• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

结合态酚类物质在植物生长、食品加工及人体消化过程中的释放规律研究进展

王胜宇, 杨梅, 胡鹤宇, 朱才庆, 董欢欢, 管咏梅, 朱卫丰

王胜宇,杨梅,胡鹤宇,等. 结合态酚类物质在植物生长、食品加工及人体消化过程中的释放规律研究进展[J]. 食品工业科技,2024,45(14):408−417. doi: 10.13386/j.issn1002-0306.2023080269.
引用本文: 王胜宇,杨梅,胡鹤宇,等. 结合态酚类物质在植物生长、食品加工及人体消化过程中的释放规律研究进展[J]. 食品工业科技,2024,45(14):408−417. doi: 10.13386/j.issn1002-0306.2023080269.
WANG Shengyu, YANG Mei, HU Heyu, et al. Research Progress on Release Patterns of Conjugated Phenolics During Plant Growth, Food Processing and Human Digestion[J]. Science and Technology of Food Industry, 2024, 45(14): 408−417. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080269.
Citation: WANG Shengyu, YANG Mei, HU Heyu, et al. Research Progress on Release Patterns of Conjugated Phenolics During Plant Growth, Food Processing and Human Digestion[J]. Science and Technology of Food Industry, 2024, 45(14): 408−417. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080269.

结合态酚类物质在植物生长、食品加工及人体消化过程中的释放规律研究进展

基金项目: 国家自然科学基金(82260765);江西中医药大学科技创新团队发展计划(CXTD-22004)。
详细信息
    作者简介:

    王胜宇(1999−),男,硕士研究生,研究方向:药食同源产品开发与评价,E-mail:2945386227@qq.com

    通讯作者:

    董欢欢(1984−),男,博士,副教授,研究方向:药食同源产品开发与评价,E-mail:donghh@jxutcm.edu.cn

  • 中图分类号: TS201.2

Research Progress on Release Patterns of Conjugated Phenolics During Plant Growth, Food Processing and Human Digestion

  • 摘要: 酚类物质具有抗氧化、抗炎、改善机体肠道健康等多种生理作用,在植物体生长及调节人体健康方面有着重要作用。相较于可直接萃取的游离态酚类物质,与多糖、蛋白质、脂质等结合的结合态酚类物质,所占比例更高,分布更广,具有潜在的应用价值,受到了越来越多的关注。结合态酚类物质从植物生长到食品加工再到人体消化利用全链条过程中,因受到多种因素影响,其组成、结构、迁移转化、赋存特征等会发生复杂的变化,研究其积累与释放规律对增强其生物活性,提高酚类利用率尤为重要。因此,本文就结合态酚类物质在植物生长、食品加工及人体消化过程中的释放研究情况进行简要综述,以期为阐明结合态酚类释放规律及提高其利用率提供理论指导。
    Abstract: Phenolics have various of physiological effects such as antioxidant, anti-inflammation, and improving intestinal health, as well as playing an important role in the growth of plant and the regulation of human health. Compared with the free phenolics that can be directly extracted, the conjugated phenolics that are bound to polysaccharides, proteins, lipids, and other components have a higher proportion and a wider distribution. The conjugated phenolics have potential application value and increasing attention. During the entire chain from plant growth to food processing and then to human digestion and utilisation, the conjugated phenolics undergo complex changes in composition, structure, migration transformation, and storage characteristics due to the influence of many factors. The study of its accumulation and release patterns is particularly important to enhance its biological activity and improve the utilisation rate of phenolics. Therefore, this paper provides a brief overview on the release of conjugated phenolics during plant growth, food processing, and human digestion, with a view to providing theoretical guidance for elucidating the release pattern of bound phenolics and improving their utilisation.
  • 酚类化合物泛指芳烃的含羟基衍生物,包括单宁、酚酸、黄酮类、木质素、二苯乙烯类化合物等。自然界中酚类化合物主要由植物产生,存在于液泡内,具有特殊的芳香气味,呈弱酸性,在环境中具有较强的还原性能,可作为天然的抗氧化剂,有着抗心脑血管疾病、抗肿瘤及抗病毒等多种生物活性[1]。酚类化合物因形态存在不同可分为游离态酚类和结合态酚类两大类。游离态酚类多以单体的形式存在于植物体中,表现出良好的溶解性,易溶于水或有机溶剂[2];结合态酚类是指多酚通过酯键、糖苷键、醚键等化学键与植物中的纤维素、蛋白质、多糖、脂质等结合的一类物质,难以直接使用有机溶剂提取[3]。目前关于酚类物质含量的文献,所报道的酚类物质多为能被有机溶剂直接提取的游离酚和少量结合酚的总和。因缺少对结合态酚类成分的综合考量,对总酚含量的检定结果是不够准确的[4],尤其在红小豆、沙棘叶、黑芝麻(种皮)这些结合酚比重远高于游离酚的物质中,其总酚含量往往容易被低估[57],在部分玉米产品中结合酚含量甚至高达99%[8]

    酚类物质在植物生长中扮演着重要的角色,结合酚的积累与释放,可使植物有效应对生长过程中所受的外界胁迫,保护植物免受侵害,维持生长发育。因结合键难以被消化酶分解,人体很难直接吸收利用结合酚。选择合适的加工技术辅助结合酚的释放,可以大大提升结合酚的生物活性及利用率。葛根经过发酵后,纤维素被酵母产生的纤维素酶代谢,总酚含量增加,显著延长小鼠醉酒潜伏期,并缩短醉酒时间,增强了肝脏保护功能[9]。使用蒸汽爆破技术处理后的杜仲叶,其纤维网络和细胞壁被破坏,结合的绿原酸大量释放,提取率提高了62.0%,且抗氧化能力得到显著提升[10]。人体拥有复杂的消化代谢系统,结合酚在体内的释放受到多种因素的共同影响,在人体不同部位的释放差异较大。牙齿的咀嚼与胃肠蠕动、不同pH的消化环境、不同种类的酶、肠道菌群等因素均会对结合酚的释放造成影响。解析结合酚在人体中的释放行为,有助于明确酚类物质的作用部位、生物活性及作用机制。本文就结合态酚类物质在植物生长、食品加工及人体消化过程中的释放规律进行综述,以期为结合态酚类物质的有效利用提供理论参考。

    结合态酚类种类繁多,包括以没食子酸、枸橼酸、绿原酸和肉桂酸等酚类与膳食纤维、蛋白质、脂类等结合形成的结合态酚类化合物。粮谷类物质含水量少,种皮中与纤维素结合的酚类是种子重要的防御手段,因此结合酚含量通常高于游离酚[11]。而在水果中,尤其是一些颜色较深或酸涩味较重的水果,游离态酚含量高于结合酚。总的来说,在果皮、外壳等含水量低的保护组织中,结合态酚类所占比重较大。结合态多酚在植物体内的存在形式主要包括与蛋白质、纤维素等大分子以及植物基质通过酯键、糖苷键、醚键等化学键结合,或通过物理方式截留于植物基质中或包埋于细胞结构内等[12]。酚类物质所结合的物质不同,其结构特征也不尽相同。在荔枝干果肉中酚类与不可溶性膳食纤维结合,呈卷曲的片状结构[13]。苹果果汁中链状的多酚颗粒与球状的蛋白质颗粒或自身聚合或相互聚合形成大的球状颗粒[14]。蛋白质、脂质等大分子结构比较复杂且往往具有微孔结构,能与酚类化合物形成包裹,进而影响酚类化合物的消化吸收[15]

