XIANG Fei, XIA Yuting, XIAO Man, et al. Review of the Influence of Nanoparticles on the Microstructure of Polysaccharide Based Blend Films[J]. Science and Technology of Food Industry, 2021, 42(15): 358−363. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070019.
Citation: XIANG Fei, XIA Yuting, XIAO Man, et al. Review of the Influence of Nanoparticles on the Microstructure of Polysaccharide Based Blend Films[J]. Science and Technology of Food Industry, 2021, 42(15): 358−363. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070019.

Review of the Influence of Nanoparticles on the Microstructure of Polysaccharide Based Blend Films

More Information
  • Received Date: July 02, 2020
  • Available Online: June 01, 2021
  • The polysaccharide based blend films have the characteristics of uniformity, transparency and degradability. It has become a hot research direction in the field of biodegradable film. Studies have found that mixing nanoparticles with polysaccharide solution could form a complex film-forming solution. After film formation, the original microstructure of the film changed, thereby improving the mechanical and barrier properties of the blend film. In this paper, the microstructure and molecular interaction in starch film, chitosan film and konjac glucomannan film were reviewed. The changes in microstructure and physicochemical properties of the films blended with nanoparticles and polysaccharides were emphatically described, in order to provide reference for the microstructure design and film performance control of the polysaccharide based blend films.
  • [1]
    Roy K, Thory R, Sinhmar A, et al. Development and characterization of nano starch-based composite films from mung bean (Vigna radiata)[J]. International Journal of Biological Macromolecules,2020,144:242−251. doi: 10.1016/j.ijbiomac.2019.12.113
    [2]
    Tester R F, Karkalas J, Qi X. Starch—composition, fine structure and architecture[J]. Journal of Cereal Science,2004,39:151−165. doi: 10.1016/j.jcs.2003.12.001
    [3]
    Lin N, Huang J, Chang P R, et al. Preparation, modification, and application of starch nanocrystals in nanomaterials: A review[J]. Journal of Nanomaterials,2011,20:1687−4110.
    [4]
    Yu Y, Zhang S, Ren Y, et al. Jujube preservation using chitosan film with nano-silicon dioxide[J]. Journal of Food Engineering,2012,113:408−414. doi: 10.1016/j.jfoodeng.2012.06.021
    [5]
    Xing Y, Yang H, Guo X, et al. Effect of chitosan/nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits[J]. Scientia Horticulturae,2020,263:109135. doi: 10.1016/j.scienta.2019.109135
    [6]
    Yu Y, Shen M, Song Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review[J]. Carbohydrate Polymers,2018,183:91−101. doi: 10.1016/j.carbpol.2017.12.009
    [7]
    Wu C H, Li Y Z, Yu D, et al. Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging[J]. Food Hydrocolloids,2019,89:682−690. doi: 10.1016/j.foodhyd.2018.11.001
    [8]
    Gutierrez T J, Toro-Marquez L A, Merino D, et al. Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract[J]. Food Hydrocolloids,2020,89:283−293.
    [9]
    Bagde P, Nadanathangam V. Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose[J]. Carbohydrate Polymers,2019,222:115021. doi: 10.1016/j.carbpol.2019.115021
    [10]
    Dash K K, Ali N A, Das D, et al. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications[J]. International Journal of Biological Macromolecules,2019,139:449−458. doi: 10.1016/j.ijbiomac.2019.07.193
    [11]
    Babaei-Ghazvini A, Shahabi-Ghahfarrokhi I, Goudarzi V. Preparation of UV-protective starch/kefiran/ZnO nanocomposite as a packaging film: Characterization[J]. Food Packaging and Shelf Life,2018,16:103−111. doi: 10.1016/j.fpsl.2018.01.008
    [12]
    Lin Q, Ji N, Li M, et al. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films[J]. Food Hydrocolloids,2020,104:105760. doi: 10.1016/j.foodhyd.2020.105760
    [13]
    Valencia G A, Luciano C G, Lourenco R V, et al. Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite[J]. International Journal of Biological Macromolecules,2018,107:0 1576−1586. doi: 10.1016/j.ijbiomac.2017.10.031
    [14]
    Oleyaei S A, Zahedi Y, Ghanbarzadeh A, et al. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles[J]. International Journal of Biological Macromolecules,2016,89:256−264. doi: 10.1016/j.ijbiomac.2016.04.078
    [15]
    Zhang R, Cheng M, Wang X, et al. Bioactive mesoporous nano-silica/potato starch films against molds commonly found in post-harvest white mushrooms[J]. Food Hydrocolloids,2019,95:517−525. doi: 10.1016/j.foodhyd.2019.04.060
    [16]
    Yao K, Cai J, Liu M, et al. Structure and properties of starch/PVA/nano-SiO2 hybrid films[J]. Carbohydrate Polymers,2011,86:1784−1789. doi: 10.1016/j.carbpol.2011.07.008
    [17]
    Tang S, Zou P, Xiong H, et al. Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films[J]. Carbohydrate Polymers,2008,72:521−526. doi: 10.1016/j.carbpol.2007.09.019
    [18]
    Yun Y H, Kim E S, Shim W G, et al. Physical properties of mungbean starch/PVA bionanocomposites added nano-ZnS particles and its photocatalytic activity[J]. Journal of Industrial and Engineering Chemistry,2018,68:57−68. doi: 10.1016/j.jiec.2018.07.029
    [19]
    Ni S, Zhang H, Godwin P M, et al. ZnO nanoparticles enhanced hydrophobicity for starch film and paper[J]. Materials Letters,2018,230(1):207−210.
