CHEN Manyu, GU Zhiliang. Research Progress of the Active Components and Mechanism of Cyclocarya paliurus in Regulating Glucolipid Metabolism[J]. Science and Technology of Food Industry, 2021, 42(11): 382−389. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070001.
Citation: CHEN Manyu, GU Zhiliang. Research Progress of the Active Components and Mechanism of Cyclocarya paliurus in Regulating Glucolipid Metabolism[J]. Science and Technology of Food Industry, 2021, 42(11): 382−389. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070001.

Research Progress of the Active Components and Mechanism of Cyclocarya paliurus in Regulating Glucolipid Metabolism

More Information
  • Received Date: July 01, 2020
  • Available Online: March 22, 2021
  • Cyclocarya paliurus, the sole plant in its genus belong to the Juglans family, has attracted much attention due to its well-known modulation effect on glucose and lipid metabolism. Up to now, a variety range of bioactive natural compounds such as polysaccharides, triterpenes, flavonoids, and phenolic acids have been isolated from Cyclocarya paliurus. It has been reported that Cyclocarya paliurus exerts its therapeutic effect on glucose metabolism via multiple pathways, including protecting the pancreatic islet cells, regulating the insulin signaling pathway, and enhancing the uptake of utilization of glucose. On the other hand, the lipid metabolism modulation effect of this medicinal plant has been linked to the regulation of related signal cascade as well as inhibition of lipid peroxidation. In this review, we summarized the recent progress on mechanism studies regarding abovementioned activities of Cyclocarya paliurus, highlighting the potential application of this plant in the treatment of diabetes, hyperlipidemia, obesity and other metabolic diseases.
  • [1]
    Organization W H. Obesity and overweight [EB/OL]. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.
    [2]
    Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis[J]. Hepatology,2016,31(5):936−944.
    [3]
    Zheng Y, Ley S H, Hu F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nature Reviews Endocrinology,2018,14(2):88−98. doi: 10.1038/nrendo.2017.151
    [4]
    Federation I D. IDF Diabetes Atlas-9th Edition [EB/OL]. https://www.diabetesatlas.org/en/.
    [5]
    Bluher M. Obesity: global epidemiology and pathogenesis[J]. Nature Reviews Endocrinology,2019,15(5):288−298. doi: 10.1038/s41574-019-0176-8
    [6]
    Stinkens R, Goossens G H, Jocken J W, et al. Targeting fatty acid metabolism to improve glucose metabolism[J]. Obesity Reviews,2015,16(9):715−757. doi: 10.1111/obr.12298
    [7]
    Deng L, Lei J, He J, et al. Evaluation on genotoxicity and teratogenicity of aqueous extract from Cyclocarya paliurus leaves[J]. The Scientific World Journal,2014,2014:498134.
    [8]
    Yang Z, Wang J, Li J, et al. Antihyperlipidemic and hepatoprotective activities of polysaccharide fraction from Cyclocarya paliurus in high-fat emulsion-induced hyperlipidaemic mice[J]. Carbohydrate Polymers,2018,183:11−20. doi: 10.1016/j.carbpol.2017.11.033
    [9]
    Hu W B, Zhao J, Chen H, et al. Polysaccharides from Cyclocarya paliurus: Chemical composition and lipid-lowering effect on rats challenged with high-fat diet[J]. Journal of Functional Foods,2017,36:262−273. doi: 10.1016/j.jff.2017.07.020
    [10]
    Yang Z W, Ouyang K H, Zhao J, et al. Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat[J]. International Journal of Biological Macromolecules,2016,91:1073−1080. doi: 10.1016/j.ijbiomac.2016.06.063
    [11]
    Li J, Luo M, Luo Z, et al. Transcriptome profiling reveals the anti-diabetic molecular mechanism of Cyclocarya paliurus polysaccharides Anti-diabetic molecular mechanism of Cyclocarya paliurus polysaccharides[J]. Journal of Functional Foods,2019,55:1−8. doi: 10.1016/j.jff.2018.12.039
    [12]
    Xu G, Yoshitomi H, Sun W, et al. Cyclocarya paliurus (Batal.) Ijinskaja aqueous extract (CPAE) ameliorates obesity by improving insulin signaling in the hypothalamus of a metabolic syndrome rat model[J]. Evidence-based Complementary and Alternative Medicine,2017,2017:4602153.