    植物发芽过程中结合态酚类物质的累积与释放是一个动态的过程。植物萌发过程中呼吸作用增强,细胞活化释放出多种酶,尤其是合成酚类物质的相关酶活性增强,种子中所储藏的营养物质转化为生长所需的以酚类物质为主的活性物质。转化产生的酚类物质多与细胞壁结合形成结合态酚类物质。随着萌芽过程的进行,过程中产生的水解酶破坏多酚与细胞壁多糖间的酯键、醚键等共价键,使得结合态酚酸得到释放。Gong等[16]与王军等[17]发现,玉米和燕麦发芽后,结合酚与游离酚含量均显著增加,猜测可能是发芽过程中产生的细胞壁降解酶将细胞壁降解,释放出与细胞壁结合的多酚,从而导致游离态多酚的含量增加。不仅如此,植物种子中的木质素在酶促反应下可降解为对羟基苯甲酸和对香草醛[18],同样会使游离酚含量增加。随着植物发芽进程进入尾声,释放出来的游离态多酚与细胞壁再次结合形成新的结合态酚类物质。因而,结合酚在植物体中的释放与积累是相对动态的[1920]

    酚类化合物在植物生长发育阶段主要起着促进植物生长发育、合成天然色素的重要作用。植物生长发育阶段是结合酚的主要累积阶段,含量呈逐渐上升趋势。莽草酸途径是植物体内酚类物质合成的重要途径。酚类物质合成转换过程如图1所示,莽草酸在苯丙氨酸解氨酶(PAL)、肉桂酸羟化酶(C4H)、4-香豆酸-CoA连接酶(4CL)等的作用下生成肉桂酸、咖啡酸、阿魏酸等酚类物质,该途径下产生的酚类可转变为木质素,与细胞壁结合后可增强植物体机械强度[21]。阿魏酸和对香豆素与植物体多糖残基氧化交联形成的结合态多酚,可以使细胞壁显著增厚,促进植物木质化,有效增强小麦、大豆、青稞等作物抗倒伏能力[22],对植物生长发育起着重要作用。类黄酮作为多数植物花瓣呈色的主要化学物质,在植物花期时,主要在细胞质中合成,其代表物质花青素多与糖类以糖苷键结合,随后由转运蛋白迁移至液泡中,使植物花瓣呈黄、红、紫、蓝和黑等多种颜色。同时,适合的光照可促进苯丙氨酸和糖类物质的合成,诱导有关基因及转录因子的表达,促进植物体中结合态酚类物质的积累[23]

    图  1  酚类物质在植物体内的合成转换过程
    注:采用Adobe Illustrator 2022绘制;图2~图3同。
    Figure  1.  Synthesis and conversion process of phenolic substances in plants

    植物体在受到环境胁迫时酚类含量会发生巨大的变化,通常情况下黑芝麻种皮、米糠、小麦麸皮等植物体保护组织中所含酚类含量远高于营养组织。植物抵抗外界侵害的结果往往是结合态酚类的大量累积。缺钙是引起苹果苦窦病的主要原因,在病变组织中,结合态根皮素和结合态原花青素等的含量分别是正常组织的15倍和3倍[24]。存在于多种树木的树皮和果实中的单宁类物质,是树木受昆虫侵袭而生成的虫瘿中的主要成分。单宁可与蛋白质结合抵抗外来侵害,也可与细胞壁中多糖结合,促进石细胞次生壁高度木质化,增加虫瘿硬度,起到防御的作用[25]。同时,植物体对环境胁迫的响应也是结合态酚类物质释放的重要途径。结合态花青素是一类广泛存在于植物中的天然色素,主要以糖苷的形式存在。高温、强光等环境胁迫可诱导花青素过氧化物酶活性,促进结合态花青素降解,达到消除H2O2等活性氧的目的[2627]。揭示环境胁迫下植物体中酚类物质积累与释放的规律,有助于提高农作物、中药材中酚类物质的含量。如适度的干旱胁迫可诱导丹参氧化应激反应,有效促进丹参酚类物质的积累[28]。低氮高磷的土壤环境利于植物黄酮以及类黄酮等酚类的合成[29]。利用五倍子蚜等致瘿昆虫对寄主植物形成虫瘿,可显著影响植物体的生理和代谢活动,产生较丰富的单宁酸、没食子酸和焦性没食子酸等酚类物质,提高植物提取物的抗氧化活性和抗菌活性[30]

    随着人们健康饮食观念的改变,食品的营养价值备受重视。食品加工的主要目的是延长产品保质期、改善食物风味口感,或两者兼而有之。正确的加工方式对结合酚的释放起着积极作用,反之则会降低结合酚的利用率,导致食品营养的流失。研究结合态多酚类在加工过程中的释放规律,对指导健康饮食有着重要作用。

    微生物发酵可以生成一系列分解结合键的酶,有助于释放结合态酚类物质,从而改善风味或增强生物活性。葛根经酿酒酵母发酵后,细胞壁中的纤维素被酵母产生的纤维素酶降解,结合态酚类得到的释放,可增强其肝脏保护功能[9]。三华李果汁经发酵后,苹果酸转化生成乳酸或乙酸,丰富了三华李果汁的风味[31]

    乳酸菌在代谢过程中能产生酚酸酯酶、β-半乳糖苷酶等酶类,可促进发酵物基质中的结合态酚类物质的释放[32]。但乳酸菌同样会增强酚类化合物的代谢,有研究表明植物乳植杆菌发酵对橙汁中黄酮类物质具有显著的降解作用,推测是乳酸菌可将果汁中复杂的黄酮类物质代谢为简单的化合物[3334]。黑曲霉作为一种安全无毒的微生物,发酵后可产生纤维素酶、半纤维素酶、β-葡萄糖苷酶酶、果胶酶等,对破坏纤维素,释放结合态酚类物质具有显著效果[35]。Dulf等[36]利用黑曲霉和少孢根霉分别对李子副产物进行固态发酵,发现发酵后不仅总酚含量增加了21%和30%,总黄酮含量与抗氧化能力同样得到了显著提升。阎欲晓等[37]利用黑曲霉固态发酵甘蔗叶,相比于未发酵组总酚含量提高了92%,通过对纤维素酶和β-葡萄糖苷酶活力检测,发现酚类物质释放与酶活性显著相关,推测纤维素酶、β-葡萄糖苷酶断裂了多酚与植物纤维素、半纤维素等物质连接的共价键,释放出甘蔗叶中结合态酚类物质,从而使总酚含量增加。

    单株微生物产生的酶系统存在不完整、活性低等缺陷。双菌株或多菌株发酵可以提高酶的组成比和整体活性,有助于膳食纤维的水解,释放更多的结合酚。崔亚鹏等[38]在使用酵母菌与乳杆菌协同对金银花发酵,其总酚含量较单独使用乳杆菌发酵有显著增加,尤其是绿原酸和阿魏酰奎尼酸的含量显著提高。Jin等[39]以植物乳杆菌和酿酒酵母对芒果浆液进行分别培养和共同培养,发现相较于单次培养,共培养后总酚含量显著增加。周英彪等[40]使用酿酒酵母、醋酸杆菌、植物乳酸杆菌三种菌株组合发酵荔枝果汁,显著增加了总酚含量,且伴随有新的酚类化合物生成。

