ZHANG Wen, ZHU Renyuan, CHEN Ting, et al. Advances in the Detection Methods of Strong Polar Pesticide Residues [J]. Science and Technology of Food Industry, 2021, 42(11): 356−364. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020060220.
Citation: ZHANG Wen, ZHU Renyuan, CHEN Ting, et al. Advances in the Detection Methods of Strong Polar Pesticide Residues [J]. Science and Technology of Food Industry, 2021, 42(11): 356−364. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020060220.

Advances in the Detection Methods of Strong Polar Pesticide Residues

More Information
  • Received Date: June 17, 2020
  • Available Online: April 02, 2021
  • Glyphosate and other strong polar pesticides are widely used in agriculture, and their ontology and metabolites are widely residual in food, soil, water and ecological environment. Because of their toxicity, the monitoring of residual glyphosate and other strong polar pesticides has attracted considerable attention. In this paper, the recent researches on the detection methods of strong polar pesticides are summarized, including the research status and applications of derivation-chromatography-mass spectrometry, non-derivation-liquid chromatography-mass spectrometry, ion chromatography and ion chromatography-tandem mass spectrometry, capillary electrophoresis, chromatography-ICP-MS or ICP-MS/MS combined with chromatography, rapid detection technology (enzyme-linked immunoadsorption method, immunosensor method, ion migration spectrum (IMS) method, molecular imprinting-chemical sensor method, electrochemical method, etc.), which provide references for the detection of strong polar pesticides and their metabolites residue.
  • [1]
    Bassam L, Walter G. Direct speciation analysis of organophosphorus environmental pollutants in water by HPLC-ICPMS/MS[J]. Talanta,2019,196:357. doi: 10.1016/j.talanta.2018.12.075
    [2]
    杨益军, 张波. 全球非选择性除草剂市场分析及预测(2020年)(上)[J]. 农药科学与管理,2020,41(4):14−20. doi: 10.3969/j.issn.1002-5480.2020.04.004
    [3]
    杨理建. 当前要重视百草枯水剂换成敌草快销售使用[J]. 山东农药信息,2016(5):25.
    [4]
    诸力, 陈红平, 周苏娟, 等. 超高效液相色谱-串联质谱法测定不同茶叶中草甘膦、氨甲基膦酸及草铵膦的残留[J]. 分析化学,2015,43(2):271. doi: 10.11895/j.issn.0253-3820.140708
    [5]
    吴晓刚, 陈孝权, 肖海军, 等. 柱前衍生-超高效液相色谱-串联质谱法同时检测茶叶中草甘膦和草铵膦的残留量[J]. 色谱,2015,33(10):1090.
    [6]
    Siriporn T, Apinya T, Nuchanart R, et al. Glyphosate induces human breast cancer cells growth via estrogen receptors[J]. Food and Chemical Toxicology,2013,59:129−136. doi: 10.1016/j.fct.2013.05.057
    [7]
    Samsel A, Seneff S. Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: Pathways to modern diseases[J]. Entropy,2013,15(4):1416−1463.
    [8]
    Gilles-Eric S, Emilie C, Robin M, et al. Long term toxicity of a roundup herbicide and a roundup-tolerant genetically modified maize[J]. Food and Chemical Toxicology,2012,50(11):4221−4231. doi: 10.1016/j.fct.2012.08.005
    [9]
    董亚蕾, 朱华东, 李向军, 等. 毛细管电泳在有机磷类除草剂检测中的应用进展[J]. 化学通报,2015,78(4):299−304.
    [10]
    Fathellah L, Nourddine A, Mina B, et al. Electrochemical sensors for improved detection of paraquat in food samples: A review[J]. Materials Science & Engineering C,2020,107:1−2.
