XU Yangxin, GAO Xue, SUN Minjun, et al. Colistin-functionalized Fe3O4-GQDs as a Fluorescent Probe for Rapid Detection of Escherichia coli [J]. Science and Technology of Food Industry, 2021, 42(11): 9−14. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070027.
Citation: XU Yangxin, GAO Xue, SUN Minjun, et al. Colistin-functionalized Fe3O4-GQDs as a Fluorescent Probe for Rapid Detection of Escherichia coli [J]. Science and Technology of Food Industry, 2021, 42(11): 9−14. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070027.

Colistin-functionalized Fe3O4-GQDs as a Fluorescent Probe for Rapid Detection of Escherichia coli

More Information
  • Received Date: July 02, 2020
  • Available Online: March 29, 2021
  • Objective: To establish a method for the determination of Gram-negative bacteria - Escherichia coli by Colis-Fe3O4-graphene quantum dots (GQDs) functionalized fluorescent probes. Methods: Amino modified Fe3O4 was prepared by co-precipitation method, and it was combined with GQDs containing carboxyl groups, and Colis-Fe3O4-GQDs complex was formed by colistin modification. With this complex as fluorescent probe, different concentrations of Escherichia coli were detected. Results: The fluorescence quenching effect of Colis-Fe3O4-GQDs complex was good with Escherichia coli, and the fluorescence quenching of Colis-Fe3O4-GQDs complex was gradually enhanced with the increasing concentration of the strain. The linear detection range of this method was 1×102~10×102 CFU/mL, the coefficient of determination was 0.999, and the detection limit was 0.36×102 CFU/mL. Conclusion: The colis-Fe3O4-GQDs biosensor is simple and efficient, with good selectivity and sensitivity, which provides a new method for the detection of Gram-negative bacteria, and has a broad application prospect in the detection of bacteria.
  • [1]
    Wang Z F, Liu F. Nanopatterned graphene quantum dots as building blocks for quantum cellular automata[J]. Nanoscale,2011,3(10):4201−4205. doi: 10.1039/c1nr10489f
    [2]
    Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced materials,2011,23(6):776−780. doi: 10.1002/adma.201003819
    [3]
    Yan X, Cui X, Li L. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. Journal of the American Chemical Society,2010,132(17):5944−5945. doi: 10.1021/ja1009376
    [4]
    Feng Y, Zhong D, Miao H, et al. Carbon dots derived from rose flowers for tetracycline sensing[J]. Talanta,2015,140:128−133. doi: 10.1016/j.talanta.2015.03.038
    [5]
    Pan D, Zhang J, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced materials,2010,22(6):734−738. doi: 10.1002/adma.200902825
    [6]
    Liu R, Wu D, Feng X, et al. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology[J]. Journal of the American Chemical Society,2011,133(39):15221−15223. doi: 10.1021/ja204953k
    [7]
    Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology,2012,7(6):363. doi: 10.1038/nnano.2012.60
    [8]
    Xu C, Yang S, Tian L, et al. Fabrication of centimeter-scale light-emitting diode with improved performance based on graphene quantum dots[J]. Applied Physics Express,2017,10(3):032102. doi: 10.7567/APEX.10.032102
    [9]
    Wu X, Tian F, Wang W, et al. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing[J]. Journal of Materials Chemistry C,2013,1(31):4676−4684. doi: 10.1039/c3tc30820k
    [10]
    李想, 李萍, 韩奎文. 革兰氏阴性杆菌的分布特点及耐药性分析[J]. 中国实验诊断学,2019(12):2121−2123. doi: 10.3969/j.issn.1007-4287.2019.12.036
    [11]
    Chua C K, Sofer Z, Simek P, et al. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene[J]. Acs Nano,2015,9(3):2548−2555. doi: 10.1021/nn505639q
    [12]
    刘振宇, 刘瑾. 石墨烯量子点制备技术及创新资源现状[J]. 中国科技信息,2018(1):59−61. doi: 10.3969/j.issn.1001-8972.2018.01.022
    [13]
    Chen H, Xie Y, Kirillov A M, et al. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker[J]. Chemical Communications,2015,51(24):5036−5039. doi: 10.1039/C5CC00757G
    [14]
    Zhang Z, Zhang J, Chen N, et al. Graphene quantum dots: an emerging material for energy-related applications and beyond[J]. Energy & Environmental Science,2012,5(10):8869−8890.
