PAN Zhenhui, WEN Yuxin, ZHENG Qingsong, et al. Recent Advances in Extraction and Biological Activities of Bioactive Compounds from Lotus Wastes[J]. Science and Technology of Food Industry, 2021, 42(15): 364−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070034.
Citation: PAN Zhenhui, WEN Yuxin, ZHENG Qingsong, et al. Recent Advances in Extraction and Biological Activities of Bioactive Compounds from Lotus Wastes[J]. Science and Technology of Food Industry, 2021, 42(15): 364−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070034.

Recent Advances in Extraction and Biological Activities of Bioactive Compounds from Lotus Wastes

More Information
  • Received Date: July 02, 2020
  • Available Online: May 31, 2021
  • Lotus seedpod, lotus seed coat, lotus seed epicarp, and lotus plumule, which are common lotus wastes produced in the food processing industry, are often directly discarded or underutilized, resulting in the obvious waste of lotus resources. Since lotus wastes contain multiple bioactive compounds such as polyphenols, alkaloids, and polysaccharides that can promote human health, the development and utilization of bioactive compounds from lotus wastes has attracted increasing attention. At present, both conventional and modern extraction methods have been widely used in the extraction of bioactive compounds from lotus wastes. Meanwhile, some new extraction methods have also been used to extract bioactive compounds from lotus wastes to increase the extraction rate and have shown significant effects. Polyphenols, alkaloids, and polysaccharides in lotus wastes exhibit bioactivities in many fields, especially in anti-glycation, anti-proliferative, anti-oxidant, and anti-inflammatory. However, most bioactive studies are still in-vitro stage, which need to be further explored by in-vivo experiments in the future. This paper reviews the recent advances in extraction methods and biological activities of the main chemical compounds in lotus waste, which is expected to provide a reference for the development and utilization of lotus waste resources.
  • [1]
    Guo H B. Cultivation of lotus (Nelumbo nucifera Gaertn. ssp. nucifera) and its utilization in China[J]. Genetic Resources and Crop Evolution,2009,56(3):323−330. doi: 10.1007/s10722-008-9366-2
    [2]
    Zhang Y, Lu X, Zeng S X, et al. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: A review[J]. Phytochemistry Reviews,2015,14(3):321−334. doi: 10.1007/s11101-015-9401-9
    [3]
    方嘉沁, 韩舜羽, 王凤娇, 等. 莲子的营养成分及其在食品工业中的加工研究进展[J]. 农产品加工,2019(6):72−75.
    [4]
    颜征, 张海晖, 李亚群, 等. 莲固体废弃物中多酚类物质的喷雾干燥微胶囊化研究[J]. 食品工业科技,2018,39(10):222−227.
    [5]
    Limwachiranon J, Huang H, Shi Z, et al. Lotus flavonoids and phenolic acids: Health promotion and safe consumption dosages[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(2):458−471. doi: 10.1111/1541-4337.12333
    [6]
    Liao C, Lin J. Purification, partial characterization and anti-inflammatory characteristics of lotus (Nelumbo nucifera Gaertn) plumule polysaccharides[J]. Food Chemistry,2012,135(3):1818−1827. doi: 10.1016/j.foodchem.2012.06.063
    [7]
    Xiong W, Chen X, Lv G, et al. Optimization of microwave-assisted extraction of bioactive alkaloids from lotus plumule using response surface methodology[J]. Journal of Pharmaceutical Analysis,2016,6(6):382−388. doi: 10.1016/j.jpha.2016.05.007
    [8]
    黄秀琼, 卿志星, 曾建国. 莲不同部位化学成分及药理作用研究进展[J]. 中草药,2019,50(24):6162−6180.
    [9]
    Tsao R. Chemistry and biochemistry of dietary polyphenols[J]. Nutrients,2010,2(12):1231−1246. doi: 10.3390/nu2121231
    [10]
    李永芳. 生物碱的提取和分离方法综述[J]. 中山大学研究生学刊(自然科学. 医学版),2015,36(2):7−13.
    [11]
    宁正祥. 食品生物化学[M]. 广州: 华南理工大学出版社, 2013: 15.
    [12]
    国家药典委员会. 中华人民共和国药典, 一部[M]. 北京: 中国医药科技出版社, 2015.
    [13]
    凌智群. 莲房原花青素及其生物、药理活性研究[D]. 武汉: 华中农业大学, 2001.
    [14]
    余修亮. 莲副产物中原花青素的结构、抗氧化活性及降脂作用的研究[D]. 南昌: 南昌大学, 2017.