    [11]
    Michalis K, Aspasia T, Andreas T, et al. Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region(Greece). Implications of pesticide exposure[J]. Sci Total Environ,2014,496:358−364. doi: 10.1016/j.scitotenv.2014.07.062
    [12]
    Lisa H, Diane H. Ethylene bisdithiocarbamate pesticides cause cytotoxicity in transformed and normal human colon cells[J]. Environmental Toxicology and Pharmacology,2012,34(2):556−573. doi: 10.1016/j.etap.2012.06.015
    [13]
    Paro R, Tiboni G M, Buccione R, et al. The fungicide mancozeb induces toxic effects on mammalian granulosa cells[J]. Toxicology and Applied Pharmacology,2012,260(2):155−161. doi: 10.1016/j.taap.2012.02.005
    [14]
    Srivastava A K, Ali W, Singh R, et al. Mancozeb-induced genotoxicity and apoptosis in cultured human lymphocytes[J]. Life Sciences,2012,90(21-22):815−824. doi: 10.1016/j.lfs.2011.12.013
    [15]
    汤涛, 张昌朋, 吴珉, 等. 固相萃取/超高效液相色谱-串联质谱法分析乙烯利在棉籽、棉叶和土壤中的残留[J]. 分析测试学报,2019,38(1):69. doi: 10.3969/j.issn.1004-4957.2019.01.010
    [16]
    Agriculture and Consumer Protection. Residue and analytical aspects[DB/OL]. (2005-03-24) [2014-01-20]. http://www.fao.org/docrep/009/a0209e/a0209e0d.htm#Top0fpage.
    [17]
    Jerry M G, Christine B H, Raymond F D, et al. New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate[J]. Pest Management Science,2008,64 (4):332 −339. doi: 10.1002/ps.1486
    [18]
    CODEX alimentarius[DB/OL]. (2013-07-01) [2015-01-20]. http://www.codexalimentarius.net/pestres/data/pesticides/details.html?id=158.
    [19]
    GB 2763-2019食品安全国家标准 食品中农药最大残留限量[S]. 2019.
    [20]
    GB/T 23750-2009植物性产品中草甘膦残留量的测定 气相色谱-质谱法[S]. 2009.
    [21]
    NY/T 1096-2006食品中草甘膦残留量测定[S]. 2006.
    [22]
    SN/T 1923-2007进出口食品中草甘膦残留量的检测方法 液相色谱-质谱/质谱法[S]. 2007.
    [23]
    SN/T 4655-2016出口食品中草甘膦及其代谢物残留量的测定方法 液相色谱-质谱/质谱法[S]. 2016.
    [24]
    GB 23200.108-2018食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法[S]. 2018.
    [25]
    SN/T 4850-2017口食品中草铵膦及其代谢物残留量的测定 液相色谱-质谱/质谱法[S]. 2017.
    [26]
    GB 23200.16-2016食品安全国家标准 水果和蔬菜中乙烯利残留量的测定 气相色谱法[S]. 2016.
    [27]
    GB 23200.82-2016食品安全国家标准 肉及肉制品中乙烯利残留量的检测方法[S]. 2016.
    [28]
    SN/T 4522-2016出口番茄制品中乙烯利残留量的测定 液相色谱-质谱/质谱法[S]. 2016.
    [29]
    SN/T 0293-2014出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法[S]. 2014.
    [30]
    SN/T 4698-2016出口果蔬中百草枯检测 拉曼光谱法[S]. 2016.
    [31]
    HJ 914-2017水质 百草枯和杀草快的测定 固相萃取-高效液相色谱法[S]. 2017.
    [32]
    GB/T 5009.221-2008粮谷中敌草快残留量的测定[S]. 2008.
    [33]
    María I, Óscar J P, Juan V S, et al. Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry[J]. Journal of Chromatography A,2005,1081(2):145. doi: 10.1016/j.chroma.2005.05.041
    [34]
    曹赵云, 牟仁祥, 陈铭学. 液相色谱-串联质谱法测定稻米中的草甘膦和氨甲基膦酸残留[J]. 色谱,2010,28(8):743.
    [35]
    叶美君, 陆小磊, 刘相真, 等. 柱前衍生-超高效液相色谱-串联质谱测定茶叶中草甘膦、草铵膦及主要代谢物氨甲基膦酸残留[J]. 色谱,2018,36(9):873−879.
    [36]
    刘拉平, 武瑜, 王玉堂, 等. 柱前衍生高效液相色谱-串联质谱法测定土壤中草甘膦及其主要代谢物氨甲基膦酸[J]. 农药学学报,2015,17(4):439−446. doi: 10.3969/j.issn.1008-7303.2015.04.09
    [37]
    杨亚琴, 冯书惠, 胡永建, 等. 气相色谱-质谱法测定绿茶中草甘膦和氨甲基膦酸残留量[J]. 茶业科学,2020,40(1):125−132.
