LIU Jinming, WANG Hui, ZHANG Huan, et al. Research Progress on Extraction of Active Ingredients and Pretreatment of Food Analysis by Ultrasound-Assisted Deep Eutectic Solvent Method[J]. Science and Technology of Food Industry, 2021, 42(7): 399−407. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050362.
Citation: LIU Jinming, WANG Hui, ZHANG Huan, et al. Research Progress on Extraction of Active Ingredients and Pretreatment of Food Analysis by Ultrasound-Assisted Deep Eutectic Solvent Method[J]. Science and Technology of Food Industry, 2021, 42(7): 399−407. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050362.

Research Progress on Extraction of Active Ingredients and Pretreatment of Food Analysis by Ultrasound-Assisted Deep Eutectic Solvent Method

More Information
  • Received Date: May 31, 2020
  • Available Online: January 27, 2021
  • Deep eutectic solvent (DES) is a mixture formed by the combination of hydrogen-bond acceptor (HBA) and hydrogen-bond donor (HBD) with a certain stoichiometric ratio.The melting point of the whole system is lower than that of a single component due to the intermolecular hydrogen bond interaction. It is a non-toxic, inexpensive, easy preparation and biodegradable green solvent and can extract some chemical components from different food matrix.At present, the combination of DES and ultrasonic technology has become a new extraction tool in the food industry. This paper mainly summarizes the classification of DES, preparation method of DES and the influence of the ultrasound-assisted extraction with deep eutectic solvent. At the same time, its application in extraction of active ingredients and pretreatment of food analysis is also discussed.
  • [1]
    Mbous Y P, Hayyan M, Hayyan A, et al. Applications of deep eutectic solvents in biotechnology and bioengineering—promises and challenges[J]. Biotechnology Advances,2017,35(2):105−134. doi: 10.1016/j.biotechadv.2016.11.006
    [2]
    Ventura S P M, Silva F A E, Quental M V, et al. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends[J]. Chemical Reviews,2017,111(10):6984−7052.
    [3]
    王丽, 刘红芝, 刘丽, 等. 离子液体在食品加工领域中应用研究进展[J]. 食品研究与开发,2017,38(14):200−204. doi: 10.3969/j.issn.1005-6521.2017.14.043
    [4]
    Abbott A P, Capper G, Davies D L, et al. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains[J]. Chemical Communications,2001(19):2010−2011. doi: 10.1039/b106357j
    [5]
    Tang B, Zhang H, Row K H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples[J]. Journal of Separation Science,2015,38(6):1053−1064. doi: 10.1002/jssc.201401347
    [6]
    Kareem M A, Mjalli F S, Hashim M A, et al. Phosphonium-based ionic liquids analogues and their physical properties[J]. Journal of Chemical & Engineering Data,2010,55(11):4632−4637.
    [7]
    Perna F M, Vitale P, Capriati V. Deep eutectic solvents and their applications as green solvents[J]. Current Opinion in Green and Sustainable Chemistry,2020,21:27−33. doi: 10.1016/j.cogsc.2019.09.004
    [8]
    Alkhatib I I I, Bahamon D, Llovell F, et al. Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents[J]. Journal of Molecular Liquids,2020,298:112183. doi: 10.1016/j.molliq.2019.112183
    [9]
    Chandran D, Khalid M, Walvekar R, et al. Deep eutectic solvents for extraction-desulphurization: A review[J]. Journal of Molecular Liquids,2019,275:312−322. doi: 10.1016/j.molliq.2018.11.051
    [10]
    Sitze M S, Schreiter E R, Patterson E V, et al. Ionic liquids based on FeCl3 and FeCl2. raman scattering and ab initio calculations[J]. Inorganic Chemistry,2001,40(10):2298−2304. doi: 10.1021/ic001042r
    [11]
    María F, Bruinhorst A V D, Kroon M C. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry,2012,14:2153−2157. doi: 10.1039/c2gc35660k
    [12]
    Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews,2014,114(21):11060−11082. doi: 10.1021/cr300162p
    [13]
    Zhao H, Baker G A, Holmes S. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel[J]. Organic & Biomolecular Chemistry,2011,9(6):1908.
