LIU Yu, CAO Yanan, PENG Lianxin, et al. Research Progress on the Effects of Processing Methods of Flavonoids in Tartary Buckwheat[J]. Science and Technology of Food Industry, 2021, 42(15): 351−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070008.
Citation: LIU Yu, CAO Yanan, PENG Lianxin, et al. Research Progress on the Effects of Processing Methods of Flavonoids in Tartary Buckwheat[J]. Science and Technology of Food Industry, 2021, 42(15): 351−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070008.

Research Progress on the Effects of Processing Methods of Flavonoids in Tartary Buckwheat

More Information
  • Received Date: July 01, 2020
  • Available Online: May 31, 2021
  • Tartary buckwheat is a traditional dual-use food and medicine resource. It is rich in nutrients and functional ingredients. It has various activities such as reducing blood sugar, reducing blood fat, reducing blood pressure and anti-inflammatory. It has been developed into various foods. Flavonoids are the main bioactive substances in Tartary buckwheat which promote human health. Among them, rutin and quercetin are the main existing forms of Tartary buckwheat flavonoids, different processing methods have a significant effect on its content and transformation, thus affecting the functional activity and taste of Tartary buckwheat and its related products. However, the lack of relevant systematic discussion is not conducive to the development of differentiated Tartary buckwheat health products.This artical reviews the stability and biotransformation characteristics of flavonoids in Tartary buckwheat, and the influence of several common processing methods on flavonoids, such as crushing, germination, fermentation and heat treatment. It plays an important role in the maintenance and transformation of flavonoids in Tartary buckwheat, and provides a reference for the development of health products with strong pertinence.
  • [1]
    任长忠, 赵钢. 中国荞麦学[M]. 北京: 中国农业出版社, 2015: 3−5.
    [2]
    周冉冉, 陈茂彬, 张玉. 苦荞营养、功能和香气成分的研究进展[J]. 中国酿造,2018,37(12):12−15. doi: 10.11882/j.issn.0254-5071.2018.12.003
    [3]
    赵钢, 邹亮, 彭镰心, 等. 铅胁迫对苦荞生理特性的影响[J]. 江苏农业科学,2012,40(7):98−100. doi: 10.3969/j.issn.1002-1302.2012.07.035
    [4]
    王艳. 不同季节多年生苦荞的叶及其发酵茶品质变化研究[D]. 贵阳: 贵州师范大学, 2019.
    [5]
    张余, 黄小敏, 刘昌敏, 等. 苦荞营养保健成分及其食品开发研究进展与展望[J]. 粮食与油脂,2019,32(8):12−14. doi: 10.3969/j.issn.1008-9578.2019.08.004
    [6]
    Yang J, Gu Z, Zhu L, et al. Buckwheat digestibility affected by the chemical and structural features of its main components[J]. Food Hydrocolloids,2019,96(11):596−603.
    [7]
    何伟俊, 曾荣, 白永亮, 等. 苦荞麦的营养价值及开发利用研究进展[J]. 农产品加工,2019(23):69−75.
    [8]
    崔强, 陈景超. 黄酮类化合物生理活性及合成研究进展[J]. 黑龙江科技信息,2011(20):30−30.
    [9]
    杨延利. 萌发对苦荞黄酮合成的影响及萌发物抑菌、抗肿瘤活性的研究[D]. 上海: 上海师范大学, 2011.
    [10]
    秦培友. 我国主要荞麦品种资源品质评价及加工处理对荞麦成分和活性的影响[D]. 北京: 中国农业科学院, 2012.
    [11]
    孙琳, 袁杰彬, 陈双为, 等. 苦荞中黄酮类化合物提取方法的研究进展[J]. 酿酒科技,2018(9):74−80.
    [12]
    吕惠生, 冯永鑫, 周锦怡, 等. 苦荞活性组分超临界流体工业色谱提纯工艺[J/OL]. 高效化学工程学报, 2019, http://kns.cnki.net/kcms/detail/33.1141.TQ.20191024.0929.002.html.