    [20]
    Hu X, Jia X, Zhi C, et al. Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles[J]. Carbohydrate Polymers,2019,210:204−209. doi: 10.1016/j.carbpol.2019.01.043
    [21]
    Noorbakhsh-Soltani S M, Zerafat M M, Sabbaghi S. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications[J]. Carbohydrate Polymers,2018,189:48−55. doi: 10.1016/j.carbpol.2018.02.012
    [22]
    Coelho C C S, Silva R B S, Carvalho C W P, et al. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films[J]. International Journal of Biological Macromolecules,2020,159:1048−1061. doi: 10.1016/j.ijbiomac.2020.05.046
    [23]
    Qin Y, Zhang S, Yu J, et al. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films[J]. Carbohydrate Polymers,2016,147:372−378. doi: 10.1016/j.carbpol.2016.03.095
    [24]
    Cheng L, Zhang D, Gu Z, et al. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films[J]. International Journal of Biological Macromolecules,2018,111:959−966. doi: 10.1016/j.ijbiomac.2018.01.056
    [25]
    Mukurubira A R, MellemJ M, Amonsou E O. Effects of amadumbe starch nanocrystals on the physicochemical[J]. Carbohydrate Polymers,2017,165:142−148. doi: 10.1016/j.carbpol.2017.02.041
    [26]
    Prusty K, Swain S K. Nano CaCO3 imprinted starch hybrid polyethylhexylacrylate\polyvinylalcohol nanocomposite thin films[J]. Carbohydrate Polymers,2016,139:90−98. doi: 10.1016/j.carbpol.2015.12.009
    [27]
    Park S Y, Park H J, Lin X, et al. Characterization of chitosan film and structure in solution[J]. Hydrocolloids,2000,1:199−204.
    [28]
    Okuyama K, Noguchi K, Kanenari M, et al. Structural diversity of chitosan and its complexes[J]. Carbohydrate Polymers,2000,41:237−247. doi: 10.1016/S0144-8617(99)00142-3
    [29]
    Kalaycıoğlu Z, Kahya N, Adımcılar V, et al. Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing[J]. European Polymer Journal,2020,133:109777. doi: 10.1016/j.eurpolymj.2020.109777
    [30]
    Sun J, Jiang H, Wu H, et al. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging[J]. Food Hydrocolloids,2020,107:105942. doi: 10.1016/j.foodhyd.2020.105942
    [31]
    Saral S K, Indumathi M P, Rajarajeswari G R. Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications[J]. International Journal of Biological Macromolecules,2019,124:163−174. doi: 10.1016/j.ijbiomac.2018.11.195
    [32]
    Sani I K, Pirsa S, Tağı Ş. Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nanocomposite film and evaluation of physical, mechanical and antimicrobial properties by response surface method[J]. Polymer Testing,2019,79:106004. doi: 10.1016/j.polymertesting.2019.106004
    [33]
    Tian F, Chen W, Wu C, et al. Preservation ofGinkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films[J]. International Journal of Biological Macromolecules,2019,126:917−925. doi: 10.1016/j.ijbiomac.2018.12.177
    [34]
    Qu L, Chen G, Dong S, et al. Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2[J]. Industrial Crops & Products, 2019, 130: 450-458.
    [35]
    Kadam D, Momin B, Palamthodi S, et al. Physicochemical and functional properties of chitosan-based nanocomposite films incorporated with biogenic silver nanoparticles[J]. Carbohydrate Polymers,2019,211:124−132. doi: 10.1016/j.carbpol.2019.02.005
    [36]
    Wang X, Xie Y, Ge H, et al. Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose[J]. Carbohydrate Polymers,2018,179:207−220. doi: 10.1016/j.carbpol.2017.09.087
    [37]
    Zhang C, Yang F Q. Konjac glucomannan, a promising polysaccharide for OCDDS[J]. Carbohydrate Polymers,2014,104(1):175−181.
    [38]
    Katsuraya K, Okuyama K, Hatanaka K, et al. Constitution of konjac glucomannan: Chemical analysis and 13C NMR spectroscopy[J]. Carbohydrate Polymers,2003,53(2):183−189. doi: 10.1016/S0144-8617(03)00039-0
    [39]
    柯凡. 魔芋葡甘聚糖基气凝胶的制备过程及结构控制[D]. 武汉: 湖北工业大学, 2016.
    [40]
    Liu Z, Lin D, Lopez-Sanchez P, et al. Characterizations of bacterial cellulose nanofibers reinforced edible films based on konjac glucomannan[J]. International Journal of Biological Macromolecules,2020,145:634−645. doi: 10.1016/j.ijbiomac.2019.12.109
    [41]
    Wu C, Li Y, Sun J, et al. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging[J]. Food Hydrocolloids,2020,98:105245. doi: 10.1016/j.foodhyd.2019.105245
    [42]
    Lin W, Ni Y, Pang J. Size effect-inspired fabrication of konjac glucomannan/polycaprolactone fiber films for antibacterial food packaging[J]. International Journal of Biological Macromolecules,2020,149:853−860. doi: 10.1016/j.ijbiomac.2020.01.242
    [43]
    Zhu W, Li J, Lei J, et al. Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications[J]. Carbohydrate Polymers,2018,197:253−259. doi: 10.1016/j.carbpol.2018.06.005
    [44]
    Wang C, Xie B, Li B. Preparation and characterization of konjac glucomannan (KGM)/SiO2nanopaticles blend film[J]. Advanced Materials Research,2011,194-196:1431−1436. doi: 10.4028/www.scientific.net/AMR.194-196.1431
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (274) PDF downloads (24) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return