    [14]
    Gutiérrez M C, Rubio F, Delmonte F. Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon-carbon nanotube composites[J]. Chemistry of Materials,2010,22(9):2711−2719. doi: 10.1021/cm9023502
    [15]
    Florindo C, Oliveira F S, Rebelo L P N, et al. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids[J]. ACS Sustainable Chemistry & Engineering,2014,2(10):2416−2425.
    [16]
    Gutiérrez M C, Ferrer M L, Mateo C R, et al. Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures[J]. Langmuir,2009,25(10):5509−5515. doi: 10.1021/la900552b
    [17]
    DaI Y, Van S J, Witkamp G J, et al. Natural deep eutectic solvents as new potential media for green technology[J]. Analytica Chimica Acta,2013,766:61−68. doi: 10.1016/j.aca.2012.12.019
    [18]
    Choi Y H, Spronsen J V, Dai Y T, et al. Are natural deep eutectic solvents the missing link in un-derstanding cellular metabolism and physiology?[J]. Plant Physiol,2011,156(4):1701−1705. doi: 10.1104/pp.111.178426
    [19]
    刘远方, 李萌萌, 刘远晓, 等. 功率超声波及其在食品工业中的降解应用研究进展[J]. 食品与发酵工业,2018,44(10):287−293.
    [20]
    Esclapez M D, García-pérez J V, Mulet A, et al. Ultrasound-assisted extraction of natural products[J]. Food Engineering Reviews,2011,3(2):108−120. doi: 10.1007/s12393-011-9036-6
    [21]
    Zhang Z S, Wang L J, LI D, et al. Ultrasound-assisted extraction of oil from flaxseed[J]. Separation and Purification Technology,2008,62(1):192−198. doi: 10.1016/j.seppur.2008.01.014
    [22]
    Zhang L J, Wang M S. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb[J]. International Journal of Biological Macromolecules,2017,95:675−681. doi: 10.1016/j.ijbiomac.2016.11.096
    [23]
    Al-dhabI N A, Ponmurugan K, Maran P. Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds[J]. Ultrasonics Sonochemistry,2017,34:206−213. doi: 10.1016/j.ultsonch.2016.05.005
    [24]
    Santos H M, Lodeiro C, Capelo-Martínez J L. José-Luis Capelo-Martínez (Ed.): Ultrasound in chemistry. Analytical applications[J]. Analytical and Bioanalytical Chemistry,2009,395(3):543−544. doi: 10.1007/s00216-009-2973-8
    [25]
    Hernández-Corroto E, Plaza M, Marina L M, et al. Sustainable extraction of proteins and bioactive substances from pomegranate peel (Punica granatum L.) using pressurized liquids and deep eutectic solvents[J]. Innovative Food Science & Emerging Technologies,2020,60:102314.
