Citation: | PAN Zhenhui, WEN Yuxin, ZHENG Qingsong, et al. Recent Advances in Extraction and Biological Activities of Bioactive Compounds from Lotus Wastes[J]. Science and Technology of Food Industry, 2021, 42(15): 364−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070034. |
[1] |
Guo H B. Cultivation of lotus (Nelumbo nucifera Gaertn. ssp. nucifera) and its utilization in China[J]. Genetic Resources and Crop Evolution,2009,56(3):323−330. doi: 10.1007/s10722-008-9366-2
|
[2] |
Zhang Y, Lu X, Zeng S X, et al. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: A review[J]. Phytochemistry Reviews,2015,14(3):321−334. doi: 10.1007/s11101-015-9401-9
|
[3] |
方嘉沁, 韩舜羽, 王凤娇, 等. 莲子的营养成分及其在食品工业中的加工研究进展[J]. 农产品加工,2019(6):72−75.
|
[4] |
颜征, 张海晖, 李亚群, 等. 莲固体废弃物中多酚类物质的喷雾干燥微胶囊化研究[J]. 食品工业科技,2018,39(10):222−227.
|
[5] |
Limwachiranon J, Huang H, Shi Z, et al. Lotus flavonoids and phenolic acids: Health promotion and safe consumption dosages[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(2):458−471. doi: 10.1111/1541-4337.12333
|
[6] |
Liao C, Lin J. Purification, partial characterization and anti-inflammatory characteristics of lotus (Nelumbo nucifera Gaertn) plumule polysaccharides[J]. Food Chemistry,2012,135(3):1818−1827. doi: 10.1016/j.foodchem.2012.06.063
|
[7] |
Xiong W, Chen X, Lv G, et al. Optimization of microwave-assisted extraction of bioactive alkaloids from lotus plumule using response surface methodology[J]. Journal of Pharmaceutical Analysis,2016,6(6):382−388. doi: 10.1016/j.jpha.2016.05.007
|
[8] |
黄秀琼, 卿志星, 曾建国. 莲不同部位化学成分及药理作用研究进展[J]. 中草药,2019,50(24):6162−6180.
|
[9] |
Tsao R. Chemistry and biochemistry of dietary polyphenols[J]. Nutrients,2010,2(12):1231−1246. doi: 10.3390/nu2121231
|
[10] |
李永芳. 生物碱的提取和分离方法综述[J]. 中山大学研究生学刊(自然科学. 医学版),2015,36(2):7−13.
|
[11] |
宁正祥. 食品生物化学[M]. 广州: 华南理工大学出版社, 2013: 15.
|
[12] |
国家药典委员会. 中华人民共和国药典, 一部[M]. 北京: 中国医药科技出版社, 2015.
|
[13] |
凌智群. 莲房原花青素及其生物、药理活性研究[D]. 武汉: 华中农业大学, 2001.
|
[14] |
余修亮. 莲副产物中原花青素的结构、抗氧化活性及降脂作用的研究[D]. 南昌: 南昌大学, 2017.
|
[15] |
谢三都, 林雅男, 黄晓美. 莲蓬醇提物中槲皮素的鉴定及生物活性[J]. 食品与机械,2016,32(6):44−48.
|
[16] |
陈超群. 莲房的化学成分研究[D]. 昆明: 云南中医学院, 2013.
|
[17] |
Liu T, Zhu M, Zhang C, et al. Quantitative analysis and comparison of flavonoids in lotus plumules of four representative lotus cultivars[J]. Spectroscopy,2017:1−9.
|
[18] |
陈培琳, 陈钏杰, 周雨嘉, 等. 响应面分析法优化莲子心多糖的提取工艺[J]. 福建农林大学学报(自然科学版),2017,46(6):708−715.
|
[19] |
俞远志. 莲子心多糖的分离纯化及抗氧化活性研究[D]. 杭州: 浙江大学, 2006.
|
[20] |
Ma Z, Huang Y, Huang W, et al. Separation, identification, and antioxidant activity of polyphenols from lotus seed epicarp[J]. Molecules,2019,24(21):4007. doi: 10.3390/molecules24214007
|
[21] |
蒋蕾. 莲子皮渣中酚类物质及其抗氧化活性研究[D]. 杭州: 浙江大学, 2019.
|
[22] |
陈轩, 周坚. 莲子皮化学成分的初步分析[J]. 农业机械,2011(29):139−141.
