FENG Lingling, FENG Jin, LI Chunyang. Extraction and Structural Characteristics of Type I Collagen from Rhopilema esculenta [J]. Science and Technology of Food Industry, 2021, 42(7): 15−21. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020050237.
Citation: FENG Lingling, FENG Jin, LI Chunyang. Extraction and Structural Characteristics of Type I Collagen from Rhopilema esculenta [J]. Science and Technology of Food Industry, 2021, 42(7): 15−21. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020050237.

Extraction and Structural Characteristics of Type I Collagen from Rhopilema esculenta

More Information
  • Received Date: May 21, 2020
  • Available Online: January 27, 2021
  • In this study, collagen was extracted from Rhopilema esculenta using hydrochloric acid-pepsin methodology, and its detailed structure were characterized by SDS-Polyacrylamide gel electrophoresis (SDS-PAGE), UV-visible spectroscopy (UV), amino acid analysis, Fourier-transform infrared spectroscopy (FTIR), circular dichroism (CD), and scanning electron microscope (SEM). The SDS-PAGE pattern of Rhopilema esculenta collagen presented an α-chain at about 135 kDa with a β-chain and γ-chain above 245 kDa. In addition, the UV absorption peak of Rhopilema esculenta collagen was centered at 233 nm, revealing that the Rhopilema esculenta collagen herein adopted the feathers of type I collagen with a possible subunit composition of [α1(I)]3. The most abundant amino acid in Rhopilema esculenta collagen was glycine, accounting for 25.99% of the total amino acids. Besides, the collagen in this work contained 15.94% imino acid. Results of Fourier transform infrared spectroscopy and circular dichroism suggested that the Rhopilema esculenta collagen presented a compact triple helix structure that maintained primarily by hydrogen bonds. The images of Rhopilema esculenta collagen under SEM observation showed mainly irregular networks consist mainly of multilayered fibers.
  • [1]
    Maroušek J, Maroušková A, Myšková K, et al. Techno-economic assessment of collagen casings waste management[J]. International Journal of Environmental Science & Technology,2015,12(10):3385−3390.
    [2]
    Veeruraj A, Arumugam M, Ajithkumar T, et al. Isolation and characterization of collagen from the outer skin of squid (Doryteuthis singhalensis)[J]. Food Hydrocolloids,2015,43:708−716. doi: 10.1016/j.foodhyd.2014.07.025
    [3]
    Ricard-blum S, Ruggiero F. The collagen superfamily: From the extracellular matrix to the cell membrane[J]. Pathologie Biologie,2005,53(7):430−442. doi: 10.1016/j.patbio.2004.12.024
    [4]
    Li J, Wang C M, Qiao Y Y, et al. Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering[J]. Process Biochemistry,2018,74:156−163. doi: 10.1016/j.procbio.2018.07.009
    [5]
    Jonathan P W, Alex J P, Valerie V, et al. In vivo comparison of jellyfish and bovine collagen sponges as prototype medical devices[J]. J Biomed Mater Res B,2018,106(4):1524−1533. doi: 10.1002/jbm.b.33959
    [6]
    姚行行, 郭妍, 庄永亮. 云南鲷鱼骨胶原蛋白的制备及其理化性质[J]. 食品科学,2018,39(13):35−40. doi: 10.7506/spkx1002-6630-201813006
    [7]
    Li P H, Lu W C, Chan Y J, et al. Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics[J]. Aquaculture,2020:515. doi: 10.1016/j.aquaculture.2019.734590
    [8]
    Ahmed R J, Hap M, Chun B S. Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus)[J]. International Journal of Biological Macromolecules,2019,315:668−676.
    [9]
    张玉莹, 柴彦萍, 秦磊, 等. 海蜇不同组织营养组成分析及评价[J]. 食品科学,2017,38(2):151−156.
    [10]
    Khong N M H, Yusoff F M, Jamilah B, et al. Nutritional composition and total collagen content of three commercially important edible jellyfish[J]. Food Chemistry,2015,196:953−960.
    [11]
    Zhang J J, Duan R, Huang L, et al. Characterization of acid-soluble and pepsin-solubilised collagen from jellyfish (Cyanea nozakii Kishinouye)[J]. Food Chemistry,2014,150:22−26. doi: 10.1016/j.foodchem.2013.10.116
    [12]
    Khong N M H, Yusoff F M, Jamilah B, et al. Improved collagen extraction from jellyfish (Acromitus hardenbergi) with increased physical-induced solubilization processes[J]. Food Chemistry,2017:S0308814617320526.