    [26]
    Liu X Y, Liu C R, Qian H, et al. Ultrasound-assisted dispersive liquid-liquid microextraction based on a hydrophobic deep eutectic solvent for the preconcentration of pyrethroid insecticides prior to determination by high-performance liquid chromatography[J]. Microchemical Journal,2019,146:614−621. doi: 10.1016/j.microc.2019.01.048
    [27]
    Hsieh Y H, Li Y B, Pan Z C, et al. Ultrasonication-assisted synthesis of alcohol-based deep eutectic solvents for extraction of active compounds from ginger[J]. Ultrasonics Sonochemistry,2020,63:104915. doi: 10.1016/j.ultsonch.2019.104915
    [28]
    Bajkacz S, Adamek J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products[J]. Talanta,2017,168:329−335. doi: 10.1016/j.talanta.2017.02.065
    [29]
    Shah D, Mjalli F S. Effect of water on the thermo-physical properties of reline: an experimental and molecular simulation based approach[J]. Physical Chemistry Chemical Physics,2014,16(43):23900−23907. doi: 10.1039/C4CP02600D
    [30]
    Alomar M K, Hayyan M, Alsaadi M A, et al. Glycerol-based deep eutectic solvents: Physical properties[J]. Journal of Molecular Liquids,2016,215:98−103. doi: 10.1016/j.molliq.2015.11.032
    [31]
    Yadav A, Trivedi S, Rai R, et al. Densities and dynamic viscosities of (choline chloride+glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15–363.15)K[J]. Fluid Phase Equilibria,2014,367:135−142. doi: 10.1016/j.fluid.2014.01.028
    [32]
    Abbott A P, Barron J C, Frisch G, et al. Double layer effects on metal nucleation in deep eutectic solvents[J]. Physical Chemistry Chemical Physics,2011,13(21):10224−10231. doi: 10.1039/c0cp02244f
    [33]
    Abbott A P, Harris R C, Ryder K S, et al. Glycerol eutectics as sustainable solvent systems[J]. Green Chemistry,2011,13:82−90. doi: 10.1039/C0GC00395F
    [34]
    Mjalli F M, Naser J, Jibril B, et al. Tetrabutylammonium chloride based ionic liquid analogues and their physical properties[J]. Journal of Molecular Liquids,2017,241:500−510. doi: 10.1016/j.molliq.2017.06.024
    [35]
    Zhu S, Zhou J, Jia H, et al. Liquid–liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent[J]. Food Chemistry,2018,243:351−356. doi: 10.1016/j.foodchem.2017.09.141
    [36]
    Zhang Q, Karine D O V, Royer Sébastien, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical Society Reviews,2012,41(21):7108. doi: 10.1039/c2cs35178a
    [37]
    Zhu J H, Yu K K, Zhu Y G, et al. Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T=(293.15 to 333.15)K: The influence of electronic effect of substitution group[J]. Journal of Molecular Liquids,2017,232:182−187. doi: 10.1016/j.molliq.2017.02.071
    [38]
    Hayyan A, MjalliF S, AlNashef I M, et al. Fruit sugar-based deep eutectic solvents and their physical properties[J]. Thermochim Acta,2012,541:70e75.
    [39]
    Amodio M L, Derossi A, Colelli G. Modelling sensorial and nutritional changes to better define quality and shelf life of fresh-cut melons[J]. Journal of Agricultural Engineering,2013,43:1−6. doi: 10.4081/jae.2013.e1
    [40]
    Dai Y, Rozema E, Verpoorte R, et al. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents[J]. Journal of Chromatography A,2016,1434:50−56. doi: 10.1016/j.chroma.2016.01.037
    [41]
    Barbieri J B, Goltz C, Cavalheiro F B, et al. Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds[J]. Industrial Crops and Products,2020,144:112049. doi: 10.1016/j.indcrop.2019.112049
    [42]
    Wu L F, Li L, Chen S J, et al. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity[J]. Separation and Purification Technology,2020,247:117014. doi: 10.1016/j.seppur.2020.117014
    [43]
    Saha S K, Dey S, Chakraborty R. Effect of choline chloride-oxalic acid based deep eutectic solvent on the ultrasonic assisted extraction of polyphenols from Aegle marmelos[J]. Journal of Molecular Liquids,2019,287:110956. doi: 10.1016/j.molliq.2019.110956
    [44]
    钟建青, 李波, 贾琦, 等. 天然黄酮类化合物及其衍生物的构效关系研究进展[J]. 药学学报,2011,46(6):622−630.
    [45]
    Mansur A R, Song N, Jang H W, et al. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts[J]. Food Chemistry,2019,293:438−445. doi: 10.1016/j.foodchem.2019.05.003
    [46]
    Ali M C, Chen J, Zhang H J, et al. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction[J]. Talanta,2019,203:16−22. doi: 10.1016/j.talanta.2019.05.012
    [47]
    孔方, 李莉, 刘言娟. 超声辅助低共熔溶剂提取苹果叶中的总黄酮[J/OL]. 食品工业科技: 1-15[2020-05-20]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200311.1847.015.html.
    [48]
    张梓原, 徐伟, 王鑫, 等. 黄精多糖的提取工艺对比研究[J]. 包装工程,2020,41(9):51−58.