    [15]
    曲丹. 掺杂型石墨烯量子点的制备及其应用研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.
    [16]
    Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS nano,2015,10(1):484−491.
    [17]
    Zhang M, Ju H, Zhang L, et al. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging[J]. International Journal of Nanomedicine,2015,10:6943.
    [18]
    Hu S, Tian R, Dong Y, et al. Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots[J]. Nanoscale,2013,5(23):11665−11671. doi: 10.1039/c3nr03893a
    [19]
    Yin J Y, Liu H J, Jiang S, et al. Hyperbranched polymer functionalized carbon dots with multistimuli-responsive property[J]. ACS Macro Letters,2013,2(11):1033−1037. doi: 10.1021/mz400474v
    [20]
    Robinson T, Mc Mullan G, Marchant R, et al. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative[J]. Bioresource Technology,2001,77(3):247−255. doi: 10.1016/S0960-8524(00)00080-8
    [21]
    Labanda J, Sabaté J, Llorens J. Modeling of the dynamic adsorption of an anionic dye through ion-exchange membrane adsorber[J]. Journal of Membrane Science,2009,340(1−2):234−240. doi: 10.1016/j.memsci.2009.05.036
    [22]
    Wu J S, Liu C H, Chu K H, et al. Removal of cationic dye methyl violet 2B from water by cation exchange membranes[J]. Journal of Membrane Science,2008,309(1-2):239−245. doi: 10.1016/j.memsci.2007.10.035
    [23]
    Wesenberg D, Kyriakides I, Agathos S N. White-rot fungi and their enzymes for the treatment of industrial dye effluents[J]. Biotechnology Advances,2003,22(1-2):161−187. doi: 10.1016/j.biotechadv.2003.08.011
    [24]
    Paszczynski A, Crawford R L. Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: Involvement of veratryl alcohol[J]. Biochemical and Biophysical Research Communications,1991,178(3):1056−1063. doi: 10.1016/0006-291X(91)90999-N
    [25]
    陈冬梅, 陈求刚, 廖康, 等. 院内常见革兰氏阴性杆菌耐药性监测[J]. 中国抗生素杂志,2001,26(6):473−476. doi: 10.3969/j.issn.1001-8689.2001.06.020
    [26]
    Johnson J R, Johnston B, Clabots C, et al. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States[J]. Clinical Infectious Diseases,2010,51(3):286−294. doi: 10.1086/653932
    [27]
    R Eisler E, Eisenberg H, Minton A P. Temperature and density dependence of the refractive index of pure liquids[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics,1972,68:1001. doi: 10.1039/f29726801001
    [28]
    马序竹, 单爱莲, 陈旭岩, 等. 多黏菌素的临床药学研究进展[J]. 中国临床药理学杂志,2017,33(7):665−667, 672.
    [29]
    赵苗, 张菁, 张婴元, 等. 多黏菌素临床研究进展[J]. 中国感染与化疗杂志,2017,17(6):695−702.
    [30]
    左联. 革兰氏阴性细菌的耐药机理[J]. 国际药学研究杂志,1999(2):101−104.
    [31]
    Falagas M E, Bliziotis I A. Pandrug-resistant Gram-negative bacteria: The dawn of the post-antibiotic era?[J]. International Journal of Antimicrobial Agents,2007,29(6):630−636. doi: 10.1016/j.ijantimicag.2006.12.012
    [32]
    Johnston M. Escherichia coli—a review[J]. Journal of the Royal Society for the Promotion of Health,2000,120(2):81.
    [33]
    Otieno B A, Krause C E, Rusling J F. Bioconjugation of antibodies and enzyme labels onto magnetic beads[J]. Methods in Enzymology,2016,571:135.