    高压技术作为传统非热加工技术,广泛应用于杀菌和抑制酶活性,相较于传统热加工,具有保留食品原本风味、避免热敏营养物质破坏等优点。高压处理过程中结合态多酚的释放机制见图2。在高压条件下,存在于植物组织中的气隙被液体部分填充,当压力随后释放时,孔隙中被堵塞的空气排出,破坏植物细胞壁、细胞膜结构,利于植物细胞中的酚类物质的释放[41]。高压处理还可有效抑制多酚氧化酶的活性,促进酚类物质释放的同时降低了释放出的酚类物质被氧化的概率。王鸥等[42]发现高压处理后的蓝莓酚类物质显著增加,特别是包含在液泡中的花色苷类物质,抗氧化活性显著增强,显著提高了酚类物质的生物利用率。董盼豪[43]基于高压射流系统制备桑葚果汁饮料,发现高压处理后,桑葚细胞结构破坏,结合酚大量释放使总酚含量显著增加。Yu等[44]发现高压可使糙米中两种主要结合酚类化合物(阿魏酸和异阿魏酸)的含量显著增加。相较于传统高压处理,蒸汽爆破作为一种原料预处理技术,可将高压蒸汽内能转化为机械能,高效破碎原料便于后续处理,有着巨大的应用前景[45]。采用蒸汽爆破对杜仲叶进行预处理后,发现绿原酸提取率提高了62.0%[10],表明蒸汽爆破破坏了叶片的纤维网络和细胞壁,促进了结合酚特别是绿原酸的释放。研究表明蒸汽爆破能促进苦荞麦麸皮中结合型焦没食子酸、原儿茶酸和咖啡酸等酚类的释放,使结合酚的含量提高了近2倍,提高了结合酚提取物的体外抗氧化能力的同时也增强了对HepG2细胞的抗增殖的活性[46]

    图  2  高压处理过程中结合态多酚的释放机制
    Figure  2.  Release mechanism of conjugated phenols during high pressure treatment

    与传统热加工相比,非热加工技术,能更好的避免酚类物质的降解,增加结合态酚类物质的释放,增强其抗氧化能力及生物活性。对保持食品口感、营养成分和新鲜度方面起着重要作用。

    热加工可能导致食品营养价值的改变,引起酚类含量或结构的变化。一方面,热加工可降低相关氧化酶活性,抑制酚类物质的氧化和聚合,阻止酚类化合物参与褐变反应,还能够降低多酚对细胞壁多糖的吸附能力,增大细胞间的孔隙使植物细胞壁破裂,改变其萃取性;另一方面,高温同样可导致酚类物质发生褐变及美拉德反应,使食品中的酚酸异构化。因此其总酚含量的变化存在不确定性。

    破坏细胞壁的机械加工可以改善食物口感、增加抗氧化剂和其他营养物质的生物利用度,多见于粮谷类,如薏苡仁、红小豆等。适度的机械加工会导致细胞壁结构的破坏,使结合酚释放,游离酚含量增加[47]。Chen等[48]发现挤压工艺可破坏米糠细胞壁物理结构,提高结合物酚类物质的萃取率。但过度的机械加工反而不利于结合态酚类物质的利用。薏苡仁在经过分级脱壳后,酚类物质含量随着脱壳次数的增加不断减少[49]。这是由于大部分酚类集中在麸皮部分,并与多糖共价结合,谷物经过脱壳处理后结合酚大量损失,导致总酚含量下降[50]。这点在藜麦中也得到了验证[51]。分级脱壳过程破坏了薏苡米的完整性,释放了部分结合酚,但也使酚类暴露在空气中易被氧化。不仅如此,在机械加工过程中部分机械能转化为内能,导致温度升高,高温可破坏酚类物质的结构,导致酚类含量下降。

    烹饪方式多种多样,以蒸、煮、炒、炸、烤等热加工为主。影响结合态多酚释放的因素主要有烹饪介质与烹饪温度。蒸、煮以水为主要介质,且烹饪温度相对较低,在烹饪过程中水可起到软化木质素、削弱细胞壁基质与多酚的相互结合的作用,促进结合态酚类化合物的释放,这点在韭菜、马铃薯、苦瓜中得到证实[52],但酚类物质也会溶解于水中流失,最终造成总酚含量的降低,尤其是在煮制过程中,桑叶经水煮处理后总酚含量显著降低,仅为蒸制桑叶的25.03%,且随水煮时间延长总酚含量呈降低趋势[53],这与Rawson等[54]的研究结果一致。

    在炒与炸的烹饪方式下,油作为主要介质相较于蒸、煮可隔绝食物与水的接触,极大的减少了酚类物质的流失,且炒、炸的烹饪温度相对较高,高温对破坏组织,释放食物基质中与细胞壁多糖氢键结合的结合态酚类起着重要作用。Korus等[55]发现紫甘蓝水煮后酚类含量下降,而经过油炸处理后的紫甘蓝较对照组,酚类含量增加了129%。油炸改变了其微观结构,从而促进了紫甘蓝中结合酚的释放,这与尹培等[56]研究结果一致。在炒制青稞的过程中酚类物质含量增加,其中结合酚含量提高33.89%,这可能由于炒制加工改变了青稞中蛋白质、纤维素的结构,使得结合多酚释放[57]。但解离出来的酚类物质在高温油介质下易发生降解、转化、金属螯合等反应导致含量降低,且高温同样会破坏酚类物质结构使其进行选择性分解和转化[5859],这些因素可能是煎炸、烤制食品中总酚含量比较低的主要原因。

    除了常见的热加工与非热加工这两类食品处理技术,酚类物质的提取分离同样是食品加工尤其提取物加工中的重要环节。工业上通常采用酸碱或酶解工艺,断裂结合态酚类物质中的糖苷键、酯键、醚键等化学键,释放结合态酚类物质,获得较高含量的酚类物质提取物。

    酸水解法是目前提取结合酚的主要方式。酸水解可将多糖降解为寡糖片段或单糖,通过破坏糖苷键来释放结合态多酚[60]。冯悦等[61]就通过酸水解法提取甘薯结合酚,经优化结合酚提取量为0.212±0.004 g/100 g。青稞麸皮结合酚的提取中使用酸水解所得酚类含量较碱水解更高[62]。与碱水解法相比,酸水解有着无需搅拌,所得溶液流动性更强,后续纯化等操作更便利等优点。

    相较于酸水解,碱水解不仅可以破坏糖苷键,同时还能破坏酯键从而释放出更多的结合酚[63]。因此碱水解的实际应用价值高于酸水解。碱水解可以破坏多酚与细胞壁间的酯键,经过碱水解后与纤维整体结构变得松散破裂,进一步促进非共价结合酚类的释放。Tanyawan等[64]采用碱水解法结合有机溶剂萃取法提取丁香中酚类物质,使得结合态多酚充分释放。相较于单一的水解手段,酸-碱提取法也开始应用于结合酚的提取[65]。即先采取酸水解的方法,提取结合态多酚,再将酸水解后剩余的残渣,加入氢氧化钠继续进行水解,合并两次水解所得产物,得到酸-碱水解后的结合酚类物质,反之亦然。相较于单一水解,该方法对结合酚的提取更加充分,效率也更高。

    纤维素是目前已知的与多酚结合最为广泛且紧密的组分之一[66]。多酚与膳食纤维在结合过程中,膳食纤维会形成疏水空腔或孔洞,酚类物质就可以进入这些疏水口袋中,并发生以疏水相互作用为主导的结合[67]。膳食纤维中羟基的数量、聚集程度以及聚合体的大小和稳定性,多酚的疏水性、溶解度都会影响其结合稳定性[68]。在提取过程中加入生物酶,如果胶酶、纤维素酶、淀粉酶等可有效释放酚类物质,使结合的酚类得到释放,同时加快物理包埋及截留的结合酚溶出,促进结合酚在植物体中的释放。王小艳等[69]使用纤维素酶和果胶酶,将余甘子细胞壁中纤维素、果胶质等成分降解,将细胞中的酚类物质充分释放,与未加酶组相比,提取率提高了27%。与传统压榨相比,酶解后压榨黑加仑果汁中酚类化合物含量是传统方法的9倍。推测在酶的作用下破坏了与细胞壁中结构性碳水化合物和蛋白质等组分的结合[70]。阿魏酸酯酶,肉桂酰酯酶和肉桂酰酯水解酶,可以从结合酚中水解释放阿魏酸或对香豆酸,释放被酯化到植物细胞壁的肉桂酸,增加了纤维中结合酚的释放[71]