    [49]
    Li N, Wang Y Z, Xu K J, et al. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein[J]. Talanta,2016,152:23−32. doi: 10.1016/j.talanta.2016.01.042
    [50]
    Damalas C A, Eleftherohorinos I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. Public Health,2011,8(5):1402−1419.
    [51]
    Ostovan A, Ghaedi M, Arabi M, et al. Hydrophilic multi-template molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-family vitamins[J]. ACS Applied Materials & Interfaces,2018,10(4):4140−4150.
    [52]
    Heidari H, Ghanbari-rad S, Habibi E. Optimization deep eutectic solvent-based ultrasound-assisted liquid-liquid microextraction by using the desirability function approach for extraction and preconcentration of organophosphorus pesticides from fruit juice samples[J]. Journal of Food Composition and Analysis,2020,87:103389. doi: 10.1016/j.jfca.2019.103389
    [53]
    Ji Y H, Meng Z R, Zhao J, et al. Eco-friendly ultrasonic assisted liquid–liquid microextraction method based on hydrophobic deep eutectic solvent for the determination of sulfonamides in fruit juices[J]. Journal of Chromatography A,2020,1609:460520. doi: 10.1016/j.chroma.2019.460520
    [54]
    Zhao J, Meng Z R, Zhao Z X, et al. Ultrasound-assisted deep eutectic solvent as green and efficient media combined with functionalized magnetic multi-walled carbon nanotubes as solid-phase extraction to determine pesticide residues in food products[J]. Food Chemistry,2019,310:125863.
    [55]
    Ayazi Z, Jaafarzadeh R. Graphene oxide/polyamide nanocomposite as a novel stir bar coating for sorptive extraction of organophosphorous pesticides in fruit juice and vegetable samples[J]. Chromatographia,2017,80(9):1411−1422. doi: 10.1007/s10337-017-3364-5
    [56]
    Peyrovi M, Hadjmohammadi M. Alkanol-based supramolecular solvent microextraction of organophosphorus pesticides and their determination using high-performance liquid chromatography[J]. Journal of the Iranian Chemical Society,2017,14(5):995−1004. doi: 10.1007/s13738-017-1049-5
    [57]
    Hadjmohammadi M R, Peyrovi M, Biparva P. Comparison of C18silica and multi-walled carbon nanotubes as the adsorbents for the solid-phase extraction of chlorpyrifos and phosalone in water samples using HPLC[J]. Journal of Separation Science,2010,33(8):1044−1051. doi: 10.1002/jssc.200900494
    [58]
    Bedendo G C, Jardim I C S F, Carasek E. Multiresidue determination of pesticides in industrial and fresh orange juice by hollow fiber microporous membrane liquid–liquid extraction and detection by liquid chromatography–electrospray-tandem mass spectrometry[J]. Talanta,2012,88:573−580. doi: 10.1016/j.talanta.2011.11.037
    [59]
    Wang Y, Wang Z, Zhang H, et al. Application of pneumatic nebulization single-drop microextraction for the determination of organophosphorous pesticides by gas chromatography–mass spectrometry[J]. Journal of Separation Science,2011,34(15):1880−1885. doi: 10.1002/jssc.201100230
    [60]
    Farajzadeh M A, Asghari A, Feriduni B. An efficient, rapid and microwave-accelerated dispersive liquid–liquid microextraction method for extraction and pre-concentration of some organophosphorus pesticide residues from aqueous samples[J]. Journal of Food Composition & Analysis,2016,48:78−80.
    [61]
    He L, Luo X, Xie H, et al. Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample[J]. Journal of Chromatography A,2009,655:52−59.
    [62]
    Huertas-Pérez, José Fernando, Arroyo-Manzanares N, et al. Method optimization and validation for the determination of eight sulfonamides in chicken muscle and eggs by modified QuEChERS and liquid chromatography with fluorescence detection[J]. Journal of Pharmaceutical & Biomedical Analysis,2016,124:261−266.