    [34]
    Liu X, Ma Z, Xing J, et al. Preparation and characterization of amino-silane modified superparamagnetic silca nanospheres[J]. Journal of Magnetism and Magnetic Materials,2004,270(1):1.
    [35]
    孙宁, 胡飞. 超顺磁性颗粒表面复合修饰及用于固定化α-11淀粉酶载体的效果[J]. 农业工程学报,2016,32(11):290−294. doi: 10.11975/j.issn.1002-6819.2016.11.041
    [36]
    贺全国, 吴伟, 林琳. 表面氨基化磁性Fe3O4纳米粒子合成与表征[J]. 自然科学版,2007,21(1):19−24, 29.
    [37]
    倪丹妮, 蒋栋能, 蒲晓允. 基于石墨烯量子点和Fe3O4纳米复合探针的肾病管型的荧光成像技术的研究[J]. 检验医学与临床,2016,13(17):2414−2416. doi: 10.3969/j.issn.1672-9455.2016.17.003
    [38]
    刘斌. Pickering乳液在药物胶囊中的应用[D]. 北京: 北京化工大学, 2017.
    [39]
    宋宇. 基于石墨烯量子点仿生纳米材料对鱼肉中喹诺酮类药物的应用研究[D]. 锦州: 渤海大学, 2020.
    [40]
    洪勇. Fe3O4基纳米复合材料的制备和磁光性能研究[D]. 合肥: 合肥工业大学, 2018.
    [41]
    周磊. 秦皮素对大肠杆菌的抑菌作用机制[D]. 大连: 辽宁师范大学, 2013.
    [42]
    顾银君, 王秀玲, 陈恭, 等. 氨基硅烷化磁性纳米粒子的制备与表征[J]. 苏州科技学院学报: 自然科学版,2012,29(1):42−46.
    [43]
    刘微波. Fe3O4磁性纳米粒子的制备、表征及其在分离检测中的应用[D]. 无锡: 江南大学, 2010.
    [44]
    崔明通. 氨基改性纳米Fe3O4吸附剂的制备及其对水溶液中Cr(Ⅵ)和Pb(Ⅱ)的吸附[D]. 天津: 天津大学, 2016.
    [45]
    陈杖榴. 兽药药理学[M]. 北京: 中国农业出版社, 2002: 225−226.
  • Cited by

    Periodical cited type(8)

    1. 王佳,丁方莉,安宇,曾雪莹,张智慧,李思楠,徐开媛,周芳,王颖,张璐,徐炳政,孙泽堃. 芸豆-蓝靛果复合发酵液制备工艺优化及其抗氧化活性. 食品工业科技. 2025(03): 222-231 . 本站查看
    2. 王虎玄,柯西娜,王聪,朱亚南,孙宏民. 苹果酵素的制备及其抗氧化功能研究. 陕西科技大学学报. 2023(03): 37-46 .
    3. 杨彬彦,党娅,黎坤怡. 蓝莓酵素复合菌种发酵工艺优化及品质分析. 中国酿造. 2023(12): 165-169 .
    4. 陈洲琴,张祝兰,程贤,林仙菊,杨煌建,严雪浪,朱爱明,连云阳. 枇杷酵素发酵过程生物学特性和主要功效酶活性研究. 福建农业科技. 2023(10): 23-28 .
    5. 秦宇蒙,王艳丽,周笑犁,董平坤,吴栋斐. 番茄酵素自然发酵过程中主要功效酶的变化. 食品工业科技. 2022(20): 60-66 . 本站查看
    6. 蒋家璇,韩盼盼,孔振杨,程陆陆,姚沛琳. 百香果酵素自然发酵过程中代谢产物及抗氧化活性研究. 农产品加工. 2022(19): 10-13+17 .
    7. 任秀秀,余冬丽,郭涛,郭正江,LUO Liu. 餐余酵素中益生菌的分离培养及鉴定. 贵州工程应用技术学院学报. 2021(03): 61-67 .
    8. 张焱梅,甘玉芬,丁学梅,马海燕,伍凤莲,冯玉兰. 植物酵素的活性功效及其食用方面的研究进展. 甘肃科技纵横. 2021(08): 25-28 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (194) PDF downloads (25) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return