    [15]
    谢三都, 林雅男, 黄晓美. 莲蓬醇提物中槲皮素的鉴定及生物活性[J]. 食品与机械,2016,32(6):44−48.
    [16]
    陈超群. 莲房的化学成分研究[D]. 昆明: 云南中医学院, 2013.
    [17]
    Liu T, Zhu M, Zhang C, et al. Quantitative analysis and comparison of flavonoids in lotus plumules of four representative lotus cultivars[J]. Spectroscopy,2017:1−9.
    [18]
    陈培琳, 陈钏杰, 周雨嘉, 等. 响应面分析法优化莲子心多糖的提取工艺[J]. 福建农林大学学报(自然科学版),2017,46(6):708−715.
    [19]
    俞远志. 莲子心多糖的分离纯化及抗氧化活性研究[D]. 杭州: 浙江大学, 2006.
    [20]
    Ma Z, Huang Y, Huang W, et al. Separation, identification, and antioxidant activity of polyphenols from lotus seed epicarp[J]. Molecules,2019,24(21):4007. doi: 10.3390/molecules24214007
    [21]
    蒋蕾. 莲子皮渣中酚类物质及其抗氧化活性研究[D]. 杭州: 浙江大学, 2019.
    [22]
    陈轩, 周坚. 莲子皮化学成分的初步分析[J]. 农业机械,2011(29):139−141.
    [23]
    李杨. 莲子皮多糖和生物碱类活性成分的提取、纯化工艺研究[D]. 武汉: 武汉工业学院, 2011.
    [24]
    潘国庆, 黄敏, 夏千秋, 等. HPLC法测定莲子种皮中没食子酸的含量[J]. 食品科技,2017,42(4):304−308.
    [25]
    张露, 黄祥霞, 涂宗财, 等. 5种莲副产物中活性成分及其抗氧化、葡萄糖苷酶抑制活性比较[J]. 食品科学,2018,39(9):40−45.
    [26]
    颜征. 莲房多酚的亚临界水萃取、组成及活性评价[D]. 镇江: 江苏大学, 2019.
    [27]
    孙俊杰. 表面活性剂—超声协同提取莲子心总生物碱工艺研究[D]. 重庆: 重庆大学, 2014.
    [28]
    吴梅青. 莲子心总黄酮不同提取方法的比较与分析[J]. 食品研究与开发,2014,35(22):41−43. doi: 10.3969/j.issn.1005-6521.2014.22.012
    [29]
    郑淑霞, 吴岩斌, 吴建国, 等. 莲房总黄酮回流提取工艺的优化[J]. 福建中医药,2015,46(2):40−41.
    [30]
    董兰. 莲子心中莲心总碱的提取分离及其抗氧化性的研究[D]. 重庆: 重庆大学, 2008.
    [31]
    段玉清, 张海晖, 李金凤, 等. 脉冲超声辅助提取莲房多酚的工艺[J]. 农业工程学报,2009,25(S1):193−197.
    [32]
    罗平, 王莎莎, 孙俊杰, 等. 响应面优化超声辅助提取莲子心总生物碱工艺[J]. 食品与生物技术学报,2014,33(7):743−749.
    [33]
    Zhang L, Cheng Z, Zhao Q, et al. Green and efficient PEG-based ultrasound-assisted extraction of polysaccharides from superfine ground lotus plumule to investigate their antioxidant activities[J]. Industrial Crops and Products,2017:320−326.
    [34]
    段玉清, 闫永胜, 张海晖, 等. 莲房多酚的微波辅助提取技术[J]. 江苏大学学报(自然科学版),2009,30(5):437−440.
    [35]
    汪志慧. 双酶法制备莲房原花青素及其抗氧化性、稳定性研究[D]. 武汉: 华中农业大学, 2011.
    [36]
    包琦瑛. 聚酰胺树脂在分离提取领域中的应用[J]. 浙江中医药大学学报,2009,33(4):611−612. doi: 10.3969/j.issn.1005-5509.2009.04.090
    [37]
    郑淑霞, 易骏, 吴锦忠, 等. 大孔树脂纯化莲房总黄酮的工艺研究[J]. 中国药房,2015,26(31):4405−4408. doi: 10.6039/j.issn.1001-0408.2015.31.28
    [38]
    陈敬. 莲子心中黄酮类物质与生物碱的分离纯化工艺研究[D]. 长沙: 中南大学, 2011.
    [39]
    马双双. 莲子壳多酚的提取、分离纯化、结构鉴定及抗氧化活性研究[D]. 武汉: 华中农业大学, 2013.