    [13]
    Vogrincic M, Kreft I, Filipic M, et al. Antigenotoxic effect of tartary (Fagopyrum tataricum) and common (Fagopyrum esculentum) buckwheat flour[J]. J Med Food,2013,16(10):944−952. doi: 10.1089/jmf.2012.0266
    [14]
    Karki R, Park C H, Kim D W. Extract of buckwheat sprouts scavenges oxidation and inhibits proinflammatory mediators in lipopolysaccharide-stimulated macropHages (RAW264.7)[J]. J Integr Med,2013,11(4):246−252. doi: 10.3736/jintegrmed2013036
    [15]
    Tsai H, Deng H, Tsai S, et al. Bioactivity comparison of extracts from various parts of common and tartary buckwheats: Evaluation of the antioxidant- and angiotensin-converting enzyme inhibitory activities[J]. Chemistry Central Journal,2012,6(1).
    [16]
    Jin H M, Wei P. Anti-fatigue properties of tartary buckwheat extracts in mice[J]. Int J Mol Sci,2011,12(8):4770−4780. doi: 10.3390/ijms12084770
    [17]
    Qin P, Wu L, Yao Y, et al. Changes in pHytochemical compositions, antioxidant and α-glucosidase inhibitory activities during the processing of tartary buckwheat tea[J]. Food Research International,2013,50(2):562−567. doi: 10.1016/j.foodres.2011.03.028
    [18]
    Choi J Y, Cho E J, Lee H S, et al. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-beta-induced alzheimer model[J]. Food Chem Toxicol,2013,53:105−111. doi: 10.1016/j.fct.2012.11.002
    [19]
    Yang N, Li Y M, Zhang K, et al. Hypocholesterolemic activity of buckwheat flour is mediated by increasing sterol excretion and down-regulation of intestinAl NPC1L1 and ACAT2[J]. Journal of Functional Foods,2014,6:311−318. doi: 10.1016/j.jff.2013.10.020
    [20]
    Lee C C, Shen S R, Lai Y J, et al. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury[J]. Food Funct,2013,4(5):794−802. doi: 10.1039/c3fo30389f
    [21]
    李栋, 张立攀, 李向力, 等. 苦荞降血糖产品的稳定性研究[J]. 河南科学,2020,38(1):57−62. doi: 10.3969/j.issn.1004-3918.2020.01.010
    [22]
    Kai C, Qiang W, Shiqin W, et al. The facilitating effect of tartary buckwheat flavonoids and lactobacillus plantarum on the growth performance, nutrient digestibility, antioxidant capacity, and fecal microbiota of weaned piglets[J]. Animals: An Open Access Journal from MDPI, 2019, 9(11): 986.
    [23]
    龙海荣, 杨洋, 刘绍州, 等. 黄酮类化合物的安全性研究进展[J]. 食品研究与开发,2008(10):154−157. doi: 10.3969/j.issn.1005-6521.2008.10.047
    [24]
    张冬梅. 苦荞芽菜培养及其次生代谢产物黄酮的代谢调控[D]. 西安: 陕西科技大学, 2012.
    [25]
    彭镰心. 基于调节糖脂代谢效应的苦荞资源品质研究[D]. 成都: 成都中医药大学, 2019.
    [26]
    孙晓静. 糊化处理对苦荞面团性质的影响[D]. 咸阳: 西北农林科技大学, 2016.
    [27]
    龚敏, 卢金清. 不同年份陈艾的总黄酮、总多糖研究[J]. 湖北农业科学,2019,58(13):114−116,121.
    [28]
    李建平, 张铁, 曾文波. 不同储存时间对蛹虫草中化学成分含量的影响[J]. 北方园艺,2019(22):134−142.
    [29]
    冯靖, 彭效明, 李翠清, 等. 银杏叶黄酮的抗氧化性及其稳定性研究[J]. 食品科技,2019,44(4):244−249.
    [30]
    洪春桃, 沈登锋, 魏斌, 等. 干燥与储存方式对三叶青块根总黄酮含量的影响[J]. 浙江农业科学,2019,60(12):2316−2318.
    [31]
    李雪营, 林先燕, 孙晓惠, 等. 杜仲不同“发汗”加工方法制品中总黄酮含量的比较[J]. 时珍国医国药,2019,30(3):597−599.
    [32]
    葛水莲, 陈建中, 刘娜, 等. 太行菊总黄酮抗氧化活性及稳定性研究[J]. 食品科技,2019,44(10):241−245.