    多酚具有抗氧化、抗癌、降血糖等多种生物活性,但大多数的游离态多酚被人体摄入后,通过胃和小肠时遭到破坏,生物利用度低。而结合态多酚独特的结合形式,使其在口腔、胃、小肠中释放甚微,直至到达结肠部位后,在肠道菌群的作用下大量释放[72]。多数游离酚和少量结合酚在口腔、胃肠道吸收,90%左右结合态酚类物质只有到达结肠部位,才会被肠道菌群发酵利用[73],结合态多酚在人体消化代谢过程中的释放见图3。虽然酚类物质主要在结肠部位经肠道菌群作用后释放发挥作用,可直接被人体吸收利用的部分较少,但这部分酚类化合物对人体却有重要的营养及功能价值。因此研究酚类化合物在口腔、胃肠道的释放、吸收、转化对健康同样有着重要意义。

    图  3  结合态多酚在人体消化代谢过程中的释放
    Figure  3.  Release of bound polyphenols during human digestion and metabolism

    在口腔消化阶段,牙齿的咀嚼与唾液淀粉酶是影响酚类物质释放的主要因素。然而,鸡爪槭叶模拟口腔消化液中总酚含量与未消化时无显著差异[74],百合鳞茎经模拟口腔消化后,酚类物质含量未见显著变化[75],表明结合酚在口腔中释放不显著[76]。主要原因是食物在口腔内停留时间短,ɑ-淀粉酶与食物反应不充分,咀嚼对酚类释放的影响微乎其微。因此在口腔消化阶段结合态酚类物质几乎无释放,总酚含量基本不变。

    在胃消化阶段,胃液的酸性环境及胃蛋白酶均对酚类物质的释放起着重要作用。师聪等[77]通过体外模拟胃肠消化覆盆子,发现消化过程中无论是酸性的环境亦或是胃蛋白酶均可导致结合酚的释放。在胃消化过程中,酸性环境不仅有利于酚类化合物的稳定存在,还可以破坏多酚与蛋白质间的酯键。胃蛋白酶水解肽链,破坏蛋白质与酚类的结合,促使结合酚从食物基质中释放。软枣猕猴桃果渣样品中的酚类化合物主要以结合形式存在,胃消化后总酚含量增加[78]。谢乐怡等[79]通过模拟体外消化研究橘皮提取物酚类含量的变化,发现橘皮代表性酚类物质柚皮苷和橙皮苷,在经过胃液模拟消化阶段后,含量升高。同样的,糙米经过胃消化后没食子酸和儿茶素的释放量均增加[80]。胃蛋白酶和酸性环境对于黄酮类化合物的释放有着积极的作用,但也会导致部分酚类物质发生转化,使得总酚含量有一定程度的下降。米糠膳食纤维在经过模拟胃液消化后,咖啡酸含量逐渐减少,推测是咖啡酸降解为香豆酸或者其他酚类[81],绿原酸在微生物发酵过程中,可进一步代谢成羟基苯丙酸和羟基苯甲酸,导致含量降低[82]

    肠道消化较口腔消化和胃消化更有利于结合酚的释放,这归因于小肠中存在丰富的水解酶。在肠消化阶段,肠液中的胰酶和胆汁等对酚类物质的释放起着重要作用,可释放与多糖、脂肪等物质结合的酚类[63]。满朝坤等[80]发现,糙米在肠消化阶段中,与多糖、脂肪等物质结合的结合态多酚被水解,多酚大量释放。Luis等[83]同样发现在此阶段,芒果果肉中总多酚含量持续增加,从6.07 mmol/g DW增加到7.15 mmol/g DW,平均生物可及性指数为206.3%。在肠消化的弱碱性环境下,黄酮类化合物的稳定性下降,可能导致酚类物质含量的下降,特别是原儿茶酸、咖啡酸、绿原酸、原花青素B2、原花青素C3,在肠的弱碱性环境中稳定性较差,易发生降解或聚合[84],可能导致酚类含量降低。

    结肠是结合酚主要的释放部位,特别是膳食多酚,在结肠中释放的含量远高于在胃肠道消化中所释放的量[85]。人体肠道菌群(HGM)是由各种微生物组成的动态群落,参与人体物质代谢及循环。结合态多酚在HGM的作用下逐渐释放,水解和还原成可吸收利用的代谢产物[86],这一过程时结合态酚类物质发挥抗心脑血管疾病、抗肿瘤及抗病毒等多种生物活性的基础。在五味子蜂花粉中与细胞壁成分键合的多酚,在HGM的作用下氢键和疏水键发生断裂,在经过体外结肠发酵后生物利用度达到139.74%[87]。青稞膳食纤维体外结肠发酵30 h后多酚含量达到最高,远高于化学提取法,且抗氧化活性显著增强[88]。咖啡和面包中结合酚类化合物在胃肠消化下生物可给度约为11%~26%,而在经过肠道菌群发酵24 h后, 结合酚的生物可给性达到50%左右[89]。随着结肠发酵时间的增加,酚类物质表现出先增后减的趋势,这可能与HGM产生的微生物酶有关,微生物酶会使酚类物质去羟基、环裂变、化学键断裂,释放的酚类化合物被肠道菌群迅速利用或降解为其他代谢物,导致总酚含量的下降[90]

    结合态酚类物质结合形式多种多样,释放途径也各不相同。本文总结了结合态酚类物质在植物体生长、食品加工及人体消化中的释放过程及影响因素。结合酚的释放贯穿植物生长到食品加工再到人体消化利用全链条,其组成、结构、迁移转化、赋存特征等受压力、温度、酶等多种因素的制约和影响。结合态酚类在改善食品口感和风味上具有良好的效果,同时兼具抗氧化、抗癌、抑菌、降血糖、肝脏保护等多种生理活性,在人体健康和辅助药物治疗方面可发挥巨大贡献。研究阐明结合态酚类的释放规律,有助于提高其利用价值。目前对于结合态酚类释放的研究仅限于提取及模拟体外消化,且主要侧重于结合酚的释放,而在结合酚释放转化为游离酚过程中的损耗尚未引起重视。因此,阐明植物生长、食品加工和人体消化过程中结合态酚类释放规律,系统完整的研究结合酚释放过程,减少转化过程中损耗,提高其生物利用率,是未来研究的重点。此外可加强对植物体中结合酚形成及释放规律的研究,从源头增加结合酚含量,为后续提取及应用提供理论依据和技术支撑。

  • 图  1   酚类物质在植物体内的合成转换过程

    注:采用Adobe Illustrator 2022绘制;图2~图3同。

    Figure  1.   Synthesis and conversion process of phenolic substances in plants

    图  2   高压处理过程中结合态多酚的释放机制

    Figure  2.   Release mechanism of conjugated phenols during high pressure treatment

    图  3   结合态多酚在人体消化代谢过程中的释放

    Figure  3.   Release of bound polyphenols during human digestion and metabolism

  • [1] 刘昕皓, 魏粉菊, 王学顺, 等. 多酚类化合物的生物活性研究进展[J]. 中国医药工业杂志,2021,52(4):471−483. [LIU Xinhao, WEI Fenju, WANG Xueshun, et al. Progress on biological activities of polyphenols[J]. Chinese Journal of Pharmaceuticals,2021,52(4):471−483.]