    [40]
    李秋哲. 莲子心黄酮结构分析及其降血糖活性研究[D]. 福州: 福建农林大学, 2015.
    [41]
    柳伟, 王宏洁, 边宝林. 大孔吸附树脂纯化莲子心总生物碱的工艺研究[J]. 中国实验方剂学杂志,2007(3):23−25. doi: 10.3969/j.issn.1005-9903.2007.03.010
    [42]
    吕晶, 金磊, 王润东, 等. 大孔吸附树脂法纯化甲基莲心碱的工艺研究[J]. 哈尔滨商业大学学报(自然科学版),2019,35(5):522−525.
    [43]
    周芸. 莲房原花青素制备工艺及抗氧化活性研究[D]. 杭州: 浙江大学, 2012.
    [44]
    Ling Z, Xie B, Yang E, et al. Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn[J]. Journal of Agricultural and Food Chemistry,2005,53(7):2441−2445. doi: 10.1021/jf040325p
    [45]
    Li T, Li Q, Wu W, et al. Lotus seed skin proanthocyanidin extract exhibits potent antioxidant property via activation of the Nrf2–ARE pathway[J]. Acta Biochimica et Biophysica Sinica,2019,51(1):31−40. doi: 10.1093/abbs/gmy148
    [46]
    Liu Y, Ma S, Ibrahim S A, et al. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages[J]. Food Chemistry,2015:159−164.
    [47]
    Li X, Chen Y, Li S, et al. Oligomer procyanidins from lotus seedpod regulate lipid homeostasis partially by modifying fat emulsification and digestion[J]. Journal of Agricultural and Food Chemistry,2019,67(16):4524−4534. doi: 10.1021/acs.jafc.9b01469
    [48]
    Cao J, Yu X, Deng Z, et al. Chemical compositions, antiobesity, and antioxidant effects of proanthocyanidins from lotus seed epicarp and lotus seed pot[J]. Journal of Agricultural and Food Chemistry,2018,66(51):13492−13502. doi: 10.1021/acs.jafc.8b05137
    [49]
    梁慧敏, 时小燕, 随裕敏, 等. 莲房花青素诱导人肝癌细胞SMMC-7721凋亡的研究[J]. 中国实用医药,2011,6(19):37−38. doi: 10.3969/j.issn.1673-7555.2011.19.020
    [50]
    杜晓芬, 谢笔钧, 张玲珍, 等. 莲房原花青素对人口腔表皮样癌(KB)细胞生长及形态的影响[J]. 现代口腔医学杂志,2005(4):384−386. doi: 10.3969/j.issn.1003-7632.2005.04.015
    [51]
    Yan Z, Luo X, Cong J, et al. Subcritical water extraction, identification and antiproliferation ability on HepG2 of polyphenols from lotus seed epicarp[J]. Industrial Crops and Products,2019:472−479.
    [52]
    Duan Y, Zhang H, Xie B, et al. Whole body radioprotective activity of an acetone–water extract from the seedpod of Nelumbo nucifera Gaertn. seedpod[J]. Food and Chemical Toxicology,2010,48(12):3374−3384. doi: 10.1016/j.fct.2010.09.008
    [53]
    Tang C, Xie B, Sun Z, et al. Antibacterial activity and mechanism of B-type oligomeric procyanidins from lotus seedpod on enterotoxigenic Escherichia coli[J]. Journal of Functional Foods,2017:454−463.
    [54]
    Chen G, Fan M, Wu J, et al. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule.[J]. Food Chemistry,2019:706−712.
    [55]
    Wu Q, Chen H, Lv Z, et al. Oligomeric procyanidins of lotus seedpod inhibits the formation of advanced glycation end-products by scavenging reactive carbonyls.[J]. Food Chemistry,2013,138(2):1493−1502.
    [56]
    Wu Q, Li S, Yang T, et al. Inhibitory effect of lotus seedpod oligomeric procyanidins on advanced glycation end product formation in a lactose–lysine model system[J]. Electronic Journal of Biotechnology,2015,18(2):68−76. doi: 10.1016/j.ejbt.2014.10.005
    [57]
    张丽. 莲房原花青素对老年SD大鼠记忆障碍的影响及其机制研究[D]. 武汉: 华中科技大学, 2010.
