LI Xiyu, YANG Huaigu, TANG Daobang, et al. Research Progress on Beef Proteolysis and Functional Properties of Active Peptides[J]. Science and Technology of Food Industry, 2021, 42(13): 379−385. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070004.
Citation: LI Xiyu, YANG Huaigu, TANG Daobang, et al. Research Progress on Beef Proteolysis and Functional Properties of Active Peptides[J]. Science and Technology of Food Industry, 2021, 42(13): 379−385. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070004.

Research Progress on Beef Proteolysis and Functional Properties of Active Peptides

More Information
  • Received Date: July 01, 2020
  • Available Online: April 22, 2021
  • Beef is a high-quality food source, providing abundant nutrients, and having a succulent texture and flavorful taste. The amino acids composition and proportion in beef are close to human requirement. After single-enzyme hydrolysis, multi-enzyme combination hydrolysis or multi-enzyme step-by-step hydrolysis, the beef proteins generate a variety of peptides which can be separated from the hydrolysate. Some of them have been proven to exhibit diverse biological functions, such as seasoning, anti-hypertension, anti-oxidation, anti-microbe, and neuroprotection. At present, bioactive peptide products on the market are mainly derived from plants, milk and aquatic products. Meat-derived peptides are rarely applied in practice, while most of them are under experimental stage. More investigations are needed to explore their mechanism of action, bioavailability and methods of separation and purification before application to actual production.This review focuses on the hydrolytic methods and products of beef proteins, and address protein-derived peptides which have latent bio-potencies, and herein further propose promising prospect and trend of efficient utilization of these active peptides. It provides theoretical basis and reference for the application of beef proteolysis technology in the area of developing new functional food and food-based materials.
  • [1]
    中国畜牧业协会牛业分. 2018年我国肉牛产业发展回顾与2019年展望[J]. 饲料与畜牧,2019(5):31−37.
    [2]
    冯春, 杨春, 孟志兴, 等. 世界牛肉生产消费贸易分析与前景展望[J]. 世界农业,2017(7):134−137.
    [3]
    刘春鹏, 肖海峰. 中国牛肉供求现状及趋势分析[J]. 农业经济与管理,2016(4):79−87. doi: 10.3969/j.issn.1674-9189.2016.04.010
    [4]
    邱怀. 牛生产学[M]. 北京: 中国农业出版社, 1995: 73−75.
    [5]
    张慧, 丁原春, 王喆, 等. 牛肉的营养价值及其嫩度的影响因素[J]. 饲料博览,2019(11):47−50. doi: 10.3969/j.issn.1001-0084.2019.11.011
    [6]
    刘燕. 从营养角度看肉类制品加工业的发展[J]. 肉类研究,2006,20(1):3−5. doi: 10.3969/j.issn.1001-8123.2006.01.003
    [7]
    Crowe K M, Francis C. Position of the academy of nutrition and dietetics: Functional foods[J]. Journal of the Academy of Nutrition and Dietetics,2013,113(8):1096−1103. doi: 10.1016/j.jand.2013.06.002
    [8]
    Jing X S, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies[J]. Medicinal Research Reviews,2020,40(2):1−58.
    [9]
    娄鹏祥, 李婷婷, 童今柱, 等. 不同加热方式对腌制鸭肉蛋白质溶解度的影响[J]. 安徽农业科学,2019,47(1):163−166. doi: 10.3969/j.issn.0517-6611.2019.01.049
    [10]
    Xiong Y L. Proteins in food processing, 2nd edn, muscle protein[M]. Woodhead Publishing Series in Food Science, Technology and Nutrition: Sawston, Cambridge, 2018: 127−148.
    [11]
    胡亚芹, 葛雨 珺, 白妍, 等. 热处理对肉类蛋白质构的影响[J]. 渔业科学进展,2019,40(5):175−184.
    [12]
    杜菲菲, 吴长玲, 方艾虎, 等. 不同种类肉肌浆蛋白的油-水界面性质[J]. 食品科学,2020,41(4):15−22. doi: 10.7506/spkx1002-6630-20181022-229
    [13]
    叶凤凌, 池玉闽, 周敏之, 等. 氧化对兔肉肌原纤维蛋白结构、乳化性和凝胶性的影响研究[J]. 食品工业科技,2020,41(24):22−30.
    [14]
    李斌. 豆渣蛋白肽与膳食纤维的提取及其功能研究[D]. 南宁:广西大学, 2019.
    [15]
    涂茂林. 牛乳酪蛋白抗血栓和降血压活性肽的筛选及结构表征[D].哈尔滨: 哈尔滨工业大学, 2019.
    [16]
    蔡燕萍, 余晓婉, 张庆春, 等. 水产品生物活性肽的研究进展[J]. 食品与发酵工业,2020,46(16):249−256.