|
[23] |
李杨. 莲子皮多糖和生物碱类活性成分的提取、纯化工艺研究[D]. 武汉: 武汉工业学院, 2011.
|
[24] |
潘国庆, 黄敏, 夏千秋, 等. HPLC法测定莲子种皮中没食子酸的含量[J]. 食品科技,2017,42(4):304−308.
|
[25] |
张露, 黄祥霞, 涂宗财, 等. 5种莲副产物中活性成分及其抗氧化、葡萄糖苷酶抑制活性比较[J]. 食品科学,2018,39(9):40−45.
|
[26] |
颜征. 莲房多酚的亚临界水萃取、组成及活性评价[D]. 镇江: 江苏大学, 2019.
|
[27] |
孙俊杰. 表面活性剂—超声协同提取莲子心总生物碱工艺研究[D]. 重庆: 重庆大学, 2014.
|
[28] |
吴梅青. 莲子心总黄酮不同提取方法的比较与分析[J]. 食品研究与开发,2014,35(22):41−43. doi: 10.3969/j.issn.1005-6521.2014.22.012
|
[29] |
郑淑霞, 吴岩斌, 吴建国, 等. 莲房总黄酮回流提取工艺的优化[J]. 福建中医药,2015,46(2):40−41.
|
[30] |
董兰. 莲子心中莲心总碱的提取分离及其抗氧化性的研究[D]. 重庆: 重庆大学, 2008.
|
[31] |
段玉清, 张海晖, 李金凤, 等. 脉冲超声辅助提取莲房多酚的工艺[J]. 农业工程学报,2009,25(S1):193−197.
|
[32] |
罗平, 王莎莎, 孙俊杰, 等. 响应面优化超声辅助提取莲子心总生物碱工艺[J]. 食品与生物技术学报,2014,33(7):743−749.
|
[33] |
Zhang L, Cheng Z, Zhao Q, et al. Green and efficient PEG-based ultrasound-assisted extraction of polysaccharides from superfine ground lotus plumule to investigate their antioxidant activities[J]. Industrial Crops and Products,2017:320−326.
|
[34] |
段玉清, 闫永胜, 张海晖, 等. 莲房多酚的微波辅助提取技术[J]. 江苏大学学报(自然科学版),2009,30(5):437−440.
|
[35] |
汪志慧. 双酶法制备莲房原花青素及其抗氧化性、稳定性研究[D]. 武汉: 华中农业大学, 2011.
|
[36] |
包琦瑛. 聚酰胺树脂在分离提取领域中的应用[J]. 浙江中医药大学学报,2009,33(4):611−612. doi: 10.3969/j.issn.1005-5509.2009.04.090
|
[37] |
郑淑霞, 易骏, 吴锦忠, 等. 大孔树脂纯化莲房总黄酮的工艺研究[J]. 中国药房,2015,26(31):4405−4408. doi: 10.6039/j.issn.1001-0408.2015.31.28
|
[38] |
陈敬. 莲子心中黄酮类物质与生物碱的分离纯化工艺研究[D]. 长沙: 中南大学, 2011.
|
[39] |
马双双. 莲子壳多酚的提取、分离纯化、结构鉴定及抗氧化活性研究[D]. 武汉: 华中农业大学, 2013.
|
[40] |
李秋哲. 莲子心黄酮结构分析及其降血糖活性研究[D]. 福州: 福建农林大学, 2015.
|
[41] |
柳伟, 王宏洁, 边宝林. 大孔吸附树脂纯化莲子心总生物碱的工艺研究[J]. 中国实验方剂学杂志,2007(3):23−25. doi: 10.3969/j.issn.1005-9903.2007.03.010
|
[42] |
吕晶, 金磊, 王润东, 等. 大孔吸附树脂法纯化甲基莲心碱的工艺研究[J]. 哈尔滨商业大学学报(自然科学版),2019,35(5):522−525.
|
[43] |
周芸. 莲房原花青素制备工艺及抗氧化活性研究[D]. 杭州: 浙江大学, 2012.
|
[44] |
Ling Z, Xie B, Yang E, et al. Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn[J]. Journal of Agricultural and Food Chemistry,2005,53(7):2441−2445. doi: 10.1021/jf040325p
|
[45] |
Li T, Li Q, Wu W, et al. Lotus seed skin proanthocyanidin extract exhibits potent antioxidant property via activation of the Nrf2–ARE pathway[J]. Acta Biochimica et Biophysica Sinica,2019,51(1):31−40. doi: 10.1093/abbs/gmy148
|
[46] |
Liu Y, Ma S, Ibrahim S A, et al. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages[J]. Food Chemistry,2015:159−164.