    [13]
    叶振南, 李楠, 盛丹丹, 等. 青钱柳多糖对高脂血症大鼠血脂及抗脂质过氧化作用的影响[J]. 现代食品科技,2014,30(4):1−5, 20.
    [14]
    李楠, 赵静, 吴茹, 等. 青钱柳多糖对高脂血症大鼠脂代谢及对PPARα、FAS、GLUT4基因mRNA表达的影响[J]. 现代食品科技,2015,31(4):29−35.
    [15]
    Chunxiu L, Yizi L, Tianmeng M, et al. Anti-fat effect and mechanism of polysaccharide-enriched extract from Cyclocarya paliurus (Batal.) Iljinskaja in Caenorhabditis elegans[J]. Food & function,2020,11(6):5320−5332.
    [16]
    王胤康, 吕萌, 许琦, 等. 青钱柳活性成分对IR-HepG2细胞葡萄糖消耗量及α-葡萄糖苷酶活性的影响[J]. 食品与生物技术学报,2019,38(2):120−125. doi: 10.3969/j.issn.1673-1689.2019.02.017
    [17]
    邹荣灿, 吴少锦, 焦思棋, 等. 不同产地青钱柳多糖的体外抗氧化及α-葡萄糖苷酶抑制活性[J]. 食品工业科技,2018,39(22):25−29.
    [18]
    应瑞峰, 黄梅桂, 王耀松, 等. 超声波微波协同提取青钱柳超微粉多糖及活性研究[J]. 食品研究与开发,2017,38(23):32−37. doi: 10.3969/j.issn.1005-6521.2017.23.006
    [19]
    张浩, 李东山, 谭开祥, 等. 富硒青钱柳多糖对α-葡萄糖苷酶及HepG2细胞葡萄糖消耗的影响[J]. 食品工业科技,2018,39(2):40−43+50.
    [20]
    姚瑶. 青钱柳及其组方抗Ⅱ型糖尿病研究与机制探讨[D]. 南昌: 江西中医药大学, 2019.
    [21]
    Fang Z J, Shen S N, Wang J M, et al. Triterpenoids from Cyclocarya paliurus that enhance glucose uptake in 3T3-L1 adipocytes[J]. Molecules,2019,24(1).
    [22]
    Zhu K N, Jiang C H, Tian Y S, et al. Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglandaceae) promote glucose uptake in 3T3-L1 adipocytes: The relationship to AMPK activation[J]. Phytomedicine,2015,22(9):837−846. doi: 10.1016/j.phymed.2015.05.058
    [23]
    Wu Z F, Meng F C, Cao L J, et al. Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells[J]. Phytochemistry,2017,142:76−84. doi: 10.1016/j.phytochem.2017.06.015
    [24]
    Yang H M, Yin Z Q, Zhao M G, et al. Pentacyclic triterpenoids from Cyclocarya paliurus and their antioxidant activities in FFA-induced HepG2 steatosis cells[J]. Phytochemistry,2018,151:119−127. doi: 10.1016/j.phytochem.2018.03.010
    [25]
    赵梦鸽, 杨慧敏, 蒋翠花, 等. 青钱柳三萜化合物对游离脂肪酸诱导的脂肪变性的干预作用[J]. 中国药科大学学报,2018,49(3):333−340. doi: 10.11665/j.issn.1000-5048.20180312
    [26]
    Jiang C, Wang Y, Jin Q, et al. Cyclocarya paliurus triterpenoids improve diabetes-induced hepatic inflammation via the rho-kinase-dependent pathway[J]. Frontiers in Pharmacology,2019,10:811. doi: 10.3389/fphar.2019.00811
    [27]
    Lin Z, Wu Z F, Jiang C H, et al. The chloroform extract of Cyclocarya paliurus attenuates high-fat diet induced non-alcoholic hepatic steatosis in Sprague Dawley rats[J]. Phytomedicine,2016,23(12):1475−1483. doi: 10.1016/j.phymed.2016.08.003
    [28]
    周琴, 伍学智, 石孟琼, 等. 青钱柳三萜对链脲佐菌素损伤的INS-1细胞自噬和凋亡的影响[J]. 中药药理与临床,2017,33(1):89−94.