    [13]
    庄永亮, 李八方, 赵雪, 等. 高压辅助提取海蜇胶原蛋白的工艺[J]. 食品与发酵工业,2009,35(5):79−81.
    [14]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定: GB 5009.3-2016[S]. 北京: 中国标准出版社, 2016: 1−2.
    [15]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中灰分的测定: GB 5009.4-2016[S]. 北京: 中国标准出版社, 2016: 1−4.
    [16]
    孙鑫, 刘希光, 李海, 等. 新鲜海蜇不同部位总糖含量的测定[J]. 海洋科学,2014(8):34−38. doi: 10.11759/hykx20130424001
    [17]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定: GB 5009.5-2016[S]. 北京: 中国标准出版社, 2016: 1-3.
    [18]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定: GB 5009.6-2016[S]. 北京: 中国标准出版社, 2016: 1−2.
    [19]
    张雯. 基于胶原蛋白/细菌纤维素多孔微球的制备及药物吸附释放行为研究[D]. 西安: 陕西科技大学, 2019: 24−25.
    [20]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中氨基酸的测定: GB 5009.124-2016[S]. 北京: 中国标准出版社, 2016: 1−2.
    [21]
    Laemmli B U K. Cleavage of structural proteins during assembly of head of Bacteriophage-T4[J]. Nature,1970,227(5259):680−685. doi: 10.1038/227680a0
    [22]
    Zhu S C, Yuan Q J, Yang M T, et al. A quantitative comparable study on multi-hierarchy conformation of acid and pepsin-solubilized collagens from the skin of grass carp (Ctenopharyngodon idella)[J]. Materials ence & engineering,2019,96(MAR.):446−457.
    [23]
    Wang J, Pei X L, Liu H Y, et al. Extraction and characterization of acid-soluble and pepsin-soluble collagen from skin of loach (Misgurnus anguillicaudatus)[J]. International Journal of Biological Macromolecules,2017:106.
    [24]
    高玲玲, 侯成立, 高远, 等. 胶原蛋白热稳定性研究进展[J]. 中国食品学报,2018,18(5):200−212.
    [25]
    Bae I, Osatomi K, Yoshida A, et al. Biochemical properties of acid-soluble collagens extracted from the skins of underutilised fishes[J]. Food Chemistry,2008,108(1):49−54. doi: 10.1016/j.foodchem.2007.10.039
    [26]
    Regenstein J M, Zhou P. Collagen and gelatin from marine by-product[M]// Maximising the Value of Marine By-Products. 2007.
    [27]
    Nalinanon S, Benjakul S, Kishimura H, et al. Type I collagen from the skin of ornate threadfin bream (Nemipterus hexodon): Characteristics and effect of pepsin hydrolysis[J]. Food Chemistry,2011,125(2):500−507. doi: 10.1016/j.foodchem.2010.09.040
    [28]
    Kittiphattanabawon P, Benjakul S, Visessanguan W, et al. Characterization of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus)[J]. Food Chemistry,2005,89(3):363−372. doi: 10.1016/j.foodchem.2004.02.042
    [29]
    卢珍华, 郭彩华, 叶鹏, 等. 养殖花鳗鲡鱼皮胶原蛋白的特性分析[J]. 淡水渔业,2019,49(6):100−106. doi: 10.3969/j.issn.1000-6907.2019.06.016
    [30]
    Veeruraj A, Arumugam M, Balasubramanian T. Isolation and characterization of thermostable collagen from the marine eel-fish (Evenchelys macrura)[J]. Process Biochemistry,2013,48(10):1592−1602. doi: 10.1016/j.procbio.2013.07.011
    [31]
    Duan R, Zhang J J, Du X Q, et al. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio)[J]. Food Chemistry,2009,112(3):702−706. doi: 10.1016/j.foodchem.2008.06.020
    [32]
    Sun L L, Li B F, Song W K, et al. Characterization of Pacific cod (Gadus macrocephalus) skin collagen and fabrication of collagen sponge as a good biocompatible, biomedical material[J]. Process Biochemistry,2017,63(dec.):229−235.
    [33]
    Lassoued I, Jridi M, Nasri R, et al. Characteristics and functional properties of gelatin from thornback ray skin obtained by pepsin-aided process in comparison with commercial halal bovine gelatin[J]. Food Hydrocolloids,2014,41:309−318. doi: 10.1016/j.foodhyd.2014.04.029
    [34]
    Bairati A, Gioria M. Collagen fibrils of an invertebrate (Sepia officinalis) are heterotypic: immunocytochemical demonstration[J]. Journal of Structural Biology,2004,147(2):159−165.