    [38]
    M Anastassiades, D I Kolberg E, Eichhorn, et al. Quick method for the analysis of numerous highly polar pesticides in foods of plant origin via LC-MS/MS involving simultaneous extraction with methanol (QuPPe-Method)[S].
    [39]
    Guo H, Wang H J, Zheng J, et al. Sensitive and rapid determination of glyphosate, glufosinate, bialaphos and metabolites by UPLC–MS/MS using a modifified quick polar pesticides extraction method[J]. Forensic Science International,2018,283:111−117. doi: 10.1016/j.forsciint.2017.12.016
    [40]
    潘胜东, 童廷德, 叶美君, 等. 基于超高效液相色谱-高分辨质谱的非衍生化法测定面粉和燕麦中草甘膦及氨甲基膦酸残留[J]. 色谱,2019,37(12):1321−1330.
    [41]
    何书海, 曹晓聪, 吴海军, 等. 直接进样超高效液相色谱-三重四极杆质谱法快速测定环境水样中草甘膦、氨甲基膦酸、草铵膦及乙烯利残留[J]. 色谱,2019,37(11):1179−1184.
    [42]
    Ana M B C, Maria I, Juan V S, et al. Hernandez, direct liquid chromatography-tandem mass spectrometry determination of underivatized glyphosate in rice, maize and soybean[J]. J. Chromatogr. A,2013,1313:157−165. doi: 10.1016/j.chroma.2013.07.037
    [43]
    LeEtta J M, William C K. Simplified analysis of glyphosate and aminomethylphosphonic acid in water, vegetation and soil by liquid chromatography–tandem mass spectrometry[J]. Pest Manag Sci,2014,70 (7):1158−1164. doi: 10.1002/ps.3684
    [44]
    Pamela K J, Chad E W, Michelle K M, et al. Validation of reliable and selective methods for direct determination of glyphosate and aminomethylphosphonic acid in milk and urine using LC-MS/MS[J]. Joernal of Environmental Science and Health Part B,2016,51 (4):254−259. doi: 10.1080/03601234.2015.1120619
    [45]
    Natalja P N, Søren K J, Martin T S. Robust and highly sensitive micro liquid chromatography–tandem mass spectrometry method for analyses of polar pesticides (glyphosate, aminomethylphosfonic acid, N-acetyl glyphosate and N-acetyl aminomethylphosfonic acid) in multiple biological matrices[J]. Journal of Chromatography A,2019,1605:360343. doi: 10.1016/j.chroma.2019.06.064
    [46]
    赵静, 李琛, 郭自国, 等. 固相萃取/高效液相色谱-串联质谱法测定水中百草枯与敌草快残留[J]. 分析测试学报,2018,37(5):626−629. doi: 10.3969/j.issn.1004-4957.2018.05.018
    [47]
    Method for the determination of dioxin, paraquat, and dachloramine. [EB/OL]https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/shokuhin/zanryu/zanryu3/index.html.
    [48]
    陶雪梅, 朱红霞, 高立红. 柱后加碱-高效阴离子交换色谱-脉冲安培检测法测定农田土中草铵膦、氨甲基膦酸和草甘膦残留[J]. 色谱,2019,37(9):1004−1010.
    [49]
    魏丹, 国明, 陶星名, 等. 在线大体积进样柱切换-离子色谱法测定茶叶中的微量敌草快和百草枯农药残留[J]. 农药,2019,58(1):57−60.
    [50]
    Stuart A, Jonathan G, Michael D, et al. Development and validation of ion chromatography-tandem mass spectrometry based method for the multiresidue determination of polar ionic pesticides in food[J]. Journal of Agriculture and Food Chemistry,2017,65:7294−7304. doi: 10.1021/acs.jafc.7b00476
    [51]
    Rajski L, Francisco Jose D G, Cutillas V, et al. Coupling ion chromatography to Q-orbitrap for the fast and robust analysis of anionic pesticides in fruit and vegetables[J]. Journal of AOAC International,2018,101(2):352−359. doi: 10.5740/jaoacint.17-0410
    [52]
    覃晓媚, 朱红霞, 姜振邦, 等. 离子色谱-串联质谱法测定地下水中草甘膦、草铵膦和氨甲基膦酸[J]. 分析试验室,2020,39(8):958−961.