    [17]
    李宏凯. 酶法水解植物蛋白概况[J]. 中国食品添加剂,2010(4):233−237. doi: 10.3969/j.issn.1006-2513.2010.04.038
    [18]
    陈珍, 安鑫, 王亚茜, 等. 牛肉酶解工艺及其产物的研究进展[J]. 肉类研究,2014,28(10):29−32.
    [19]
    潘秋月, 周晓红. 牛肉酶解液的特性分析[J]. 食品科技,2007(12):111−114. doi: 10.3969/j.issn.1005-9989.2007.12.034
    [20]
    徐怀德, 段旭昌, 提高兰. 牛肉酶解条件和饮料加工技术研究[J]. 西北农林科技大学学报: 自然科学版,2003(增刊1):89−92.
    [21]
    Ma Y, Yuan Y P, Bi X F, et al. Tenderization of yak meat by the combination of papain and high-pressure processing treatments[J]. Food and Bioprocess Technology,2019,12(4).
    [22]
    孟祥河, 张铁华, 洪伯铿. 复合酶水解牛肉的研究[J]. 食品科技,2002(2):17−20. doi: 10.3969/j.issn.1005-9989.2002.02.006
    [23]
    谭斌, 丁霄霖. 牛肉蛋白水解物的酶解制备[J]. 无锡轻工大学学报: 食品与生物技术,2005(1):59−64.
    [24]
    王玲玲. 不同蛋白酶制剂对牛肉的酶解效果研究[J]. 食品研究与开发,2019,40(1):51−56. doi: 10.3969/j.issn.1005-6521.2019.01.010
    [25]
    周小理, 张正强. 牛肉水解液的制备及其抗氧化活性的研究[J]. 食品工业,2007(2):24−27.
    [26]
    闫爽, 高献礼, 陆健. 协同发酵法与酶解法制备牛肉呈味料的对比研究[J]. 食品工业科技,2013(8):196−200.
    [27]
    齐景凯, 张玉芬. 牛骨酶解工艺及其酶解液中游离氨基酸的分析研究[J]. 中国食品添加剂,2013(1):109−115. doi: 10.3969/j.issn.1006-2513.2013.01.012
    [28]
    王瑞雪, 伊丽, 吉日木图. 驼乳生物活性肽的研究进展[J]. 中国食品学报,2020,20(7):299−306.
    [29]
    Zhang M, Mu T H. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure[J]. Innovative Food Science and Emerging Technologies,2017,43:92−101. doi: 10.1016/j.ifset.2017.08.001
    [30]
    伊小丽. 超声波—微波辅助酶解河蚌肉制备调味料工艺研究[D]. 长春:吉林大学, 2018.
    [31]
    Aslam M Z, Shoukat S, Hongfei Z, et al. Peptidomic analysis of ACE inhibitory peptides extracted from fermented goat milk[J]. International Journal of Peptide Research and Therapeutics,2019,25(4):1259−1270. doi: 10.1007/s10989-018-9771-0
    [32]
    Bhatnagar M, Attri S, Sharma K, et al. Lactobacillus paracasei CD4 as potential indigenous lactic cultures with antioxidative and ACE inhibitory activity in soymilk hydrolysate[J]. Journal of Food Measurement and Characterization,2017,12(2):1005−1010.
    [33]
    Daliri E B-M, Ofosu F K, Chelliah R, et al. Development of a soy protein hydrolysate with an antihypertensive effect[J]. International Journal of Molecular Sciences,2019,20(6):1496. doi: 10.3390/ijms20061496
    [34]
    Yang H, Qu Y, Li J, et al. Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis[J]. Food Science and Technology,2020,128:109442.
    [35]
    张新武, 麦雄健. 酶与高压蒸煮耦合水解蛹虫草蛋白质的工艺研究[J]. 食品工业,2018,39(4):129−133.
    [36]
    Hemker A K, Nguyen L T, Karwe M, et al. Effects of pressure-assisted enzymatic hydrolysis on functional and bioactive properties of tilapia (Oreochromis niloticus) by-product protein hydrolysates[J]. Food Science and Technology,2019,122:109003.
    [37]
    Bruno S F, Kudre T G, Bhaskar N. Effects of different pretreatments and proteases on recovery, umami taste compound contents and antioxidant potentials ofLabeo rohita head protein hydrolysates[J]. Journal of Food Science and Technology,2019,56(4).
    [38]
    李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索,2015,34(8):41−45. doi: 10.3969/j.issn.1006-7167.2015.08.011
    [39]
    李玉昕, 朱迎春, 卫云云, 等. 响应面试验优化牛骨汤酶解工艺及其钙含量分析[J]. 食品研究与开发,2020,41(3):92−96.
