CAI Lei, FENG Lei, XU Yayuan, et al. Effect of Guar Gum on 3D Printing Properties of Purple Sweet Potato Gels[J]. Science and Technology of Food Industry, 2023, 44(21): 10−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020220.
Citation: CAI Lei, FENG Lei, XU Yayuan, et al. Effect of Guar Gum on 3D Printing Properties of Purple Sweet Potato Gels[J]. Science and Technology of Food Industry, 2023, 44(21): 10−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020220.

Effect of Guar Gum on 3D Printing Properties of Purple Sweet Potato Gels

More Information
  • Received Date: February 21, 2023
  • Available Online: September 05, 2023
  • In order to develop nutrient rich personalized food, the effects of different guar gum concentrations on rheological, gelation, 3D printing, microstructural properties and functional groups of purple sweet potato gels were explored by rheological analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. The results showed that apparent viscosity, storage modulus, loss modulus, L*, gumminess and chewiness of purple sweet potato gels increased, the micro pore size decreased, and the gel network structure was denser with the increase of guar gum concentration. The water holding capacity of purple sweet potato gels was 80.49% and the gel strength was 72.67 g when guar gum concentration was 1.6%. The addition of guar gum significantly improved 3D printability of purple sweet potato gels. When guar gum was added at 1.2% and 1.6%, 3D printed purple sweet potato gels had good formability, the average accuracy deviation was less than 1%, and the stability deviation was less than 5% after 6 hours of storage. The addition of guar gum would not produce new functional groups in 3D printed purple sweet potato gels, but mainly strengthened interactions of CH2 bonds and O-H bonds. This study provided a theoretical basis for the development of 3D printing of plant-based ingredients, which was very important for the personalization of functional foods.
  • [1]
    DANKAR I, HADDARAH A, OMAR F E L, et al. 3D printing technology: The new era for food customization and elaboration[J]. Trends in Food Science & Technology,2018,75:231−242.
    [2]
    GODOI F C, PRAKASH S, BHANDARI B R. 3D printing technologies applied for food design: Status and prospects[J]. Journal of Food Engineering,2016,179:44−54. doi: 10.1016/j.jfoodeng.2016.01.025
    [3]
    SEVERINI C, DEROSSI A, AZZOLLINI D. Variables affecting the printability of foods: Preliminary tests on cereal-based products[J]. Innovative Food Science & Emerging Technologies,2016,38:281−291.
    [4]
    VANDERPLOEG A, LEE S E, MAMP M. The application of 3D printing technology in the fashion industry[J]. International Journal of Fashion Design, Technology and Education,2016,10(2):170−179.
    [5]
    杜姗姗, 周爱军, 陈洪, 等. 3D打印技术在食品中的应用进展[J]. 中国农业科技导报,2018,20(3):87−93 doi: 10.13304/j.nykjdb.2017.0214

    DU S S, ZHOU A J, CHEN H, et al. Application progress of 3D printing technology in food fabrication[J]. Journal of Agricultural Science and Technology,2018,20(3):87−93. doi: 10.13304/j.nykjdb.2017.0214
    [6]
    LIU Z B, ZHANG M, BHANDARI B, et al. 3D printing: Printing precision and application in food sector[J]. Trends in Food Science & Technology,2017,69:83−94.
    [7]
    GUO C F, ZHANG M, DEVAHASTIN S. 3D extrusion-based printability evaluation of selected cereal grains by computational fluid dynamic simulation[J]. Journal of Food Engineering,2020,286:110113. doi: 10.1016/j.jfoodeng.2020.110113
    [8]
    FENG C Y, ZHANG M, LIU Z B, et al. Effect of drying method on post-processing stability and quality of 3D printed rose-yam paste[J]. Drying Technology,2021,39(9):1196−1204. doi: 10.1080/07373937.2020.1851708
    [9]
    冯蕾, 武敬楠, 李鸣, 等. 山药凝胶体系的3D打印特性[J]. 食品工业科技,2021,42(23):1−7 doi: 10.13386/j.issn1002-0306.2021040024

    FENG L, WU J N, LI M, et al. 3D printing characteristics of yam gel[J]. Science and Technology of Food Industry,2021,42(23):1−7. doi: 10.13386/j.issn1002-0306.2021040024
    [10]
    FAN H Z, ZHANG M, LIU Z B, et al. Effect of microwave-salt synergetic pre-treatment on the 3D printing performance of SPI-strawberry ink system[J]. LWT-Food Science and Technology,2020,122:109004. doi: 10.1016/j.lwt.2019.109004
    [11]
    FENG L, WU J N, SONG J F, et al. Effect of particle size distribution on the carotenoids release, physicochemical properties and 3D printing characteristics of carrot pulp[J]. LWT-Food Science and Technology,2021,139:110576. doi: 10.1016/j.lwt.2020.110576
    [12]
    PHUHONGSUNG P, ZHANG M, DEVAHASTIN S. Influence of surface pH on color, texture and flavor of 3D printed composite mixture of soy protein isolate, pumpkin, and beetroot[J]. Food and Bioprocess Technology,2020,13(9):1600−1610. doi: 10.1007/s11947-020-02497-8
    [13]
    LIU Z B, ZHANG M, BHANDARI B, et al. Impact of rheological properties of mashed potatoes on 3D printing[J]. Journal of Food Engineering,2018,220:76−82. doi: 10.1016/j.jfoodeng.2017.04.017
    [14]
    王浩, 谭畅, 陈静, 等. 魔芋胶对蓝莓凝胶体系3D打印特性的影响[J]. 食品科学,2019,40(23):104−110 doi: 10.7506/spkx1002-6630-20190423-300