    [58]
    Xu J P, Rong S, Xie B, et al. Procyanidins extracted from the lotus seedpod ameliorate scopolamine-induced memory impairment in mice[J]. Phytotherapy Research,2009,23(12):1742−1747. doi: 10.1002/ptr.2837
    [59]
    曾建伟, 谢勇, 林忠宁, 等. 莲子心抗肿瘤活性部位的筛选研究[J]. 实用中西医结合临床,2014,14(1):87−88.
    [60]
    Zhang X, Liu Z, Xu B, et al. Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization.[J]. European Journal of Pharmacology,2012,677(1):47−54.
    [61]
    Poornima P, Weng C, Padma V V, et al. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest[J]. Biofactors,2014,40(1):121−131. doi: 10.1002/biof.1115
    [62]
    Sugimoto Y, Furutani S, Nishimura K, et al. Antidepressant-like effects of neferine in the forced swimming test involve the serotonin1A (5-HT1A) receptor in mice[J]. European Journal of Pharmacology,2010,634(1):62−67.
    [63]
    Sugimoto Y, Nishimura K, Itoh A, et al. Serotonergic mechanisms are involved in antidepressant-like effects of bisbenzylisoquinolines liensinine and its analogs isolated from the embryo of Nelumbo nucifera Gaertner seeds in mice[J]. Journal of Pharmacy and Pharmacology,2015,67(12):1716−1722. doi: 10.1111/jphp.12473
    [64]
    Meng X, Zheng L, Liu J, et al. Inhibitory effects of three bisbenzylisoquinoline alkaloids on lipopolysaccharide-induced microglial activation[J]. RSC Advances,2017,7(30):18347−18357. doi: 10.1039/C7RA01882G
    [65]
    Chen S, Guo W, Qi X, et al. Natural alkaloids from lotus plumule ameliorate lipopolysaccharide-induced depression-like behavior: integrating network pharmacology and molecular mechanism evaluation[J]. Food & Function,2019,10(9):6062−6073.
    [66]
    熊一力, 王嘉陵, 钱家庆. 莲心碱对自发性高血压大鼠血管平滑肌细胞增殖及对PDGF-B、bFGF、c-sis、c-myc的影响[J]. 中国心血管杂志,1998(1):6−9.
    [67]
    Jun M Y, Karki R, Paudel K R, et al. Alkaloid rich fraction from Nelumbo nucifera targets VSMC proliferation and migration to suppress restenosis in balloon-injured rat carotid artery[J]. Atherosclerosis,2016:179−189.
    [68]
    Kashiwada Y, Akihiro A, Yasumasa I, et al. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids[J]. Bioorganic & Medicinal Chemistry,2005,13(2):443−448.
    [69]
    Liu B, Li J, Yi R, et al. Preventive effect of alkaloids from lotus plumule on acute liver injury in mice[J]. Foods,2019,8(1):36. doi: 10.3390/foods8010036
    [70]
    Liao C, Guo S, Lin J, et al. Characterization of the chemical composition and in vitro anti-inflammation assessment of a novel lotus (Nelumbo nucifera Gaertn) plumule polysaccharide[J]. Food Chemistry,2011,125(3):930−935. doi: 10.1016/j.foodchem.2010.09.082
    [71]
    Liao C, Lin J. Lotus (Nelumbo nucifera Gaertn) plumule polysaccharide protects the spleen and liver from spontaneous inflammation in non-obese diabetic mice by modulating pro-/anti-inflammatory cytokine gene expression[J]. Food Chemistry,2011,129(2):245−252. doi: 10.1016/j.foodchem.2011.03.103
    [72]
    Liao C, Lin J. Purified active lotus plumule (Nelumbo nucifera Gaertn) polysaccharides exert anti-inflammatory activity through decreasing Toll-like receptor-2 and -4 expressions using mouse primary splenocytes[J]. Journal of Ethnopharmacology,2013,147(1):164−173. doi: 10.1016/j.jep.2013.02.028
    [73]
    Liao C, Lin J. Lotus (Nelumbo nucifera Gaertn) plumule polysaccharide ameliorates pancreatic islets loss and serum lipid profiles in non-obese diabetic mice[J]. Food and Chemical Toxicology,2013:416−422.