    [40]
    张典, 李龄佳, 崔春, 等. 牡蛎酶解工艺的响应面优化研究[J]. 中国调味品,2019,44(5):12−16. doi: 10.3969/j.issn.1000-9973.2019.05.004
    [41]
    张华丹, 张玲云, 张国玉, 等. 响应面法优化南极磷虾蛋白酶解工艺条件[J]. 食品工业,2019,40(7):94−98.
    [42]
    王瑞雪, 吉日木图, 伊丽. 响应面法优化驼乳乳清蛋白酶解制备抑菌肽工艺参数[J]. 中国酿造,2019,38(2):73−79. doi: 10.11882/j.issn.0254-5071.2019.02.015
    [43]
    胡昂, 段蕊, 刘志东, 等. 响应面法优化中性蛋白酶酶解海湾扇贝副产物制备抗氧化酶解物研究[J]. 海洋渔业,2020,42(1):98−109. doi: 10.3969/j.issn.1004-2490.2020.01.011
    [44]
    李勇. 生物活性肽研究现况和进展[J]. 食品与发酵工业,2007(1):3−9. doi: 10.3321/j.issn:0253-990X.2007.01.002
    [45]
    Zhang W, Xiao S, Samaraweera H, et al. Improving functional value of meat products[J]. Meat Science,2010,86(1):15−31. doi: 10.1016/j.meatsci.2010.04.018
    [46]
    Hu Y Y, Xing L J, Zhou G H, et al. Antioxidant activity of crude peptides extracted from dry-cured Jinhua ham[J]. Journal of Food and Nutrition Research,2016,4(6):377−387.
    [47]
    张波. 呈味肽研究技术进展[J]. 现代食品,2020(4):61−63.
    [48]
    Yamasaki Y, Maekawa K. A peptide with delicious taste[J]. Agricultural and Biological Chemistry,1978,42(9):1761−1765.
    [49]
    Pieter D, Andre H A, Wim M M. Taste of“delicious”beefy meaty peptide. Revised[J]. Journal of Agricultural and Food Chemistry,1995,43(11):2828−2832. doi: 10.1021/jf00059a011
    [50]
    张宁龙, 王文利, 刘源. 牛肉风味肽的研究进展[J]. 食品工业科技,2019,40(8):317−322.
    [51]
    Lerch, Konrad. Cloning, expression and production of tasty peptides: Europe, EP96115211[P]. 1999-11-17.
    [52]
    Bolen, Paul L. Flavor active modified thaumatin and monellin and methods for their production and use: US, P20030050445[P]. 2005-9-22.
    [53]
    Lee S Y, Hur S J. Antihypertensive peptides from animal products, marine organisms, and plants[J]. Food Chemistry,2017,228:506−517. doi: 10.1016/j.foodchem.2017.02.039
    [54]
    Jang A, Lee M. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates[J]. Meat Science,2005,69(4):653−661. doi: 10.1016/j.meatsci.2004.10.014
    [55]
    Banerjee P, Shanthi C. Isolation of novel bioactive regions from bovine Achilles tendon collagen having angiotensin Iconverting enzyme-inhibitory properties[J]. Process Biochemistry,2012,47(12):2335−2346. doi: 10.1016/j.procbio.2012.09.012
    [56]
    Juhui C, Bumjin P, Hyun J L, et al. Potential antioxidant and angiotensin I-converting enzyme inhibitory activity in crust of dry-aged beef[J]. Scientific reports,2020,10(1):7883. doi: 10.1038/s41598-020-64861-0
    [57]
    Intarapichet K O, Maikhunthod B. Genotype and gender differences in carnosine extracts and antioxidant activities of chicken breast and thigh meats[J]. Meat Science,2005,71(4):634−642. doi: 10.1016/j.meatsci.2005.05.011
    [58]
    何梓钰, 陈珍, 黄俊逸, 等. 酶解公犊奶牛肉制备抗氧化活性肽口服液的工艺优化[J]. 肉类研究,2019,33(3):26−33. doi: 10.7506/rlyj1001-8123-20190210-027
    [59]
    Di Bernardini R, Mullen A M, Bolton D, et al. Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions[J]. Meat Science,2012,90(1):226−235. doi: 10.1016/j.meatsci.2011.07.008
    [60]
    Zasloff M. Antimicrobial peptides of multicellular organisms[J]. Nature,2002,415(6870):389−395. doi: 10.1038/415389a
    [61]
    Lee S H, Kim S J, Lee Y S, et al. De novo generation of short antimicrobial peptides with simple amino acid composition[J]. Regulatory Peptides,2011,166(1−3):36−41. doi: 10.1016/j.regpep.2010.08.010
    [62]
    Fogaca A C, da Silva P I, Miranda M T M. et al. Antimicrobial activity of a bovine hemoglobin fragment in the tickBoophilus microplus[J]. Journal of Biological Chemistry,1999,274(36):25330−25334. doi: 10.1074/jbc.274.36.25330
    [63]
    Hu J, Xu M, Hang B, et al. Isolation and characterization of an antimicrobial peptide from bovine hemoglobin a-subunit[J]. World Journal of Microbiology and Biotechnology,2011,27(4):767−771. doi: 10.1007/s11274-010-0514-4
    [64]
    Jang A, Jo C, Kang K S, et al. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides[J]. Food Chemistry,2008,107(1):327−336. doi: 10.1016/j.foodchem.2007.08.036
    [65]
    De los Rios C, Cano-Abad M F, Villarroya M, et al. Chromaffin cells as a model to evaluate mechanisms of cell death and neuroprotective compounds[J]. Pflugers Archiv-European Journal of Physiology,2017,470 (1):187−198.
