Citation: | XIANG Fei, XIA Yuting, XIAO Man, et al. Review of the Influence of Nanoparticles on the Microstructure of Polysaccharide Based Blend Films[J]. Science and Technology of Food Industry, 2021, 42(15): 358−363. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070019. |
[1] |
Roy K, Thory R, Sinhmar A, et al. Development and characterization of nano starch-based composite films from mung bean (Vigna radiata)[J]. International Journal of Biological Macromolecules,2020,144:242−251. doi: 10.1016/j.ijbiomac.2019.12.113
|
[2] |
Tester R F, Karkalas J, Qi X. Starch—composition, fine structure and architecture[J]. Journal of Cereal Science,2004,39:151−165. doi: 10.1016/j.jcs.2003.12.001
|
[3] |
Lin N, Huang J, Chang P R, et al. Preparation, modification, and application of starch nanocrystals in nanomaterials: A review[J]. Journal of Nanomaterials,2011,20:1687−4110.
|
[4] |
Yu Y, Zhang S, Ren Y, et al. Jujube preservation using chitosan film with nano-silicon dioxide[J]. Journal of Food Engineering,2012,113:408−414. doi: 10.1016/j.jfoodeng.2012.06.021
|
[5] |
Xing Y, Yang H, Guo X, et al. Effect of chitosan/nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits[J]. Scientia Horticulturae,2020,263:109135. doi: 10.1016/j.scienta.2019.109135
|
[6] |
Yu Y, Shen M, Song Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review[J]. Carbohydrate Polymers,2018,183:91−101. doi: 10.1016/j.carbpol.2017.12.009
|
[7] |
Wu C H, Li Y Z, Yu D, et al. Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging[J]. Food Hydrocolloids,2019,89:682−690. doi: 10.1016/j.foodhyd.2018.11.001
|
[8] |
Gutierrez T J, Toro-Marquez L A, Merino D, et al. Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract[J]. Food Hydrocolloids,2020,89:283−293.
|
[9] |
Bagde P, Nadanathangam V. Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose[J]. Carbohydrate Polymers,2019,222:115021. doi: 10.1016/j.carbpol.2019.115021
|
[10] |
Dash K K, Ali N A, Das D, et al. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications[J]. International Journal of Biological Macromolecules,2019,139:449−458. doi: 10.1016/j.ijbiomac.2019.07.193
|
[11] |
Babaei-Ghazvini A, Shahabi-Ghahfarrokhi I, Goudarzi V. Preparation of UV-protective starch/kefiran/ZnO nanocomposite as a packaging film: Characterization[J]. Food Packaging and Shelf Life,2018,16:103−111. doi: 10.1016/j.fpsl.2018.01.008
|
[12] |
Lin Q, Ji N, Li M, et al. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films[J]. Food Hydrocolloids,2020,104:105760. doi: 10.1016/j.foodhyd.2020.105760
|
[13] |
Valencia G A, Luciano C G, Lourenco R V, et al. Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite[J]. International Journal of Biological Macromolecules,2018,107:0 1576−1586. doi: 10.1016/j.ijbiomac.2017.10.031
|
[14] |
Oleyaei S A, Zahedi Y, Ghanbarzadeh A, et al. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles[J]. International Journal of Biological Macromolecules,2016,89:256−264. doi: 10.1016/j.ijbiomac.2016.04.078
|
[15] |
Zhang R, Cheng M, Wang X, et al. Bioactive mesoporous nano-silica/potato starch films against molds commonly found in post-harvest white mushrooms[J]. Food Hydrocolloids,2019,95:517−525. doi: 10.1016/j.foodhyd.2019.04.060
|
[16] |
Yao K, Cai J, Liu M, et al. Structure and properties of starch/PVA/nano-SiO2 hybrid films[J]. Carbohydrate Polymers,2011,86:1784−1789. doi: 10.1016/j.carbpol.2011.07.008
|
[17] |
Tang S, Zou P, Xiong H, et al. Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films[J]. Carbohydrate Polymers,2008,72:521−526. doi: 10.1016/j.carbpol.2007.09.019
|
[18] |
Yun Y H, Kim E S, Shim W G, et al. Physical properties of mungbean starch/PVA bionanocomposites added nano-ZnS particles and its photocatalytic activity[J]. Journal of Industrial and Engineering Chemistry,2018,68:57−68. doi: 10.1016/j.jiec.2018.07.029
|
[19] |
Ni S, Zhang H, Godwin P M, et al. ZnO nanoparticles enhanced hydrophobicity for starch film and paper[J]. Materials Letters,2018,230(1):207−210.