    LIU Xinhao, WEI Fenju, WANG Xueshun, et al. Progress on biological activities of polyphenols[J]. Chinese Journal of Pharmaceuticals, 2021, 52(4): 471−483.

    [2] 颜才植, 叶发银, 赵国华. 食品中多酚形态的研究进展[J]. 食品科学,2015,36(15):249−254. [YAN Caizhi, YE Fayin, ZHAO Guohua. A review of studies on free and bound polyphenols in foods[J]. Food Science,2015,36(15):249−254.] doi: 10.7506/spkx1002-6630-201515046

    YAN Caizhi, YE Fayin, ZHAO Guohua. A review of studies on free and bound polyphenols in foods[J]. Food Science, 2015, 36(15): 249−254. doi: 10.7506/spkx1002-6630-201515046

    [3] 庄国栋, 汤丹, 陈永生. 结合态多酚改善肠道氧化应激与肠道屏障的研究进展[J]. 食品工业科技,2022,43(11):440−448. [ZHUANG Guodong, TANG Dan, CHEN Yongsheng. Research progress of bound polyphenols in improving intestinal oxidative stress and intestinal barrier[J]. Science and Technology of Food Industry,2022,43(11):440−448.]

    ZHUANG Guodong, TANG Dan, CHEN Yongsheng. Research progress of bound polyphenols in improving intestinal oxidative stress and intestinal barrier[J]. Science and Technology of Food Industry, 2022, 43(11): 440−448.

    [4]

    DZAH S C, DUAN Y, ZHANG H, et al. Latest developments in polyphenol recovery and purification from plant by-products:A review[J]. Trends in Food Science & Technology,2020,99:375−388.

    [5] 程安玮, 吴剑夫, 秦宏伟, 等. 4种豆类中多酚、类黄酮含量及抗氧化活性研究[J]. 中国粮油学报,2017,32(10):28−32. [CHENG Anwei, WU Jianfu, QIN Hongwei, et al. Content and antioxidant activities of polyphenols and flavonoids from 4 food beans legumes[J]. Journal of the Chinese Cereals and Oils Association,2017,32(10):28−32.] doi: 10.3969/j.issn.1003-0174.2017.10.005

    CHENG Anwei, WU Jianfu, QIN Hongwei, et al. Content and antioxidant activities of polyphenols and flavonoids from 4 food beans legumes[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(10): 28−32. doi: 10.3969/j.issn.1003-0174.2017.10.005

    [6] 武海丽, 杜锦娥, 路洋洋, 等. 沙棘叶多酚的分离纯化及其活性分析[J]. 山西大学学报(自然科学版),2023,46(1):236−243. [WU Haili, DU Jine, LU Yangyang, et al. Purification and activity analysis of polyphenols from Hippophae rhamnoides leaves[J]. Journal of Shanxi University (Natural Science Edition),2023,46(1):236−243.]

    WU Haili, DU Jine, LU Yangyang, et al. Purification and activity analysis of polyphenols from Hippophae rhamnoides leaves[J]. Journal of Shanxi University (Natural Science Edition), 2023, 46(1): 236−243.

    [7] 赵惠玲, 王浩毓, 王青, 等. 黑芝麻种皮结合态多酚通过线粒体内源性通路诱导HepG2细胞凋亡[J]. 营养学报, 2020, 42(4): 374−381. [ZHAO Huiling, WANG Haoyu, WANG Qing, et al. Blacck sesame seed-coat bound polyphenols induce apoptosis in HepG2 cells through mitochondrial endogenous pathway[J]. Journal of Nutrition,2020,42(4): 374−381.]

    ZHAO Huiling, WANG Haoyu, WANG Qing, et al. Blacck sesame seed-coat bound polyphenols induce apoptosis in HepG2 cells through mitochondrial endogenous pathway[J]. Journal of Nutrition, 2020, 42(4): 374−381.

    [8]

    MORA-ROCHIN S, GUTIÉRREZ-URIBE A J, SERNA-SALDIVAR O S, et al. Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking[J]. Journal of Cereal Science,2010,52(3):502−508. doi: 10.1016/j.jcs.2010.08.010

    [9] 陈艳艳. 葛根发酵工艺优化及解酒活性评价研究[D]. 长春:长春中医药大学, 2021. [CHEN Yanyan. Study on optimization of Pueraria lobata fermentation process and evaluation of antialcohol activity[D]. Changchun:Changchun University of Chinese Medicine, 2021.]

    CHEN Yanyan. Study on optimization of Pueraria lobata fermentation process and evaluation of antialcohol activity[D]. Changchun: Changchun University of Chinese Medicine, 2021.

    [10]

    FU X, CHEN H. Air–steam explosion enhancing the extraction efficiency of chlorogenic acid from leaves of Eucommia ulmoides Oliver[J]. Separation and Purification Technology,2015,146:317−325. doi: 10.1016/j.seppur.2015.03.054

    [11]

    IRAKLI N M, SAMANIDOU F V, BILIADERIS G C, et al. Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction[J]. Food Chemistry,2012,134(3):1624−1632. doi: 10.1016/j.foodchem.2012.03.046

    [12] 邢晨, 王俐娟, 王晓琴. 可食用植物不同形态酚类化合物研究进展[J]. 食品科学,2020,41(5):266−275. [XING Chen, WANG Lijuan, WANG Xiaoqin. Recent studies on free and bound phenolic compounds in edible plants:A review[J]. Food Science,2020,41(5):266−275.] doi: 10.7506/spkx1002-6630-20181212-154

    XING Chen, WANG Lijuan, WANG Xiaoqin. Recent studies on free and bound phenolic compounds in edible plants: A review[J]. Food Science, 2020, 41(5): 266−275. doi: 10.7506/spkx1002-6630-20181212-154

    [13] 徐灼辉. 荔枝干果肉膳食纤维—结合酚加合物结构表征及其润肠通便作用机制[D]. 广州:广州大学, 2020. [XU Zhuohui. Structural characterization of dietary fibre-bound phenol adduct from dried lychee pulp and its mechanism of moistening and laxative action[D]. Guangzhou:Guangzhou University, 2020.]

    XU Zhuohui. Structural characterization of dietary fibre-bound phenol adduct from dried lychee pulp and its mechanism of moistening and laxative action[D]. Guangzhou: Guangzhou University, 2020.

    [14] 綦菁华, 蔡同一, 庞美霞, 等. 不同种类的蛋白质及酚类对其聚合物浊度的影响[J]. 中国食品学报,2010,10(1):177−121. [QI Jinghua, CAI Tongyi, PANG Meixia, et al. Effect of different protein and phenols on the turbidity of the polymers[J]. Journal of Chinese Institute of Food Science and Technology,2010,10(1):177−121.] doi: 10.3969/j.issn.1009-7848.2010.01.018

    QI Jinghua, CAI Tongyi, PANG Meixia, et al. Effect of different protein and phenols on the turbidity of the polymers[J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(1): 177−121. doi: 10.3969/j.issn.1009-7848.2010.01.018

    [15] 任霞霞, 刘连亮, 张鑫, 等. 酚类化合物与食品大分子互作代谢研究进展[J]. 食品工业科技,2017,38(14):321−325. [REN Xiaxia, LIU Lianliang, ZHANG Xin. Advance in interactions of phenolic compounds with food macromolecules on digestion metabolism[J]. Science and Technology of Food Industry,2017,38(14):321−325.]