    [33]
    王丽娟, 刘苏萌, 李可, 等. 黑苦荞中黄酮类化合物的稳定性和抑菌活性研究[J]. 粮食与油脂,2015,28(8):62−65. doi: 10.3969/j.issn.1008-9578.2015.08.017
    [34]
    黄健, 郑敏, 张志鹏. 5种食品添加剂对蜂胶总黄酮稳定性的影响[J]. 湖北科技学院学报(医学版),2019,33(5):374−376,461.
    [35]
    汪道兵, 高青海, 孙玉军. 老鸦瓣黄酮的制备及其稳定性研究[J]. 江汉大学学报(自然科学版),2019,47(6):549−554.
    [36]
    王智磊, 刘素娟, 张鑫, 等. 黑曲霉生物转化黄酮类成分研究进展[J]. 中国实验方剂学杂志,2017,23(21):220−228.
    [37]
    王福, 张鑫, 卢俊宇, 等. 陈皮“陈久者良”之黄酮类成分增加原因探究[J]. 中国中药杂志,2015,40(24):4890−4896.
    [38]
    邓媛, 毛勇, 王燕. 黑曲霉 TC-01 产柚苷酶对柚皮苷酶解作用的研究[J]. 中国食品添加剂,2012(3):108−111. doi: 10.3969/j.issn.1006-2513.2012.03.015
    [39]
    Da S C M G, Contesini F J, Sawaya A, et al. Enhancement of the antioxidant activity of orange and lime juices by flavonoid enzymatic de-glycosylation[J]. Food Research International,2013,52(1):308−314. doi: 10.1016/j.foodres.2013.03.019
    [40]
    F. H Y H H J. The conversion and deglycosylation of isoflavones and anthocyanins in black soymilk process[J]. Food Chemistry,2018,261:8−14. doi: 10.1016/j.foodchem.2018.03.152
    [41]
    刘双月, 安燕南, 刘斯琪, 等. 金莲花中8种黄酮类成分的肝微粒体生物转化研究[J]. 中国现代中药,2019,21(11):1489−1496.
    [42]
    郑庆红, 张忠鹏, 耿子颖, 等. 球形红细菌生物转化槲寄生中总黄酮类化合物的测定[J]. 中国药物与临床,2012,12(8):981−983. doi: 10.3969/j.issn.1671-2560.2012.08.001
    [43]
    李宁, 叶子茂, 向福, 等. 藜蒿总黄酮生物转化菌株的筛选及转化工艺优化[J]. 中国酿造,2018,37(6):150−154.
    [44]
    Barber G, Behrman E J. The synthesis and characterization of uridine 50-(b-L-rhamnopyranosyl dipHospHate) and its role in the enzymatic synthesis of rutin[J]. Archives of Biochemistry and BiopHysics,1991,288:239−242.
    [45]
    Li D, Li X L, Ding X L, et al. A process for preventing enzymatic degradation of rutin in tartary buckwheat (Fagopyrum tataricum Gaertn) flour[J]. Food Science and Biotechnology,2008,17:118−122.
    [46]
    Bae I Y, Choi A S, Lee H G. Impact of buckwheat flavonoids on in vitro starch digestibility and noodle-making properties[J]. Cereal Chemistry Journal,2016,93(3):299−305. doi: 10.1094/CCHEM-03-15-0047-R
    [47]
    Yoo J Y, Kim, Y J, et al. Reduction of rutin loss in buckwheat noodles and their physicochemical characterisation[J]. Food Chem,2012,132:2107−2111. doi: 10.1016/j.foodchem.2011.12.065
    [48]
    Zhang J, Wang F, Han P, et al. Effect of tartary buckwheat peptides on shelf life of tilapia (Oreochromis niloticus) fillets[J]. J Food Prot,2019,82(10):1697−1705. doi: 10.4315/0362-028X.JFP-18-365
    [49]
    肖咏梅, 李明, 毛璞, 等. 黄酮类化合物生物改性及活性的研究进展[J]. 河南工业大学学报(自然科学版),2019,40(2):123−131,139.
    [50]
    马艺超, 路飞, 马凤鸣, 等. 体外模拟消化对苦荞面包黄酮及抗氧化的影响[J]. 中国粮油学报,2019,34(9):20−27. doi: 10.3969/j.issn.1003-0174.2019.09.005
    [51]
    蔡亭, 汪丽萍, 刘明, 等. 超微粉碎对苦荞多酚及抗氧化活性的影响研究[J]. 中国粮油学报,2015,30(10):95−99+106. doi: 10.3969/j.issn.1003-0174.2015.10.018
    [52]
    左蕾蕾, 徐沛, 饶朝龙, 等. 超微粉碎对苦荞米与苦荞壳总黄酮的体外溶出影响[J]. 食品工业,2016,37(6):109−112.