    [63]
    Mitrowska K, Antczak M. Determination of sulfonamides in beeswax by liquid chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography B,2015,1006:179−186. doi: 10.1016/j.jchromb.2015.10.040
    [64]
    Premarathne J M K J K, Satharasinghe D A, Gunasena A R C, et al. Establishment of a method to detect sulfonamide residues in chicken meat and eggs by high-performance liquid chromatography[J]. Food Control,2015,72:276−282.
    [65]
    Wang Y, Liu L, Xiao C, et al. Rapid determination of trace sulfonamides in milk by graphene oxide-based magnetic solid phase extraction coupled with HPLC–MS/MS[J]. Food Analytical Methods,2016,9(9):2521−2530. doi: 10.1007/s12161-016-0433-6
    [66]
    郭美娟, 刘晓光, 史国华, 等. 食品中人工食用色素安全性[J]. 食品工业,2020,41(3):332−336.
    [67]
    Kanberoglu G S, Yilmaz E, Soylak M. Developing a new and simple ultrasound-assisted emulsification liquid phase microextraction method built upon deep eutectic solvents for Patent blue V in syrup and water samples[J]. Microchemical Journal,2019,145:813−818. doi: 10.1016/j.microc.2018.11.053
  • Cited by

    Periodical cited type(13)

    1. 王乐,项海波,张丽. 高效液相色谱法测定食品接触用涂料中2-甲基咪唑、4-甲基咪唑和1-乙烯基咪唑的含量. 理化检验-化学分册. 2025(02): 213-218 .
    2. 崔艳华,黄牧坤,顾璇,李灿,陈同强. 气相色谱法同时测定止咳糖浆中5种化学污染物的含量. 理化检验-化学分册. 2025(02): 208-212 .
    3. 闵宇航,刘斯琪,余晓琴,李澍才,张丽平. SPE-UPLC-MS/MS同时测定食品中24种酸性工业染料. 食品工业科技. 2024(01): 284-294 . 本站查看
    4. 蔡吉祥,杨秋玉,黄伟,朱庆宁,赵海燕. 果糖普通法焦糖色素制备工艺优化及特性研究. 山东化工. 2024(01): 30-33+37 .
    5. 邬丹,李惠霖,陈肖阳,程相雷,朱邦栋,吴浪,沈幸,柴仲平,曾茂茂. 烤馕中晚期糖基化终末产物和4-甲基咪唑的生成规律研究进展. 食品安全质量检测学报. 2024(09): 84-92 .
    6. 蔡翠玲,李菊,席静,侯颖烨,曾广丰,谢建军,吴舒悦,王璐. 高效液相色谱-串联质谱法测定化妆品中3种甲基咪唑类化合物. 色谱. 2024(11): 1052-1058 .
    7. 余春平,马齐兵,许春芳,童雅琪. 响应面法优化肉桂酸钾卤肉防腐工艺. 江苏调味副食品. 2023(03): 24-30 .
    8. 顾虎,徐韵扬,张仲恺,秦鑫. 液质联用法测定纺织品中两种咪唑类物质. 针织工业. 2022(07): 69-72 .
    9. 周艳华,李涛,向俊,徐文泱. 固相萃取—超高效液相色谱—质谱法测定食用香精中3种甲基咪唑类物质. 食品与机械. 2022(10): 82-86+200 .
    10. 朱峰. 高效液相色谱法测定纺织品中两种咪唑类化合物. 中国纤检. 2022(11): 80-82 .
    11. 刘福建,卞晓静,崔劲松,李燕云. 纺织布烘干设备及湿度自动控制技术改进与应用. 中国纤检. 2022(12): 102-104 .
    12. 庞扬海,甄振鹏,高裕锋,黄敏兴,余构彬. 高效液相色谱串联质谱法测定食糖中4-甲基咪唑和2-甲基咪唑. 甘蔗糖业. 2021(03): 74-79 .
    13. 王彬潆,戴尽波,刘垚. 超高效液相色谱-串联质谱法同时测定客家娘酒中的2-甲基咪唑、4-甲基咪唑及5-羟甲基糠醛. 食品安全质量检测学报. 2021(22): 8703-8710 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1096) PDF downloads (96) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return