    REN Xiaxia, LIU Lianliang, ZHANG Xin. Advance in interactions of phenolic compounds with food macromolecules on digestion metabolism[J]. Science and Technology of Food Industry, 2017, 38(14): 321−325.

    [16]

    GONG K, CHEN L, LI X, et al. Effects of germination combined with extrusion on the nutritional composition, functional properties and polyphenol profile and related in vitro hypoglycemic effect of whole grain corn[J]. Journal of Cereal Science,2018,83:1−8. doi: 10.1016/j.jcs.2018.07.002

    [17] 王军, 王忠合, 黄海茵, 等. 加工对全燕麦中多酚含量及生物可给率的影响[J]. 食品工业,2016,37(3):31−34. [WANG Jun, WANG Zhonghe, HUANG Haiyin, et al. Effect of processing on polyphenol content and in vitro bioaccessibility in whole-grain oats[J]. The Food Industry,2016,37(3):31−34.]

    WANG Jun, WANG Zhonghe, HUANG Haiyin, et al. Effect of processing on polyphenol content and in vitro bioaccessibility in whole-grain oats[J]. The Food Industry, 2016, 37(3): 31−34.

    [18]

    GHADA A, C C P, JOSEPH B, et al. Lignin degradation by microorganisms:A review[J]. Biotechnology Progress, 2021:e3226.

    [19]

    GAN R, LUI W, WU K, et al. Bioactive compounds and bioactivities of germinated edible seeds and sprouts:An updated review[J]. Trends in Food Science & Technology,2017,59:1−14.

    [20]

    VAN P H, TOMOKO M, SYOTA Y, et al. Effects of germination on nutritional composition of waxy wheat[J]. Journal of the Science of Food and Agriculture,2012,92(3):667−672. doi: 10.1002/jsfa.4628

    [21] 王玲平, 周生茂, 戴丹丽, 等. 植物酚类物质研究进展[J]. 浙江农业学报,2010,22(5):696−701. [WANG Lingping, ZHOU Shengmao, DAI Danli, et al. Progress in plant phenolic compounds[J]. Acta Agriculturae Zhejiangensis,2010,22(5):696−701.] doi: 10.3969/j.issn.1004-1524.2010.05.030

    WANG Lingping, ZHOU Shengmao, DAI Danli, et al. Progress in plant phenolic compounds[J]. Acta Agriculturae Zhejiangensis, 2010, 22(5): 696−701. doi: 10.3969/j.issn.1004-1524.2010.05.030

    [22] 李艳燕, 赵彩桐, 齐阳阳, 等. 大豆主茎木质素积累规律分析[J]. 华北农学报,2022,37(3):77−85. [LI Yanyan, ZHAO Caitong, QI Yangyang, et al. Analysis on the accumulation of lignin in the stem of soybean[J]. Acta Agriculturae Boreali-Sinica,2022,37(3):77−85.] doi: 10.7668/hbnxb.20192719

    LI Yanyan, ZHAO Caitong, QI Yangyang, et al. Analysis on the accumulation of lignin in the stem of soybean[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(3): 77−85. doi: 10.7668/hbnxb.20192719

    [23] 王江昱, 田淑婷, 张涵, 等. 单子叶观赏植物花青素苷呈色机制研究进展[J]. 扬州大学学报(农业与生命科学版),2022,43(5):101−114. [WANG Jiangyu, TIAN Shuting, ZHANG Han, et al. Coloring mechanism of anthocyanin in monocot ornamental plants[J]. Journal of Yangzhou University (Agricultural and Life Science Edition),2022,43(5):101−114.]

    WANG Jiangyu, TIAN Shuting, ZHANG Han, et al. Coloring mechanism of anthocyanin in monocot ornamental plants[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(5): 101−114.

    [24] 乜兰春. 苹果果实酚类和挥发性物质含量特征及其与果实品质关系的研究[D]. 保定:河北农业大学, 2004. [MIE Lanchun. Metabolic characteristics of phenolic compounds and volatiles to fruits quality in apple[D]. Baoding:Hebei Agricultural University, 2004.]

    MIE Lanchun. Metabolic characteristics of phenolic compounds and volatiles to fruits quality in apple[D]. Baoding: Hebei Agricultural University, 2004.

    [25] 惠羽, 杨雪梅, 杨筱慧. 向川安瘿蜂虫瘿和无虫瘿枝条组织结构的比较[J]. 生命科学研究,2022,26(4):329−333. [HUI Yu, YANG Xuemei, YANG Xiaohui, et al. Comparison of tissue structure between and ricus mukaigawae galls and non-galled branches[J]. Life Science Research,2022,26(4):329−333.]

    HUI Yu, YANG Xuemei, YANG Xiaohui, et al. Comparison of tissue structure between and ricus mukaigawae galls and non-galled branches[J]. Life Science Research, 2022, 26(4): 329−333.

    [26]

    ZHAO Yuwen, WANG Chukun, HUANG Xiaoyu, et al. Anthocyanin stability and degradation in plants[J]. Plant Signaling & Behavior,2021,16(12):1987767.

    [27]

    NAVROT N, ROUHIER N, GELHAYE E, et al. Reactive oxygen species generation and antioxidant systems in plant mitochondria[J]. Physiologia Plantarum,2007,129(1):185−195. doi: 10.1111/j.1399-3054.2006.00777.x

    [28] 周正, 白玲, 余燕, 等. 持续水分胁迫对丹参茎叶酚酸含量及其抗氧化活性的影响[J]. 西北植物学报,2022,42(3):435−443. [ZHOU Zheng, BAI Ling, YU Yan, et al. Effect of continuous water stresson phenolic acids contentand antioxidant activityin stemsand leaves of Salvia miltiorrhiza Bge[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(3):435−443.] doi: 10.7606/j.issn.1000-4025.2022.03.0435

    ZHOU Zheng, BAI Ling, YU Yan, et al. Effect of continuous water stresson phenolic acids contentand antioxidant activityin stemsand leaves of Salvia miltiorrhiza Bge[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(3): 435−443. doi: 10.7606/j.issn.1000-4025.2022.03.0435

    [29] 韩燕, 王丹林, 郭庆学, 等. 环境胁迫下食源植物的适口性和营养成分变化研究进展[J]. 家畜生态学报,2018,39(4):1−5. [HAN Yan, WANG Danlin, GUO Qingxue, et al. Advances in palatability and nutrient composition of food plants under environmental stress[J]. Journal of Domestic Animal Ecology,2018,39(4):1−5.] doi: 10.3969/j.issn.1673-1182.2018.04.001

    HAN Yan, WANG Danlin, GUO Qingxue, et al. Advances in palatability and nutrient composition of food plants under environmental stress[J]. Journal of Domestic Animal Ecology, 2018, 39(4): 1−5. doi: 10.3969/j.issn.1673-1182.2018.04.001

    [30] 杨孟可, 刘赛, 乔海莉, 等. 致瘿昆虫对寄主植物生理和代谢的影响[J]. 昆虫学报,2021,64(4):536−548. [YANG Mengke, LIU Sai, QIAO Haili, et al. Influences of gall-inducing insects on the physiology and metabolism of host plants[J]. Acta Entomologica Sinica,2021,64(4):536−548.]

    YANG Mengke, LIU Sai, QIAO Haili, et al. Influences of gall-inducing insects on the physiology and metabolism of host plants[J]. Acta Entomologica Sinica, 2021, 64(4): 536−548.