|
[47] |
Li X, Chen Y, Li S, et al. Oligomer procyanidins from lotus seedpod regulate lipid homeostasis partially by modifying fat emulsification and digestion[J]. Journal of Agricultural and Food Chemistry,2019,67(16):4524−4534. doi: 10.1021/acs.jafc.9b01469
|
[48] |
Cao J, Yu X, Deng Z, et al. Chemical compositions, antiobesity, and antioxidant effects of proanthocyanidins from lotus seed epicarp and lotus seed pot[J]. Journal of Agricultural and Food Chemistry,2018,66(51):13492−13502. doi: 10.1021/acs.jafc.8b05137
|
[49] |
梁慧敏, 时小燕, 随裕敏, 等. 莲房花青素诱导人肝癌细胞SMMC-7721凋亡的研究[J]. 中国实用医药,2011,6(19):37−38. doi: 10.3969/j.issn.1673-7555.2011.19.020
|
[50] |
杜晓芬, 谢笔钧, 张玲珍, 等. 莲房原花青素对人口腔表皮样癌(KB)细胞生长及形态的影响[J]. 现代口腔医学杂志,2005(4):384−386. doi: 10.3969/j.issn.1003-7632.2005.04.015
|
[51] |
Yan Z, Luo X, Cong J, et al. Subcritical water extraction, identification and antiproliferation ability on HepG2 of polyphenols from lotus seed epicarp[J]. Industrial Crops and Products,2019:472−479.
|
[52] |
Duan Y, Zhang H, Xie B, et al. Whole body radioprotective activity of an acetone–water extract from the seedpod of Nelumbo nucifera Gaertn. seedpod[J]. Food and Chemical Toxicology,2010,48(12):3374−3384. doi: 10.1016/j.fct.2010.09.008
|
[53] |
Tang C, Xie B, Sun Z, et al. Antibacterial activity and mechanism of B-type oligomeric procyanidins from lotus seedpod on enterotoxigenic Escherichia coli[J]. Journal of Functional Foods,2017:454−463.
|
[54] |
Chen G, Fan M, Wu J, et al. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule.[J]. Food Chemistry,2019:706−712.
|
[55] |
Wu Q, Chen H, Lv Z, et al. Oligomeric procyanidins of lotus seedpod inhibits the formation of advanced glycation end-products by scavenging reactive carbonyls.[J]. Food Chemistry,2013,138(2):1493−1502.
|
[56] |
Wu Q, Li S, Yang T, et al. Inhibitory effect of lotus seedpod oligomeric procyanidins on advanced glycation end product formation in a lactose–lysine model system[J]. Electronic Journal of Biotechnology,2015,18(2):68−76. doi: 10.1016/j.ejbt.2014.10.005
|
[57] |
张丽. 莲房原花青素对老年SD大鼠记忆障碍的影响及其机制研究[D]. 武汉: 华中科技大学, 2010.
|
[58] |
Xu J P, Rong S, Xie B, et al. Procyanidins extracted from the lotus seedpod ameliorate scopolamine-induced memory impairment in mice[J]. Phytotherapy Research,2009,23(12):1742−1747. doi: 10.1002/ptr.2837
|
[59] |
曾建伟, 谢勇, 林忠宁, 等. 莲子心抗肿瘤活性部位的筛选研究[J]. 实用中西医结合临床,2014,14(1):87−88.
|
[60] |
Zhang X, Liu Z, Xu B, et al. Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization.[J]. European Journal of Pharmacology,2012,677(1):47−54.
|
[61] |
Poornima P, Weng C, Padma V V, et al. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest[J]. Biofactors,2014,40(1):121−131. doi: 10.1002/biof.1115
|
[62] |
Sugimoto Y, Furutani S, Nishimura K, et al. Antidepressant-like effects of neferine in the forced swimming test involve the serotonin1A (5-HT1A) receptor in mice[J]. European Journal of Pharmacology,2010,634(1):62−67.