    [66]
    Gelain D P, Antonio Behr G, Birnfeld de Oliveira R, et al. Antioxidant therapies for neurodegenerative diseases: Mechanisms, current trends, and perspectives[J]. Oxidative Medicine and Cellular Longevity,2012,2012:1−2.
    [67]
    Lee S H, Hur S J. Protective effect of a 3 kDa peptide obtained from beef myofibrillar protein using alkaline-AK on neuronal cells[J]. Neurochemistry International,2019,129:104459. doi: 10.1016/j.neuint.2019.05.003
    [68]
    Lee S H, Hur S J. Neuroprotective effects of different molecular weight peptide fractions obtained from beef by hydrolysis with commercial enzymes in SH-SY5Y cells[J]. Food Research International,2019,121:176−184. doi: 10.1016/j.foodres.2019.03.039
    [69]
    Back S Y, Kim H K, Lim S D, et al. Development of antihypertensive natural seasoning using beef hydrolyzate[J]. Journal of the Korean Society for Applied Biological Chemistry,2013,56(2):201−206. doi: 10.1007/s13765-011-3023-8
    [70]
    Zhang C L, Alashi A M, Singh N, et al. Glycated beef protein hydrolysates as sources of bitter taste modifiers[J]. Nutrients,2019,11(9):2166. doi: 10.3390/nu11092166
    [71]
    Nongonierma A B, FitzGerald R J. Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides[J]. Trends in Food Science & Technology,2016,50:26−43.
    [72]
    Agyei D, Danquah K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides[J]. Biotechnology Advances,2011,29(3):272−277. doi: 10.1016/j.biotechadv.2011.01.001
    [73]
    Conan K W, David J C. Designing macrocyclic disulfide-rich peptides for biotechnological applications[J]. Nature Chemical Biology,2018,14(5):417−427. doi: 10.1038/s41589-018-0039-y
  • Cited by

    Periodical cited type(7)

    1. 夏小雨,温财兴,曹文红,秦小明,李钰金,林海生,陈忠琴,郑惠娜,朱国萍,高加龙. 基于表面等离子体共振技术筛选马氏珠母贝肉酶解产物中血管紧张素转换酶抑制肽. 食品科学. 2025(07): 143-150 .
    2. 吴靖娜,洪乔茜,廖榕榕,蔡水淋,陈晓婷,苏海燕,苏筱,许莉,潘南,卓诗晴. 红毛藻血管紧张素转化酶抑制肽的筛选及其稳定性评价. 食品科学. 2024(02): 188-194 .
    3. 郭星晨,李玉豪,马金璞,张钰璇,李华鑫,杨具田,樊佩如,高丹丹. 基于氨基酸描述符对血管紧张素转化酶抑制五肽定量构效关系分析. 食品科学. 2024(13): 38-48 .
    4. 钟玉旺,于梦怡,张丹,常莹,幸福兵,黄艾祥,王雪峰. 辣木籽凝乳酶在水牛乳干酪制备中应用及产血管紧张素转化酶抑制肽分析. 食品科学. 2024(18): 87-98 .
    5. 王海东,张涵,周泓妍,史佳琳,石雨欣,衣春光,张红印,严铭铭. 响应面法优化五味子蛋白肽的制备工艺及其体外抗氧化活性. 食品工业科技. 2024(19): 166-176 . 本站查看
    6. 杨志雨,王广慧,孟涓涓,郑晓宇,徐丽晶,韩昊霖. 响应面优化超声波辅助酶解法制备金针菇ACE抑制肽. 湖北农业科学. 2024(11): 153-159+167 .
    7. 杨明哲,赵子莹,汤华成,李良玉,彭思念,李志江. 植物源咸味肽制备与应用研究进展. 食品工业科技. 2023(20): 467-474 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (635) PDF downloads (46) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return