    [31] 杜晓仪, 杨继国, 徐玉娟, 等. 不同益生菌对三华李发酵果汁品质及其体外消化特性的影响[J]. 食品工业科技,2024,45(2):143−151. [DU Xiaoyi, YANG Jiguo, XU Yujuan, et al. Effects of different probiotics on the quality and in vitro digestion characteristics of fermented sanhua plum juice[J]. Science and Technology of Food Industry,2024,45(2):143−151.]

    DU Xiaoyi, YANG Jiguo, XU Yujuan, et al. Effects of different probiotics on the quality and in vitro digestion characteristics of fermented sanhua plum juice[J]. Science and Technology of Food Industry, 2024, 45(2): 143−151.

    [32]

    MANTZOURANI I, KAZAKOS S, TERPOU A, et al. Potential of the probiotic lactobacillus plantarum ATCC 14917 strain to produce functional fermented pomegranate juice[J]. Foods,2018,8(1):4. doi: 10.3390/foods8010004

    [33]

    MINYI L, JUNWEI Q, BIN Z, et al. Improving acidity and flavors of citrus juice as well as its antioxidant activity by cofermentation with deacidification bacteria combination[J]. Food Bioscience, 2023, 53. doi: 10.1016/j.fbio.2023.102592.

    [34] 赵沁雨, 兰天, 袁取予, 等. 植物乳杆菌发酵对果汁品质的影响研究概述[J]. 食品与发酵工业,2021,47(16):300−307. [ZHAO Qinyu, LAN Tian, YUAN Quyu, et al. Research progress on the effect of Lactobacillus plantarum fermentation on juice quality[J]. Food and Fermentation Industries,2021,47(16):300−307.]

    ZHAO Qinyu, LAN Tian, YUAN Quyu, et al. Research progress on the effect of Lactobacillus plantarum fermentation on juice quality[J]. Food and Fermentation Industries, 2021, 47(16): 300−307.

    [35] 吴德超, 赵正权, 李运芝, 等. 黑曲霉转化中药化学成分研究进展[J]. 中国药学杂志,2022,57(14):1153−1160. [WU Dechao, ZHAO Zhenquan, LI Yunzhi, et al. Research progress on the chemical constituents of traditional chinese medicine transformed by aspergillus niger[J]. Chinese Pharmaceutical Journal,2022,57(14):1153−1160.] doi: 10.11669/cpj.2022.14.003

    WU Dechao, ZHAO Zhenquan, LI Yunzhi, et al. Research progress on the chemical constituents of traditional chinese medicine transformed by aspergillus niger[J]. Chinese Pharmaceutical Journal, 2022, 57(14): 1153−1160. doi: 10.11669/cpj.2022.14.003

    [36]

    DULF V F, VODNAR C D, SOCACIU C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products[J]. Food Chemistry,2016,209:27−36. doi: 10.1016/j.foodchem.2016.04.016

    [37] 阎欲晓, 粟桂娇, 何勇强. 黑曲霉固态发酵对甘蔗叶酚类物质释放及抗氧化活性的影响[J]. 食品科学,2020,41(16):110−116. [YAN Yuxiao, SU Guijiao, HE Yongqiang, et al. Effects of solid-state fermentation withAspergillus niger on phenolics release and antioxidant activity of sugarcane leaves[J]. Food Science,2020,41(16):110−116.] doi: 10.7506/spkx1002-6630-20190703-033

    YAN Yuxiao, SU Guijiao, HE Yongqiang, et al. Effects of solid-state fermentation with Aspergillus niger on phenolics release and antioxidant activity of sugarcane leaves[J]. Food Science, 2020, 41(16): 110−116. doi: 10.7506/spkx1002-6630-20190703-033

    [38] 崔亚鹏, 许锐, 陈泽元, 等. 酿酒酵母和植物乳杆菌混合发酵对金银花浸提液多酚物质的影响[J]. 食品与发酵工业,2022,48(5):95−99. [CUI Yapeng, XU Rui, CHEN Zeyuan, et al. Effects of mixed fermentation of Saccharomyces cervisiae and lactobacillus plantarum on the polyphenol of honeysuckle extract[J]. Food and Fermentation Industries,2022,48(5):95−99.]

    CUI Yapeng, XU Rui, CHEN Zeyuan, et al. Effects of mixed fermentation of Saccharomyces cervisiae and lactobacillus plantarum on the polyphenol of honeysuckle extract[J]. Food and Fermentation Industries, 2022, 48(5): 95−99.

    [39]

    JIN X, CHEN W, CHEN H, et al. Combination of Lactobacillus plantarum and Saccharomyces cerevisiae DV10 as starter culture to produce mango slurry:Microbiological, chemical parameters and antioxidant activity[J]. Molecules,2019,24(23):43−49.

    [40] 周英彪, 邹晓桐, 刘骏, 等. 荔枝酵素的发酵工艺优化及其酚类化合物的转化分析[J]. 生物技术,2021,31(2):176−182,197. [ZHOU Yingbiao, ZOU Xiaotong, LIU Jun, et al. Optimization of fermentation process for litchi ferment and biotransformation analysis of its phenolic compounds[J]. Biotechnology,2021,31(2):176−182,197.]

    ZHOU Yingbiao, ZOU Xiaotong, LIU Jun, et al. Optimization of fermentation process for litchi ferment and biotransformation analysis of its phenolic compounds[J]. Biotechnology, 2021, 31(2): 176−182,197.

    [41]

    RUIFEN Z, DONGXIAO S, FANGLI H, et al. Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts[J]. Bioscience, Biotechnology, and Biochemistry,2017,81(8):1576−1585. doi: 10.1080/09168451.2017.1321953

    [42] 王鸥, 周洁心, 蔡圣宝, 等. 超高压处理对蓝莓酚类物质生物可获得率及抗氧化性的影响[J]. 中国食物与营养,2019,25(11):30−35. [WANG Ou, ZHOU Jiexin, CAI Shengbao, et al. Effect of ultra-high pressure treatment on bioaccessibility and antioxidant activity of phenolics in blueberries[J]. Food and Nutrition in China,2019,25(11):30−35.]

    WANG Ou, ZHOU Jiexin, CAI Shengbao, et al. Effect of ultra-high pressure treatment on bioaccessibility and antioxidant activity of phenolics in blueberries[J]. Food and Nutrition in China, 2019, 25(11): 30−35.

    [43] 董盼豪. 桑葚酚类物质研究及全组分果汁研发[D]. 南昌:南昌大学, 2021. [DONG Panhao. Study on phenolic compounds of mulberry fruit and whole-component juice development[D]. Nanchang:Nanchang University, 2021.]

    DONG Panhao. Study on phenolic compounds of mulberry fruit and whole-component juice development[D]. Nanchang: Nanchang University, 2021.

    [44]

    YU Chengtao, ZHU Ling, ZHANG Hao, et al. Effect of cooking pressure on phenolic compounds, gamma-aminobutyric acid, antioxidant activity and volatile compounds of brown rice[J]. Journal of Cereal Science,2020(prepublish):103−127.