    [29]
    付晓, 尹忠平, 上官新晨, 等. 青钱柳叶总三萜刺激3T3-L1脂肪细胞的葡萄糖消耗[J]. 现代食品科技,2014,30(8):31−37.
    [30]
    Zheng X, Zhao M G, Jiang C H, et al. Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates insulin resistance and hepatic steatosis via PI3K/Akt/GSK3beta pathway[J]. Phytomedicine,2020,66:153130. doi: 10.1016/j.phymed.2019.153130
    [31]
    Wu Z, Gao T, Zhong R, et al. Antihyperlipidaemic effect of triterpenic acid-enriched fraction from Cyclocarya paliurus leaves in hyperlipidaemic rats[J]. Pharmaceutical Biology,2017,55(1):712−721. doi: 10.1080/13880209.2016.1267231
    [32]
    Xiao H T, Wen B, Ning Z W, et al. Cyclocarya paliurus tea leaves enhances pancreatic beta cell preservation through inhibition of apoptosis[J]. Scientific Reports,2017,7(1):9155. doi: 10.1038/s41598-017-09641-z
    [33]
    Hu W B, Ouyang K H, Wu G Q, et al. Hepatoprotective effect of flavonoid-enriched fraction from Cyclocarya paliurus leaves on LPS/D-GalN-induced acute liver failure[J]. Journal of Functional Foods,2018,48:337−350. doi: 10.1016/j.jff.2018.07.031
    [34]
    Cheng L, Chen Y, Zhang X, et al. A metagenomic analysis of the modulatory effect of Cyclocarya paliurus flavonoids on the intestinal microbiome in a high-fat diet-induced obesity mouse model[J]. Journal of the Science of Food & Agriculture,2019,99(8):3967−3975.
    [35]
    段玉书, 胡永, 杨万霞, 等. 黔产青钱柳化学成分及α-葡萄糖苷酶抑制活性研究[J]. 天然产物研究与开发,2019,31(6):940−945.
    [36]
    刘杰, 向燕茹, 丁嘉瑜, 等. 青钱柳抑制α-葡萄糖苷酶有效成分筛选及其对Ⅱ型糖尿病小鼠血糖的影响[J]. 食品工业科技,2015,36(14):363−365, 369.
    [37]
    袁中文, 许婳婳, 钟柳婷, 等. 青钱柳黄酮干预肥胖大鼠胰岛素抵抗的作用研究[J]. 中药药理与临床,2019,35(3):50−55.
    [38]
    Yoshitomi H, Tsuru R, Li L, et al. Cyclocarya paliurus extract activates insulin signaling via Sirtuin1 in C2C12 myotubes and decreases blood glucose level in mice with impaired insulin secretion[J]. PLoS One,2017,12(8):e0183988. doi: 10.1371/journal.pone.0183988
    [39]
    Zhang J, Shen Q, Lu J C, et al. Phenolic compounds from the leaves of Cyclocarya paliurus (Batal.) Ijinskaja and their inhibitory activity against PTP1B[J]. Food Chemistry,2010,119(4):1491−1496. doi: 10.1016/j.foodchem.2009.09.031
    [40]
    Li J, Luo M, Hu M, et al. Investigating the molecular mechanism of aqueous extract of Cyclocarya paliurus on ameliorating diabetes by transcriptome profiling[J]. Frontiers in Pharmacology,2018,9:912. doi: 10.3389/fphar.2018.00912
    [41]
    Thirone A C, Huang C, Klip A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport[J]. TRENDS in Endocrinology and Metabolism,2006,17(2):72−78. doi: 10.1016/j.tem.2006.01.005