    WANG H, TAN C, CHEN J, et al. Effect of konjac gun on 3D printing properties of blueberry gel system[J]. Food Science,2019,40(23):104−110. doi: 10.7506/spkx1002-6630-20190423-300
    [15]
    KIM H J, KOO K A, PARK W S, et al. Anti-obesity activity of anthocyanin and carotenoid extracts from color-fleshed sweet potatoes[J]. Journal of Food Biochemistry,2020,44(10):13438.
    [16]
    乔汉桢, 宋爽, 邵会敏, 等. 甘薯多糖的提取工艺、生理功能及应用研究进展[J]. 食品工业科技,2020,41(8):321−325,332 doi: 10.13386/j.issn1002-0306.2020.08.052

    QIAO H Z, SONG S, SHAO H M, et al. Advances in extraction technology, biological activity and application of sweet potato polysaccharide[J]. Science and Technology of Food Industry,2020,41(8):321−325,332. doi: 10.13386/j.issn1002-0306.2020.08.052
    [17]
    BUENO J M, SAEZ-PLAZA P, RAMOS-ESCUDERO F, et al. Analysis and antioxidant capacity of anthocyanin pigments. Part II: Chemical structure, color, and intake of anthocyanins[J]. Critical Reviews in Analytical Chemistry,2012,42(2):126−151. doi: 10.1080/10408347.2011.632314
    [18]
    CHEN J L, ZHANG M, DEVAHASTIN S, et al. Novel alternative use of near-infrared spectroscopy to indirectly forecast 3D printability of purple sweet potato pastes[J]. Journal of Food Engineering,2021,296:110464. doi: 10.1016/j.jfoodeng.2020.110464
    [19]
    LI J M, NIE S P. The functional and nutritional aspects of hydrocolloids in foods[J]. Food Hydrocolloids,2016,53:46−61. doi: 10.1016/j.foodhyd.2015.01.035
    [20]
    HUANG M S, ZHANG M, GUO C F. 3D printability of brown rice gel modified by some food hydrocolloids[J]. Journal of Food Processing and Preservation,2020,44(7):14502.
    [21]
    BORRIES-MEDRANO E V, JAIME-FONSECA M R, AGUILAR-MENDEZ M A. Starch-guar gum extrudates: Microstructure, physicochemical properties and in-vitro digestion[J]. Food Chemistry,2016,194:891−899. doi: 10.1016/j.foodchem.2015.08.085
    [22]
    LV R H, KONG Q, MOU H J, et al. Effect of guar gum on stability and physical properties of orange juice[J]. International Journal of Biological Macromolecules,2017,98:565−574. doi: 10.1016/j.ijbiomac.2017.02.031
    [23]
    TANG C H, YANG M, LIU F, et al. Stirring greatly improves transglutaminase-induced gelation of soy protein-stabilized emulsions[J]. LWT-Food Science and Technology,2013,51(1):120−128. doi: 10.1016/j.lwt.2012.11.004
    [24]
    LIANG X P, MA C C, YAN X J, et al. Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions[J]. Food Hydrocolloids,2020,102:105569. doi: 10.1016/j.foodhyd.2019.105569
    [25]
    武敬楠, 冯蕾, 宋江峰, 等. 山药淀粉凝胶的3D打印特性[J]. 现代食品科技,2021,37(6):211−216, 256 doi: 10.13982/j.mfst.1673-9078.2021.6.1086

    WU J N, FENG L, SONG J F, et al. 3D printing characteristics of chinese yam starch gel[J]. Modern Food Science and Technology,2021,37(6):211−216, 256. doi: 10.13982/j.mfst.1673-9078.2021.6.1086
    [26]
    刘振彬. 马铃薯泥及其淀粉混合凝胶体系的挤出型3D打印及后加工适应性研究[D]. 无锡:江南大学, 2020:53−54

    LIU Z B. Study on extrusion 3D printing and post-processing adaptability of mashed potato and its starch mixed gel system[D]. Wuxi:Jiangnan University, 2020:53−54.
    [27]
    郑明静. 莲子淀粉与亲水性胶体协效性及其作用机理的研究[D]. 福州:福建农林大学, 2019:7−8