    [53]
    Laura M M, Michael J T, Emily E F. The utilisation of ion chromatography and tandem mass spectrometry (IC-MS/MS) for the multi-residue simultaneous determination of highly polar anionic pesticides in fruit and vegetables[J]. Food Chemistry,2019,298:125028. doi: 10.1016/j.foodchem.2019.125028
    [54]
    Sarah Y C, Wei M Y. Simultaneous determination of glyphosate, glufosinate, and aminomethylphosphonic acid by capillary electrophoresis after 9-fluorenylmethyl chloroformate derivatization[J]. Journal of the Chinese Chemical Society,2005,52(4):785−792. doi: 10.1002/jccs.200500110
    [55]
    Amelin V G, Bol’shakov D S, Tretiakov A V. Determination of glyphosate and aminomethylphosphonic acid in surface water and vegetable oil by capillary zone electrophoresis[J]. Journal of Analytical Chemistry,2012,67(4):386−391. doi: 10.1134/S1061934812020037
    [56]
    Manuel M, Manuel S. Simultaneous determination of phosphorus-containing amino acid-herbicides by nonionic surfactant micellar electrokinetic chromatography with laser-induced fluorescence detection[J]. Electrophoresis,2001,22(6):1175−1181. doi: 10.1002/1522-2683()22:6<1175::AID-ELPS1175>3.0.CO;2-8
    [57]
    Wei X, Gao X T, Zhao L, et al. Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips[J]. Journal of Chromatography A,2013,1281:148−154. doi: 10.1016/j.chroma.2013.01.039
    [58]
    张庆庆, 王燕燕, 孟品佳, 等. 扫集-胶束电泳检测鱼塘水中季铵盐类除草剂[J]. 广西师范大学学报,2017,35(2):93−100.
    [59]
    Chiu H Y, Lin Z Y, Tu H L, et al. Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection[J]. Journal of Chromatography,2008,1177(1):195−198. doi: 10.1016/j.chroma.2007.11.042
    [60]
    Eduardo R S, Thiago P S, Wendell K T C, et al. Determination of glyphosate and AMPA on polyester-toner electrophoresis microchip with contactless conductivity detection[J]. Electrophoresis,2013,34(14):2107−2111. doi: 10.1002/elps.201200588
    [61]
    Hudan S, Reza A. Determination of glyphosate as cross-contaminant in a commercial herbicide by capillary electrophoresis-electrospray ionization-mass spectrometry[J]. Electrophoresis,2005,26 (7-8):1562−1566. doi: 10.1002/elps.200410429
    [62]
    Yoshiaki I, Reiko I I, Satoshi C, et al. Analysis of phosphorus-containing amino acid-type herbicides by capillary electrophoresis/mass spectrometry using a chemically modified capillary having amino groups[J]. Journal of Health Science,2010,56(5):606−612. doi: 10.1248/jhs.56.606
    [63]
    Guo Z X, Cai Q T, Yang Z G. Ion chromatography/inductively coupled plasma mass spectrometry for simultaneous determination of glyphosate, glufosinate, fosamine and ethephon at nanogram levels in water[J]. Rapid Communications in Mass Spectrometry, 2007, 21 (10): 1606–1612.
    [64]
    Yuko K, Yasuo S, Hiroyuki I. Phosphorus-specific determination of glyphosate, glufosinate, and their hydrolysis products in biological samples by liquid chromato-graphy-inductively coupled plasma-mass spectrometry[J]. Forensic Toxicol,2014,32 (2):317−322. doi: 10.1007/s11419-014-0237-6
    [65]
    潘熙萍, 楼佳俊, 张高精, 等. 草甘膦残留的酶联免疫分析方法的建立[J]. 湖北农业科学,2012,51(5):1002−1005. doi: 10.3969/j.issn.0439-8114.2012.05.044
    [66]
    Jonathan D B, John S, Paul K, et al. Low cost monitoring of glyphosate in surface waters using the ELISA method: An evaluation[J]. Environmental Science & Technology. 2008 (42): 6052−6057.