|
[20] |
Hu X, Jia X, Zhi C, et al. Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles[J]. Carbohydrate Polymers,2019,210:204−209. doi: 10.1016/j.carbpol.2019.01.043
|
[21] |
Noorbakhsh-Soltani S M, Zerafat M M, Sabbaghi S. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications[J]. Carbohydrate Polymers,2018,189:48−55. doi: 10.1016/j.carbpol.2018.02.012
|
[22] |
Coelho C C S, Silva R B S, Carvalho C W P, et al. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films[J]. International Journal of Biological Macromolecules,2020,159:1048−1061. doi: 10.1016/j.ijbiomac.2020.05.046
|
[23] |
Qin Y, Zhang S, Yu J, et al. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films[J]. Carbohydrate Polymers,2016,147:372−378. doi: 10.1016/j.carbpol.2016.03.095
|
[24] |
Cheng L, Zhang D, Gu Z, et al. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films[J]. International Journal of Biological Macromolecules,2018,111:959−966. doi: 10.1016/j.ijbiomac.2018.01.056
|
[25] |
Mukurubira A R, MellemJ M, Amonsou E O. Effects of amadumbe starch nanocrystals on the physicochemical[J]. Carbohydrate Polymers,2017,165:142−148. doi: 10.1016/j.carbpol.2017.02.041
|
[26] |
Prusty K, Swain S K. Nano CaCO3 imprinted starch hybrid polyethylhexylacrylate\polyvinylalcohol nanocomposite thin films[J]. Carbohydrate Polymers,2016,139:90−98. doi: 10.1016/j.carbpol.2015.12.009
|
[27] |
Park S Y, Park H J, Lin X, et al. Characterization of chitosan film and structure in solution[J]. Hydrocolloids,2000,1:199−204.
|
[28] |
Okuyama K, Noguchi K, Kanenari M, et al. Structural diversity of chitosan and its complexes[J]. Carbohydrate Polymers,2000,41:237−247. doi: 10.1016/S0144-8617(99)00142-3
|
[29] |
Kalaycıoğlu Z, Kahya N, Adımcılar V, et al. Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing[J]. European Polymer Journal,2020,133:109777. doi: 10.1016/j.eurpolymj.2020.109777
|
[30] |
Sun J, Jiang H, Wu H, et al. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging[J]. Food Hydrocolloids,2020,107:105942. doi: 10.1016/j.foodhyd.2020.105942
|
[31] |
Saral S K, Indumathi M P, Rajarajeswari G R. Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications[J]. International Journal of Biological Macromolecules,2019,124:163−174. doi: 10.1016/j.ijbiomac.2018.11.195
|
[32] |
Sani I K, Pirsa S, Tağı Ş. Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nanocomposite film and evaluation of physical, mechanical and antimicrobial properties by response surface method[J]. Polymer Testing,2019,79:106004. doi: 10.1016/j.polymertesting.2019.106004
|
[33] |
Tian F, Chen W, Wu C, et al. Preservation ofGinkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films[J]. International Journal of Biological Macromolecules,2019,126:917−925. doi: 10.1016/j.ijbiomac.2018.12.177
|
[34] |
Qu L, Chen G, Dong S, et al. Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2[J]. Industrial Crops & Products, 2019, 130: 450-458.
|
[35] |
Kadam D, Momin B, Palamthodi S, et al. Physicochemical and functional properties of chitosan-based nanocomposite films incorporated with biogenic silver nanoparticles[J]. Carbohydrate Polymers,2019,211:124−132. doi: 10.1016/j.carbpol.2019.02.005
|
[36] |
Wang X, Xie Y, Ge H, et al. Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose[J]. Carbohydrate Polymers,2018,179:207−220. doi: 10.1016/j.carbpol.2017.09.087
|
[37] |
Zhang C, Yang F Q. Konjac glucomannan, a promising polysaccharide for OCDDS[J]. Carbohydrate Polymers,2014,104(1):175−181.
|
[38] |
Katsuraya K, Okuyama K, Hatanaka K, et al. Constitution of konjac glucomannan: Chemical analysis and 13C NMR spectroscopy[J]. Carbohydrate Polymers,2003,53(2):183−189. doi: 10.1016/S0144-8617(03)00039-0
|
[39] |
柯凡. 魔芋葡甘聚糖基气凝胶的制备过程及结构控制[D]. 武汉: 湖北工业大学, 2016.
|
[40] |
Liu Z, Lin D, Lopez-Sanchez P, et al. Characterizations of bacterial cellulose nanofibers reinforced edible films based on konjac glucomannan[J]. International Journal of Biological Macromolecules,2020,145:634−645. doi: 10.1016/j.ijbiomac.2019.12.109
|
[41] |
Wu C, Li Y, Sun J, et al. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging[J]. Food Hydrocolloids,2020,98:105245. doi: 10.1016/j.foodhyd.2019.105245
|
[42] |
Lin W, Ni Y, Pang J. Size effect-inspired fabrication of konjac glucomannan/polycaprolactone fiber films for antibacterial food packaging[J]. International Journal of Biological Macromolecules,2020,149:853−860. doi: 10.1016/j.ijbiomac.2020.01.242
|
[43] |
Zhu W, Li J, Lei J, et al. Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications[J]. Carbohydrate Polymers,2018,197:253−259. doi: 10.1016/j.carbpol.2018.06.005
|
[44] |
Wang C, Xie B, Li B. Preparation and characterization of konjac glucomannan (KGM)/SiO2nanopaticles blend film[J]. Advanced Materials Research,2011,194-196:1431−1436. doi: 10.4028/www.scientific.net/AMR.194-196.1431
|