    [42]
    扶丽君, 胡明华, 尹西拳, 等. 青钱柳叶对糖尿病大鼠的治疗作用[J]. 中成药,2017,39(6):1134−1138. doi: 10.3969/j.issn.1001-1528.2017.06.005
    [43]
    Jiang C, Yao N, Wang Q, et al. Cyclocarya paliurus extract modulates adipokine expression and improves insulin sensitivity by inhibition of inflammation in mice[J]. Journal of Ethnopharmacology,2014,153(2):344−351. doi: 10.1016/j.jep.2014.02.003
    [44]
    王依婷, 赵梦鸽, 盛雪萍, 等. 青钱柳三萜酸对高糖所致的胰岛α细胞胰岛素抵抗的影响[J]. 中国药科大学学报,2018,49(2):215−221. doi: 10.11665/j.issn.1000-5048.20180212
    [45]
    Tokarz V L, MacDonald P E, Klip A. The cell biology of systemic insulin function[J]. Journal of Cell Biology,2018,217(7):2273−2289. doi: 10.1083/jcb.201802095
    [46]
    Lontchi-Yimagou E, Sobngwi E, Matsha T E, et al. Diabetes mellitus and inflammation[J]. Current Diabetes Reports,2013,13(3):435−444. doi: 10.1007/s11892-013-0375-y
    [47]
    Massart J, Sjogren R J O, Lundell L S, et al. Altered miR-29 expression in type 2 diabetes influences glucose and lipid metabolism in dkeletal muscle[J]. Diabetes,2017,66(7):1807−1818. doi: 10.2337/db17-0141
    [48]
    de Candia P, Prattichizzo F, Garavelli S, et al. Type 2 diabetes: How much of an autoimmune disease?[J]. Frontiers in Endocrinology,2019,10:451. doi: 10.3389/fendo.2019.00451
    [49]
    张浩, 陈伟鸿, 马方励, 等. 富硒青钱柳多糖对糖尿病模型小鼠血糖、血脂和免疫力的影响[J]. 食品科学,2017,38(17):228−232. doi: 10.7506/spkx1002-6630-201717037
    [50]
    姚骏凯, 高学敏, 付璐, 等. 青钱柳叶对2型糖尿病大鼠糖脂代谢影响[J]. 中华中医药杂志,2018,33(07):3138−3142.
    [51]
    Horton J D, Goldstein J L, Brown M S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. The Journal of Clinical Investigation,2002,109(9):1125−1131. doi: 10.1172/JCI0215593
    [52]
    许光远, 孙文, 郭璇, 等. 青钱柳总皂苷对游离脂肪酸诱导的H4-ⅡE细胞脂肪代谢的影响及作用机制[J]. 中国实验方剂学杂志,2017,23(15):124−129.
    [53]
    Rosen E D. C/EBPalpha induces adipogenesis through PPARgamma: A unified pathway[J]. Genes & Development,2002,16(1):22−26.
    [54]
    Tian J, Wen H, Zeng L B, et al. Changes in the activities and mRNA expression levels of lipoprotein lipase (LPL), hormone-sensitive lipase (HSL) and fatty acid synthetase (FAS) of Nile tilapia (Oreochromis niloticus) during fasting and re-feeding[J]. Aquaculture,2013,400:29−35.
    [55]
    胡文兵, 赵静, 陈婷婷, 等. 青钱柳多糖对高脂血症小鼠的降血脂作用及机制初探[J]. 现代食品科技,2015,31(11):39−44.
    [56]
    Li J, Luo J, Wang H, et al. Adipose triglyceride lipase regulates lipid metabolism in dairy goat mammary epithelial cells[J]. Gene,2015,554(1):125−130. doi: 10.1016/j.gene.2014.10.020
    [57]
    李楠, 赵静, 吴茹, 等. 青钱柳多糖对高脂血症小鼠脂代谢及PPARγ、ATGL基因mRNA表达的影响[J]. 中国食品学报,2015,15(09):9−14.