|
[63] |
Sugimoto Y, Nishimura K, Itoh A, et al. Serotonergic mechanisms are involved in antidepressant-like effects of bisbenzylisoquinolines liensinine and its analogs isolated from the embryo of Nelumbo nucifera Gaertner seeds in mice[J]. Journal of Pharmacy and Pharmacology,2015,67(12):1716−1722. doi: 10.1111/jphp.12473
|
[64] |
Meng X, Zheng L, Liu J, et al. Inhibitory effects of three bisbenzylisoquinoline alkaloids on lipopolysaccharide-induced microglial activation[J]. RSC Advances,2017,7(30):18347−18357. doi: 10.1039/C7RA01882G
|
[65] |
Chen S, Guo W, Qi X, et al. Natural alkaloids from lotus plumule ameliorate lipopolysaccharide-induced depression-like behavior: integrating network pharmacology and molecular mechanism evaluation[J]. Food & Function,2019,10(9):6062−6073.
|
[66] |
熊一力, 王嘉陵, 钱家庆. 莲心碱对自发性高血压大鼠血管平滑肌细胞增殖及对PDGF-B、bFGF、c-sis、c-myc的影响[J]. 中国心血管杂志,1998(1):6−9.
|
[67] |
Jun M Y, Karki R, Paudel K R, et al. Alkaloid rich fraction from Nelumbo nucifera targets VSMC proliferation and migration to suppress restenosis in balloon-injured rat carotid artery[J]. Atherosclerosis,2016:179−189.
|
[68] |
Kashiwada Y, Akihiro A, Yasumasa I, et al. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids[J]. Bioorganic & Medicinal Chemistry,2005,13(2):443−448.
|
[69] |
Liu B, Li J, Yi R, et al. Preventive effect of alkaloids from lotus plumule on acute liver injury in mice[J]. Foods,2019,8(1):36. doi: 10.3390/foods8010036
|
[70] |
Liao C, Guo S, Lin J, et al. Characterization of the chemical composition and in vitro anti-inflammation assessment of a novel lotus (Nelumbo nucifera Gaertn) plumule polysaccharide[J]. Food Chemistry,2011,125(3):930−935. doi: 10.1016/j.foodchem.2010.09.082
|
[71] |
Liao C, Lin J. Lotus (Nelumbo nucifera Gaertn) plumule polysaccharide protects the spleen and liver from spontaneous inflammation in non-obese diabetic mice by modulating pro-/anti-inflammatory cytokine gene expression[J]. Food Chemistry,2011,129(2):245−252. doi: 10.1016/j.foodchem.2011.03.103
|
[72] |
Liao C, Lin J. Purified active lotus plumule (Nelumbo nucifera Gaertn) polysaccharides exert anti-inflammatory activity through decreasing Toll-like receptor-2 and -4 expressions using mouse primary splenocytes[J]. Journal of Ethnopharmacology,2013,147(1):164−173. doi: 10.1016/j.jep.2013.02.028
|
[73] |
Liao C, Lin J. Lotus (Nelumbo nucifera Gaertn) plumule polysaccharide ameliorates pancreatic islets loss and serum lipid profiles in non-obese diabetic mice[J]. Food and Chemical Toxicology,2013:416−422.
|
1. |
孟新涛,许铭强,张婷,古丽米热·祖努纳,牛逍瞳,郭金宝,刘国庆,马燕. 基于GC-IMS技术分析新疆不同品种核桃油挥发性成分的差异. 中国油脂. 2025(03): 102-109 .
![]() | |
2. |
古丽米热·祖努纳,孟新涛,叶朵朵,付慧鑫,乔雪,乔雅洁,张婷. 不同储藏温度下鲜羊肉品质及风味的变化. 现代食品科技. 2025(03): 203-221 .
![]() | |
3. |
乔雪,乔雅洁,付慧鑫,孟新涛,张婷. 低压静电场辅助解冻对牛肉品质的影响. 食品工业科技. 2024(17): 48-56 .
![]() | |
4. |
杨秉坤,剧柠,丁雨红,郭蓉,龚绵红. 沙棘酸奶挥发性风味物质的GC-IMS表征. 食品工业科技. 2023(13): 308-315 .
![]() | |
5. |
张凡,张宇帆,苏心悦,徐文雅,安焕炯,马倩云,孙剑锋,王颉,王文秀. 基于顶空气相离子迁移谱的干腐病马铃薯挥发性成分分析. 食品科学. 2022(06): 317-323 .
![]() | |
6. |
王福成,米思,李劲松,王雨行,王向红. 基于气相色谱-离子迁移谱技术分析不同包装条件对黄瓜风味的影响. 食品工业科技. 2022(08): 296-304 .
![]() | |
7. |
马姗,于文龙,焦英帅,刘卫华,王向红. 不同减菌处理对凡纳对虾贮藏期间品质的影响. 食品科技. 2022(03): 116-124 .
![]() |