    [35]
    Foegeding E A, Lanier T C, Hultin H O. Characteristics of edible muscle tissues. In: Owen Fennema R (Ed.)[J]. Food Chemistry,1996,3(15):879−942.
    [36]
    沈同, 王镜岩. 生物化学(第二版)[M]. 北京: 中国环境科学出版社, 2007: 320-323.
    [37]
    Zhang M, Liu W T, Li G Y. Isolation and characterization of collagens from the skin of largefin longbarbel catfish (Mystus macropterus)[J]. Food Chemistry,2009,115(3):826−831. doi: 10.1016/j.foodchem.2009.01.006
    [38]
    蔡路昀, 史航, 曹爱玲, 等. 鲽鱼骨胶原蛋白的结构及流变学特性[J]. 中国食品学报. http://kns.cnki.net/kcms/detail/11.4528.TS.20200218.1719.004.html.
    [39]
    Li H, Liu B L, Gao L Z, et al. Studies on bullfrog skin collagen[J]. Food Chemistry,2004,84(1):65−69. doi: 10.1016/S0308-8146(03)00167-5
    [40]
    Muyonga J H, Cole C G B, Duodu K G. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus)[J]. Food Chemistry,2004,86(3):325−332. doi: 10.1016/j.foodchem.2003.09.038
    [41]
    Heu M S, Lee J H, Kim H J, et al. Characterization of acid- and pepsin-soluble collagens from flatfish skin[J]. Food Science & Biotechnology,2010,19(1):27−33.
    [42]
    Chiaramaria S, Lisa V, Elisa M, et al. FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,229:118006. doi: 10.1016/j.saa.2019.118006
    [43]
    Jeong h S, Venkatesan J, Kim S K. Isolation and characterization of collagen from marine fish (Thunnus obesus)[J]. Biotechnology & Bioprocess Engineering,2013,18(6):1185−1191.
    [44]
    Payne K J, Veis A. Fourier transform ir spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies[J]. Biopolymers,1988,27(11):1749−1760. doi: 10.1002/bip.360271105
    [45]
    Zanaboni G, Rossi A, Angèle M T O, et al. Stability and networks of hydrogen bonds of the collagen triple helical structure: influence of pH and chaotropic nature of three anions[J]. Matrix Biology,2000,19(6):511−520.
    [46]
    Barth A, Zscherp C. What vibrations tell about proteins[J]. Quarterly Reviews of Biophysics,2002,35(4):369−430. doi: 10.1017/S0033583502003815
    [47]
    Jackson M, Choo L P, Watson P H, et al. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues[J]. Biochimica et biophysica acta,1995,1270(1):1.
    [48]
    Berisio R, Vitagliano L, Mazzarella L, et al. Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)10]3[J]. Protein Science,2002,11(2):262−270.
    [49]
    Plepis A M D G, Goissis G, Dilip K. Das-Gupta. Dielectric and pyroelectric characterization of anionic and native collagen[J]. Polymer Engineering & Science,1996:36.
    [50]
    Chapter 6-Biopharmaceutical applications of protein characterization by circular dichroism spectroscopy biophysical characterization of proteins in developing biopharmaceuticals (Second Edition)[M]. 2020: 123-152.
    [51]
    Kikuchi H, Wako H, Yura K, et al. Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis[J]. Biophysical Journal,2000,79(3):1587−1600. doi: 10.1016/S0006-3495(00)76409-5
    [52]
    Fathima N N, Bose M C, Rao J R, et al. Stabilization of type I collagen against collagenases (type I) and thermal degradation using iron complex[J]. Journal of Inorganic Biochemistry,2006,100(11):1774−1780. doi: 10.1016/j.jinorgbio.2006.06.014
    [53]
    Gaidau C, Petica A, Marin M. Progresses in treatment of collagen and keratin-based materials with silver nanoparticles[J]. Central European Journal of Chemistry,2013,11(6):901−911.