  • Related Articles

    [1]LIU Hui, MU Tongna, LIN Li, GENG Jianqiang, JIANG Jie. Research Progress on Alkaloids as Emerging Potential Risk Factors for Food Safety[J]. Science and Technology of Food Industry, 2023, 44(8): 485-494. DOI: 10.13386/j.issn1002-0306.2022070090
    [2]HU Fuxia, CHU Qiao, BAI Ruoxi, YANG Xingwen, ZHENG Zhenjia, WANG Zhaosheng. Recent Advances in Bioactivities and Technologies for Bioavailability Improvement of Capsicum Alkaloids[J]. Science and Technology of Food Industry, 2021, 42(15): 412-419. DOI: 10.13386/j.issn1002-0306.2020070406
    [3]LV Meng-di, GUO Bin, HAN Guan-ying, CUI Zan. Optimization of the Extraction Technology of Total Alkaloids from the Roots of Suaeda salsa by Response Surface Method and Its Antibacterial Activity[J]. Science and Technology of Food Industry, 2020, 41(12): 121-125,132. DOI: 10.13386/j.issn1002-0306.2020.12.019
    [4]GAO Bin, LI Shuang-ling, LIU Feng-jing, CHE Wen-jun, FENG Li. Optimization of Extraction Process for Total Alkaloids from Maca with Different Color Types[J]. Science and Technology of Food Industry, 2018, 39(18): 176-180. DOI: 10.13386/j.issn1002-0306.2018.18.031
    [5]CHEN Xiao-wei, YANG Zhong-duo, SUN Jian-hui, ZHAO Jun-wen, ZHU Bao-ying. Optimization of extraction process for total alkaloids from Holarrhena antidysenteriaca by response surface methodology[J]. Science and Technology of Food Industry, 2017, (10): 253-256. DOI: 10.13386/j.issn1002-0306.2017.10.040
    [6]WANG Ya, ZHAO Chun-meng, XIE Jie, ZHAO Ping, MA Jian-ping, GUO Tao. Ultrasonic assisted extraction technology and its antioxidant and tyrosinase inhibition activities of the alkaloid from Zanthoxylum bungeanum[J]. Science and Technology of Food Industry, 2014, (20): 303-307. DOI: 10.13386/j.issn1002-0306.2014.20.058
    [7]WANG Xiu-yi, HU Chang-ying, YU Bing, OU Shi-yi, WANG Zhi-wei. Isolation and structural identification of alkaloids of papaya leaves[J]. Science and Technology of Food Industry, 2014, (06): 129-131. DOI: 10.13386/j.issn1002-0306.2014.06.073
    [8]Study on the method of separation and preparation purine alkaloids , noncaffeine tea polyphenols and tea pigments in one-step by sephadex LH-20[J]. Science and Technology of Food Industry, 2013, (16): 250-254. DOI: 10.13386/j.issn1002-0306.2013.16.042
    [9]Research progress in the analysis method of ergot alkaloids[J]. Science and Technology of Food Industry, 2012, (24): 437-441. DOI: 10.13386/j.issn1002-0306.2012.24.067
    [10]Extraction methods and chromatographic analysis of Dicranostigma leptopodum alkaloids[J]. Science and Technology of Food Industry, 2012, (22): 51-55. DOI: 10.13386/j.issn1002-0306.2012.22.025
  • Cited by

    Periodical cited type(7)

    1. 孟新涛,许铭强,张婷,古丽米热·祖努纳,牛逍瞳,郭金宝,刘国庆,马燕. 基于GC-IMS技术分析新疆不同品种核桃油挥发性成分的差异. 中国油脂. 2025(03): 102-109 .
    2. 古丽米热·祖努纳,孟新涛,叶朵朵,付慧鑫,乔雪,乔雅洁,张婷. 不同储藏温度下鲜羊肉品质及风味的变化. 现代食品科技. 2025(03): 203-221 .
    3. 乔雪,乔雅洁,付慧鑫,孟新涛,张婷. 低压静电场辅助解冻对牛肉品质的影响. 食品工业科技. 2024(17): 48-56 . 本站查看
    4. 杨秉坤,剧柠,丁雨红,郭蓉,龚绵红. 沙棘酸奶挥发性风味物质的GC-IMS表征. 食品工业科技. 2023(13): 308-315 . 本站查看
    5. 张凡,张宇帆,苏心悦,徐文雅,安焕炯,马倩云,孙剑锋,王颉,王文秀. 基于顶空气相离子迁移谱的干腐病马铃薯挥发性成分分析. 食品科学. 2022(06): 317-323 .
    6. 王福成,米思,李劲松,王雨行,王向红. 基于气相色谱-离子迁移谱技术分析不同包装条件对黄瓜风味的影响. 食品工业科技. 2022(08): 296-304 . 本站查看
    7. 马姗,于文龙,焦英帅,刘卫华,王向红. 不同减菌处理对凡纳对虾贮藏期间品质的影响. 食品科技. 2022(03): 116-124 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (453) PDF downloads (36) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return