    [53]
    孙丹, 黄士淇, 蔡圣宝. 不同加工方式对苦荞中总酚、总黄酮及抗氧化性的影响[J]. 食品与发酵工业,2016,42(1):141−147.
    [54]
    Singh K, Kumar S, Rani A, et al. PHenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea[J]. Funct Integr Genomics,2009,9(1):125−134. doi: 10.1007/s10142-008-0092-9
    [55]
    顾继娟. 苦荞籽粒芦丁降解酶的纯化与其酶学性质研究[D]. 咸阳: 西北农林科技大学, 2010.
    [56]
    Wang L, Li X, Niu M, et al. Effect of additives on flavonoids, D-chiro-Inositol and trypsin inhibitor during the germination of tartary buckwheat seeds[J]. Journal of Cereal Science,2013,58(2):348−354. doi: 10.1016/j.jcs.2013.07.004
    [57]
    Ren S C, Sun J T. Changes in pHenolic content, phenylalanine ammonia-lyase (PAL) activity, and antioxidant capacity of two buckwheat sprouts in relation to germination[J]. Journal of Functional Foods,2014,7:298−304. doi: 10.1016/j.jff.2014.01.031
    [58]
    周小理, 方向, 周一鸣, 等. 磁场对苦荞种子萌发过程中黄酮类物质的诱导效应[J]. 食品科学,2012,33(21):20−23.
    [59]
    Krahl M, Back W, Zarnk O W M, et al. Determination of optimised malting conditions for the enrichment of rutin, vitexin and orientin in common buckwheat (Fagopyrum esculentum moench)[J]. Journal of the Institute of Brewing,2008,114:294−299. doi: 10.1002/j.2050-0416.2008.tb00772.x
    [60]
    雒晓鹏, 卜星星, 赵海霞, 等. LED光源对芽期苦荞黄酮合成的影响[J]. 食品科学,2015,36(3):86−89.
    [61]
    吕兵兵, 姚攀锋, 王官凤, 等. 光周期对苦荞芽菜生长与品质的影响[J]. 西北植物学报,2019,39(10):1785−1794.
    [62]
    卞紫秀, 马辉, 汪建飞, 等. 超声结合NaCl处理对苦荞麦萌发及芽苗主要成分的影响[J]. 安徽工程大学学报,2019,34(5):8−18. doi: 10.3969/j.issn.2095-0977.2019.05.002
    [63]
    马辉, 卞紫秀, 陈雪怡, 等. 微波协同L-pHe处理对萌发苦荞中主要营养成分的影响[J]. 安徽工程大学学报,2019,34(6):1−7. doi: 10.3969/j.issn.2095-0977.2019.06.001
    [64]
    张采琼, 赵江林, 赵钢, 等. 香菇多糖对苦荞萌发及黄酮合成的影响[J]. 食品工业,2014,35(8):123−126.
    [65]
    卞小稳. 荞麦在啤酒酿造中的应用研究[D]. 无锡: 江南大学, 2016.
    [66]
    张燕莉. 苦荞啤酒浸麦、糖化工艺优化及酿造过程活性成分变化研究[D]. 合肥: 安徽农业大学, 2013.
    [67]
    殷培蕾. 苦荞醪糟发酵工艺及质量评价[D]. 成都: 西华大学, 2015.
    [68]
    杨芙莲, 刘旭. 荞麦醋发酵过程中芦丁含量变化规律研究[J]. 中国酿造,2012,31(9):44−46. doi: 10.3969/j.issn.0254-5071.2012.09.013
    [69]
    王延丽. 我国荞麦食品的加工研究[J]. 食品工业,2016,37(5):267−269.
    [70]
    马艺超. 不同热加工对苦荞制品功能成分、质构及体外消化的影响[D]. 沈阳: 沈阳农业大学, 2019.
    [71]
    Bouasla, A W. Rice-buckwheat gluten-free pasta: Effect of processing parameters on quality characteristics and optimization of Extrusion-cooking process[J]. Foods,2019,8(10):496−496. doi: 10.3390/foods8100496

Catalog

    Article Metrics

    Article views (433) PDF downloads (50) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return