    [67]
    Mária M, Gyöngyi N, Judit J. Determination of glyphosate residues in Hungarian water samples by immunoassay[J]. Microchemical Journal,2013,107:143−151. doi: 10.1016/j.microc.2012.05.021
    [68]
    李燕虹, 王耀, 裴亚峰, 等. 免疫分析技术在草甘膦残留检测中的应用[J]. 中国免疫学杂志,2018,34:291−295. doi: 10.3969/j.issn.1000-484X.2018.02.028
    [69]
    Eleftheria S, Panagiota S P, Georgios K, et al. Fast, sensitive and selective determination of herbicide glyphosate in water samples with a white light reflectance spectroscopy immunosensor[J]. Talanta,2020,214:120854. doi: 10.1016/j.talanta.2020.120854
    [70]
    乔雪莹. 草甘膦和啶虫脒残留高灵敏光/电化学传感器的研究及应用[D]. 济南: 济南大学, 2018, 25-31.
    [71]
    Khademi S M S, Ursula T, Younes V. Direct detection of glyphosate in drinking water using corona-discharge ion mobility spectrometry: A theoretical and experimental study[J]. International Journal of Mass Spectrometry,2019,442:29−34. doi: 10.1016/j.ijms.2019.05.002
    [72]
    张超, 李腾飞, 赵风年, 等. 分子印迹电化学传感器的制备及其快速检测饮水中草甘膦残留的应用研究[J]. 分析测试学报,2016(12):1542−1547. doi: 10.3969/j.issn.1004-4957.2016.12.005
    [73]
    Zhao P N, Yan M, Zhang C C, et al. Determination of glyphosate in foodstuff by one novel chemiluminescence-molecular imprinting sensor[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2011,78(5):1482−1486. doi: 10.1016/j.saa.2011.01.037
    [74]
    Kitlaus S, Lipinski J, Speer K. New approaches for determination of glyphosate and aminomethylphosphonic acid from different tea samples-prospects and limits of cleanup with molecularly imprinted polymer and titanium dioxide[J]. Journal of AOAC International,2009,92(3):703−714. doi: 10.1093/jaoac/92.3.703
    [75]
    贾丽丛, 康凯, 马新颜, 等. 以发夹脱氧核糖核酸/氮掺杂石墨烯/玻碳电极为工作电极的差分脉冲伏安法测定土壤、水和血浆中百草枯的残留量[J]. 理化检验-化学分析,2019,55(11):1281−1285.
  • Cited by

    Periodical cited type(7)

    1. 宁淼,乌日娜,贺凯茹,包雨飞,张钰欣,杨慧,武俊瑞. 益生菌缓解牛乳过敏的作用机制研究进展. 食品工业科技. 2025(05): 371-379 . 本站查看
    2. 梅芷晴,马浩睿,刘永峰,胡坚,舒琴. 羊乳母乳化及主要活性成分研究进展. 乳业科学与技术. 2024(04): 38-46 .
    3. 乔蕾蕾,杨敏,秦娟娟,廖海周,季伟,李茜. 酸诱导酪蛋白胶束-海藻酸钠乳液凝胶性质及其对原花青素的负载性能. 食品科学. 2023(16): 50-60 .
    4. 汤晓娜,许曦瑶,赵锋. 牛奶β-酪蛋白水解产物生物活性及A2乳制品的研究进展. 食品与发酵工业. 2023(19): 360-366 .
    5. 马小梅,苏津贤,陈遥,舒星富,张海霞,马忠仁. 动物乳中四种主要蛋白结构功能及其分离纯化方法研究进展. 西北民族大学学报(自然科学版). 2022(02): 74-79 .
    6. 钱冠林,孙敬,刘微,程娇,岳喜庆,郑艳. 双酶水解对脱脂牛乳致敏性的影响. 乳业科学与技术. 2022(04): 36-44 .
    7. 李敏,刘爱成,朱晴,陈馨萍,刘微,梁肖娜,郑艳,岳喜庆. 酶解对脱脂牛乳蛋白抗原性及感官特性的影响. 乳业科学与技术. 2022(04): 14-21 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (370) PDF downloads (45) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return