    [58]
    Bocan T M, Mueller S B, Brown E Q, et al. HMG-CoA reductase and ACAT inhibitors act synergistically to lower plasma cholesterol and limit atherosclerotic lesion development in the cholesterol-fed rabbit[J]. Atherosclerosis,1998,139(1):21−30. doi: 10.1016/S0021-9150(98)00046-X
    [59]
    Jiang C, Wang Q, Wei Y, et al. Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice[J]. Journal of Ethnopharmacology,2015,176:17−26. doi: 10.1016/j.jep.2015.10.006
    [60]
    Qin B, Dawson H, Anderson R A. Elevation of tumor necrosis factor-alpha induces the overproduction of postprandial intestinal apolipoprotein B48-containing very low-density lipoprotein particles: evidence for related gene expression of inflammatory, insulin and lipoprotein signaling in enterocytes[J]. Experimental Biology and Medicine,2010,235(2):199−205. doi: 10.1258/ebm.2009.009169
    [61]
    Ma Y, Jiang C, Yao N, et al. Antihyperlipidemic effect of Cyclocarya paliurus (Batal.) Iljinskaja extract and inhibition of apolipoprotein B48 overproduction in hyperlipidemic mice[J]. Journal of Ethnopharmacology,2015,166:286−296. doi: 10.1016/j.jep.2015.03.030
    [62]
    Yao X, Lin Z, Jiang C, et al. Cyclocarya paliurus prevents high fat diet induced hyperlipidemia and obesity in Sprague-Dawley rats[J]. Canadian Journal of Physiology & Pharmacology,2015,93(8):677−686.
    [63]
    Johnson A M, Olefsky J M. The origins and drivers of insulin resistance[J]. Cell,2013,152(4):673−684. doi: 10.1016/j.cell.2013.01.041
    [64]
    Zhai L, Ning Z W, Huang T, et al. Cyclocarya paliurus leaves tea improves dyslipidemia in diabetic mice: A lipidomics-based network pharmacology study[J]. Frontiers in Pharmacology,2018,9:973. doi: 10.3389/fphar.2018.00973
    [65]
    Zhao M G, Sheng X P, Huang Y P, et al. Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates non-alcoholic fatty liver disease via improving oxidative stress and mitochondrial dysfunction[J]. Biomedicine & Pharmacotherapy,2018,104:229−239.
    [66]
    Leung T M, Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease[J]. Journal of Hepatology,2013,58(2):395−398. doi: 10.1016/j.jhep.2012.08.018
    [67]
    Canfora E E, Meex R C R, Venema K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM[J]. Nature Reviews Endocrinology,2019,15(5):261−273. doi: 10.1038/s41574-019-0156-z
    [68]
    Yang Z, Zhao J, Wang J, et al. Effects of Cyclocarya paliurus polysaccharide on lipid metabolism-related genes DNA methylation in rats[J]. International Journal of Biological Macromolecules,2019,123:343−349. doi: 10.1016/j.ijbiomac.2018.11.110
  • Cited by

    Periodical cited type(6)

    1. 李瞻君,张晓栋,龙碧秀,曹云,侯旭杰. 香梨慕萨莱思产品研发及响应面优化研究. 农产品加工. 2025(05): 1-10 .
    2. 马懿,喻康杰,赖晓琴,肖雄峻,熊蓉,谢李明,魏紫云,黄慧玲. 单宁添加对赤霞珠葡萄酒颜色和花色苷含量变化的影响及其相关性研究. 食品工业科技. 2024(05): 81-88 . 本站查看
    3. 魏昭,梁勃,靳雅楠,赵旭峰,刘金龙,王权. 原材料和加工工艺对发酵梨酒品质的影响. 食品科技. 2024(01): 78-83 .
    4. 徐瑞,杨文琳,贺林芝. 二氢杨梅素对滩羊肌原纤维蛋白抗氧化性和乳化性的影响. 食品安全导刊. 2024(17): 91-95+99 .
    5. 马懿,喻康杰,赖晓琴,肖雄峻,谢李明,熊蓉,魏紫云,禹潇. 不同种类单宁对赤霞珠葡萄酒品质及风味感官的影响. 食品研究与开发. 2024(21): 25-33 .
    6. 邓乔允,夏爽,韩小雨,游义琳,黄卫东,战吉宬. 梨酒中酵母的研究进展. 食品与发酵工业. 2024(21): 349-356 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (438) PDF downloads (59) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return