    ZHENG M J. Synergistic effect of lotus seed starch blended with different hydrocolloids and its mechanism[D]. Fuzhou:Fujian Agriculture and Forestry University, 2019:7−8.
    [28]
    CHEN C, ZHANG M, GUO C F, et al. 4D printing of lotus root powder gel: Color change induced by microwave[J]. Innovative Food Science & Emerging Technologies,2021,68:102605.
    [29]
    BORRIES-MEDRANO E V, JAIME-FONSECA M R, AGUILAR-MENDEZ M A. Tapioca starch-galactomannan systems: Comparative studies of rheological and textural properties[J]. International Journal of Biological Macromolecules,2019,122:1173−1183. doi: 10.1016/j.ijbiomac.2018.09.067
    [30]
    CHAISAWANG M, SUPHANTHARIKA M. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum[J]. Food Hydrocolloids,2006,20(5):641−649. doi: 10.1016/j.foodhyd.2005.06.003
    [31]
    GULARTE M A, ROSELL C M. Physicochemical properties and enzymatic hydrolysis of different starches in the presence of hydrocolloids[J]. Carbohydrate Polymers,2011,85(1):237−244. doi: 10.1016/j.carbpol.2011.02.025
    [32]
    BELORIO M, MARCONDES G, GOMEZ M. Influence of psyllium versus xanthan gum in starch properties[J]. Food Hydrocolloids,2020,105:105843. doi: 10.1016/j.foodhyd.2020.105843
    [33]
    周玉杰, 李安平, 杨玉蓉, 等. 瓜尔豆胶对锥栗淀粉糊化和流变学特性的影响[J]. 食品科学,2017,38(23):65−69 doi: 10.7506/spkx1002-6630-201723011

    ZHOU Y J, LI A P, YANG Y R, et al. Effect of guar gum on gelatinization and rheological properties of Castanea henryi starch[J]. Food Science,2017,38(23):65−69. doi: 10.7506/spkx1002-6630-201723011
    [34]
    HAGEN L. Pretty healthy food: How and when aesthetics enhance perceived healthiness[J]. Journal of Marketing,2020,85(2):129−145.
    [35]
    LIU Z B, ZHANG M, BHANDARI B. Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes[J]. International Journal of Biological Macromolecules,2018,117:1179−1187. doi: 10.1016/j.ijbiomac.2018.06.048
    [36]
    ZHOU Q C, WANG M, LI H, et al. Application of Maillard reaction product of xylose-pea protein enzymatic hydrolysate in 3D printing[J]. Journal of the Science of Food and Agriculture,2020,100(7):2982−2990. doi: 10.1002/jsfa.10327
    [37]
    FENG L P, JIA X, ZHU Q M, et al. Investigation of the mechanical, rheological and microstructural properties of sugar beet pectin/soy protein isolate-based emulsion-filled gels[J]. Food Hydrocolloids,2019,89:813−820. doi: 10.1016/j.foodhyd.2018.11.039
    [38]
    AZAM R S M, ZHANG M, BHANDARI B, et al. Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate[J]. Food Biophysics,2018,13(3):250−262. doi: 10.1007/s11483-018-9531-x
    [39]
    KACURAKOVA M, MATHLOUTHI M. FTIR and laser-Raman spectra of oligosaccharides in water: Characterization of the glycosidic bond[J]. Carbohydrate Research,1996,284(2):145−157. doi: 10.1016/0008-6215(95)00412-2
  • Cited by

    Periodical cited type(8)

    1. 杜彦锋,邓晓东,赵志伟,魏玉颖,蒋璐遥,燕文柏,黄德莲,张薇薇. 我国石斛质量标准建立研究进展. 食品与发酵科技. 2025(01): 142-148 .
    2. 高敏,王晴,王欣兰,乔雪婷,赵惠茹. 低共熔溶剂提取黄酮类化合物的研究进展. 化学工程师. 2024(02): 55-58 .
    3. 周美,廖秀,李立郎,王瑜,安巧,罗鸣,王道平. 铁皮石斛酵素制备工艺及其免疫活性研究. 食品科技. 2024(01): 94-102 .
    4. 陈媛,陈苗苗,杨善彬,刘冰,李霄,蒲道俊. 低共熔溶剂优化芹菜中芹菜素提取工艺研究. 广东化工. 2024(05): 36-40 .
    5. 乔雪婷,李敏琦,许鑫玉,赵惠茹. 低共熔溶剂提取植物多糖的研究进展. 化学工程师. 2024(06): 60-63 .
    6. 王清,周舟,刘涛,李晓星,郑雪珂,桑大席. 基于低共熔溶剂的南瓜多糖超声辅助提取工艺及其动力学研究. 粮食与油脂. 2024(07): 70-75+132 .
    7. 禹晓梅,周忠云. 超声辅助低共熔溶剂提取韩信草总黄酮的工艺优化. 天然产物研究与开发. 2024(11): 1910-1919 .
    8. 吴均,杨碧文,赵珮,马婧秋,王晓静,黄越. 桑叶多糖提取工艺优化及体外抗氧化活性研究. 食品与机械. 2024(12): 170-177 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (142) PDF downloads (27) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return