterial and coccidiostat drugs on chicken meat burgers upon cooking andin vitro digestion[J]. Food Chemistry,2020,316:126−367.
|
[85] |
Laparra J M, Velez D, Barvera R, et al. Bioaccessibility and transport by Caco-2 cells of organoarsenical species present in seafood[J]. Journal of Agricultural and Food Chemistry,2007,55(14):5892−5897. doi: 10.1021/jf070490f
|
[86] |
王梦梦. 营养物质对多溴联苯醚生物有效性和生物利用度的影响[D]. 上海: 上海大学, 2017: 20−58.
|
1. |
胡张捷,张宝贯,张智武. 固态胶原基材料在医疗器械中的应用. 中国组织工程研究. 2025(16): 3503-3512 .
![]() | |
2. |
姚丹丹,宋秘钊,韩洪帅,李家鑫,王彦珍. 胶原蛋白及其纳米纤维的制备与性能表征. 上海纺织科技. 2024(05): 38-45 .
![]() | |
3. |
孔伟帅,孙颖,王佳怡,李端鑫. 大麻纤维素的提取及其纳米纤维的制备与表征. 毛纺科技. 2024(12): 9-15 .
![]() |