    [54]
    Arumugam G K, Sharma D, Balakrishnan R M, et al. Extraction, optimization and characterization of collagen from sole fish skin[J]. Sustainable Chemistry and Pharmacy,2018,9:19−26. doi: 10.1016/j.scp.2018.04.003
  • Related Articles

    [1]CHU Shaoxuan, WANG Xiao, TANG Zheng, ZHANG Zhiyi, DONG Hongjing, GONG Jianquan, ZHENG Zhenjia. Action Mechanism of Nelumbo nucifera Leaf Alkaloids in the Treatment of Hyperuricemia Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2024, 45(17): 10-20. DOI: 10.13386/j.issn1002-0306.2023110189
    [2]GUO Yan, GUO Yilin, LIU Boping, XU Jianguo. Mechanism of Baicalein Inhibiting the PD-1/PD-L1 Interaction Based on Molecular Dynamics Simulation and Experiment Research[J]. Science and Technology of Food Industry, 2024, 45(2): 40-47. DOI: 10.13386/j.issn1002-0306.2023090095
    [3]LI Wen, CHEN Wanchao, MA Haile, WU Di, ZHANG Zhong, YANG Yan. Exploring the Taste Characteristics and ACE-inhibitory Active Mechanism of Stropharia rugosoannulata Decapeptides Based on Virtual Screening, Molecular Docking, and Molecular Interactions[J]. Science and Technology of Food Industry, 2023, 44(20): 11-17. DOI: 10.13386/j.issn1002-0306.2022120208
    [4]WANG Guizhen, LIU Hongtao, YANG Xiubai, JIANG Yuqing, YANG Lili, QIU Jiazhang. Inhibition of Myristic Acid on Suilysin and the Molecular Mechanism[J]. Science and Technology of Food Industry, 2023, 44(15): 62-68. DOI: 10.13386/j.issn1002-0306.2022080344
    [5]LI Tingting, GUAN Ya, HONG Zishan, XIE Jing, TIAN Yang. Study on the Anti-obesity Mechanism of Action of Moringa oleifera Lam. Leaves by Network-Based Pharmacology and Molecular Docking Techniques[J]. Science and Technology of Food Industry, 2023, 44(15): 34-45. DOI: 10.13386/j.issn1002-0306.2022090318
    [6]YANG Juan, DOU Jiahong, SUN Yuelong, WANG Xiaoying, ZHOU Weiwei, ZHANG Guobin, LIU Hongxin, YANG Peilong, LI Xiumei. Molecular Mechanism of Phedimus aizoon (Linnaeus)'t Hart. on Anti-inflammatory Effect Based on Network Pharmacology and Molecular Docking and Experiment Research[J]. Science and Technology of Food Industry, 2023, 44(4): 12-21. DOI: 10.13386/j.issn1002-0306.2022050178
    [7]ZHANG Yuxin, LIU Weiwei, YANG Juan, ZHOU Weiwei, DAI Xiaofeng, LI Xiumei, ZHENG Wei. Molecular Mechanism of Common Phenolic Acids on Enhancing Immunity Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2023, 44(2): 29-40. DOI: 10.13386/j.issn1002-0306.2022030227
    [8]SU Yao, WANG Lan, CHANG Xiangna, GONG Pin, YANG Wenjuan, CUI Dandan. Mechanism of Gynostemma pentaphyllum on Prevention and Treatment of Obesity Based on Network Pharmacology and Molecular Docking Technology[J]. Science and Technology of Food Industry, 2022, 43(4): 12-23. DOI: 10.13386/j.issn1002-0306.2021070083
    [9]Yazhi WANG, Jianyong ZHANG, Cancan DUAN. Mechanism of Relieving Alcohol and Protecting Liver of Yigancao Herbal Tea Based on Network Pharmacology and Molecular Docking Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 8-18. DOI: 10.13386/j.issn1002-0306.2020070092
    [10]JI Huizhuo, CHEN Jiayu, LI Xin, MA Ruping, YU Zhipeng, ZHAO Wenzhu, LI Jianrong. Screening,in Vitro Activity and Molecular Mechanism of ACE Inhibitory Tirpeptides from Larimichthys crocea Protein[J]. Science and Technology of Food Industry, 2021, 42(6): 125-129,143. DOI: 10.13386/j.issn1002-0306.2020060287
  • Cited by

    Periodical cited type(2)

    1. 周秀珍,刘滔,张毅,王扬,赵敏洁,王旭堂,黄菊,冯凤琴. 混合益生菌对大口黑鲈生长性能、肉品质及肠道健康的影响. 动物营养学报. 2024(07): 4588-4609 .
    2. 陈斯艺,陈恢祥,汤曜名,郭衍彪. 植物乳杆菌MH079448对日本鳗鲡肌肉品质的影响. 饲料研究. 2023(02): 75-78 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (811) PDF downloads (64) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return