    [45] 陈林林, 杨茜瑶, 王玲, 等. 加工技术对食品中酚酸含量及抗氧化活性影响研究进展[J]. 中国调味品,2023,48(2):205−212. [CHEN Linlin, YANG Xiyao, WANG Ling, et al. Research progress on the effect of processing technology on phenolic acid content and antioxidant activity in food[J]. China Condiment,2023,48(2):205−212.] doi: 10.3969/j.issn.1000-9973.2023.02.037

    CHEN Linlin, YANG Xiyao, WANG Ling, et al. Research progress on the effect of processing technology on phenolic acid content and antioxidant activity in food[J]. China Condiment, 2023, 48(2): 205−212. doi: 10.3969/j.issn.1000-9973.2023.02.037

    [46]

    LI Weizhou, ZHANG Xiaoli, HE Xiaoqin, et al. Effects of steam explosion pretreatment on the composition and biological activities of tartary buckwheat bran phenolics[J]. Food & Function,2020,11(5):4648−4658.

    [47]

    SUSANNE B, H L D, AFAF K. Effects of commercial processing on levels of antioxidants in oats (Avena sativa L.)[J]. Journal of Agricultural and Food Chemistry,2002,50(7):1890−1896. doi: 10.1021/jf011222z

    [48]

    CHEN Y, MA Y, DONG L, et al. Extrusion and fungal fermentation change the profile and antioxidant activity of free and bound phenolics in rice bran together with the phenolic bioaccessibility[J]. LWT,2019,115(C):108461.

    [49] 万良钰. 物理加工对薏仁米多酚抗氧化活性的影响及品质分析[D]. 贵阳:贵州大学, 2018. [WAN Liangyu. Effect of physical processing on antioxidant activity of Coix seed polyphenols and quality analysis[D]. Guiyang:Guizhou University, 2018.]

    WAN Liangyu. Effect of physical processing on antioxidant activity of Coix seed polyphenols and quality analysis[D]. Guiyang: Guizhou University, 2018.

    [50]

    LEONARD William, ZHANG Pangzhen, YING Danyang, et al. Effect of extrusion technology on hempseed (Cannabis sativa L.) oil cake:Polyphenol profile and biological activities[J]. Journal of Food Science,2021,86(7):3159−3175. doi: 10.1111/1750-3841.15813

    [51] 闫苍, 孙雅男, 李书国. 藜麦中酚类物质的种类、生物活性及其加工利用[J]. 粮食加工,2022,47(2):30−36. [YAN Cang, SUN Yanan, LI Shuguo, et al. Review on the varieties phenolic compounds from quinoa and its bioactivity, utilization[J]. Grain Processing,2022,47(2):30−36.] doi: 10.3969/j.issn.1007-6395.2022.2.xblykj202202010

    YAN Cang, SUN Yanan, LI Shuguo, et al. Review on the varieties phenolic compounds from quinoa and its bioactivity, utilization[J]. Grain Processing, 2022, 47(2): 30−36. doi: 10.3969/j.issn.1007-6395.2022.2.xblykj202202010

    [52] 刘加艳, 任宇鹏, 陈莲. 常规烹饪对蔬菜中总酚含量的影响[J]. 现代食品,2017(20):114−116. [LIU Jiayan, REN Yupeng, CHEN Lian, et al. Effect of conventional cooking on total phenols in vegetables[J]. Modern Food,2017(20):114−116.]

    LIU Jiayan, REN Yupeng, CHEN Lian, et al. Effect of conventional cooking on total phenols in vegetables[J]. Modern Food, 2017(20): 114−116.

    [53] 俞燕芳, 石旭平, 黄金枝, 等. 烹饪方式对桑叶生物碱类和酚类物质的影响[J]. 食品科学,2019,40(14):243−248. [YU Yanfang, SHI Xuping, HUANG Jinzhi, et al. Effect of cooking methods on the contents of alkaloids and phenolics in mulberry (Morus alba L.) leaves[J]. Food Science,2019,40(14):243−248.] doi: 10.7506/spkx1002-6630-20180824-261

    YU Yanfang, SHI Xuping, HUANG Jinzhi, et al. Effect of cooking methods on the contents of alkaloids and phenolics in mulberry (Morus alba L.) leaves[J]. Food Science, 2019, 40(14): 243−248. doi: 10.7506/spkx1002-6630-20180824-261

    [54]

    RAWSON A, HOSSAIN B M, PATRAS A, et al. Effect of boiling and roasting on the polyacetylene and polyphenol content of fennel (Foeniculum vulgare) bulb[J]. Food Research International,2013,50(2):513−518. doi: 10.1016/j.foodres.2011.01.009

    [55]

    KORUS A. Effect of preliminary processing, method of drying and storage temperature on the level of antioxidants in kale (Brassica oleracea L. var. acephala) leaves[J]. LWT-Food Science and Technology,2011,44(8):1711−1716. doi: 10.1016/j.lwt.2011.03.014

    [56] 尹培, 陈健初, 叶兴乾, 等. 油炸方式对紫甘蓝在消化过程中抗氧化成分及活性的影响[J]. 食品与发酵工业,2019,45(12):127−132. [YIN Pei, CHEN Jianchu, YE Xinggan, et al. Effects of frying on antioxidative compounds and activities in red cabbages during digestion[J]. Food and Fermentation Industries,2019,45(12):127−132.]

    YIN Pei, CHEN Jianchu, YE Xinggan, et al. Effects of frying on antioxidative compounds and activities in red cabbages during digestion[J]. Food and Fermentation Industries, 2019, 45(12): 127−132.

    [57] 杨洋, 范蓓, 李杨, 等. 不同加工方式对青稞中酚类物质的影响[J]. 食品工业科技,2023,44(1):11−18. [YANG Yang, FAN Bei, LI Yang, et al. Influence of different processing methods on phenols in hulless barley[J]. Science and Technology of Food Industry,2023,44(1):11−18.]

    YANG Yang, FAN Bei, LI Yang, et al. Influence of different processing methods on phenols in hulless barley[J]. Science and Technology of Food Industry, 2023, 44(1): 11−18.

    [58] 赖惠敏, 王世连, 阮征, 等. 热加工方式对火麻仁风味与品质的影响[J]. 中国食品学报,2022,22(2):200−212. [LAI Huimin, WANG Shilian, RUAN Zheng, et al. Effects of thermal processing on the flavor and quality of hemp seed[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(2):200−212.]

    LAI Huimin, WANG Shilian, RUAN Zheng, et al. Effects of thermal processing on the flavor and quality of hemp seed[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(2): 200−212.

    [59] 胡晶. 炒制对大麦芽蛋白—多酚复合物抗氧化活性、抗增殖活性的影响[D]. 广州:暨南大学, 2020. [HU Jing. Effect of frying on antioxidant activity and antiproliferation activity of protein-phenolic complex from barley malt[J]. Guangzhou:Jinan University, 2020.]

    HU Jing. Effect of frying on antioxidant activity and antiproliferation activity of protein-phenolic complex from barley malt[J]. Guangzhou: Jinan University, 2020.

    [60] 高艳艳, 祝琳琳, 李想, 等. 酸水解和酶水解在多糖研究中的应用进展[J]. 中华中医药学刊,2022,40(5):142−146. [GAO Yanyan, ZHU Linlin, LI Xiang, et al. Application progress of acid hydrolysis and enzyme hydrolysis in study of polysaccharides[J]. Chinese Archives of Traditional Chinese Medicine,2022,40(5):142−146.]

    GAO Yanyan, ZHU Linlin, LI Xiang, et al. Application progress of acid hydrolysis and enzyme hydrolysis in study of polysaccharides[J]. Chinese Archives of Traditional Chinese Medicine, 2022, 40(5): 142−146.

    [61] 冯悦, 冯颖. 酸水解法提取甘薯结合酚工艺优化[J]. 食品工业科技,2019,40(2):183−188. [FENG Yue, FENG Yin. Optimization of extraction process of bound phenol from sweet potato by acidic hydrolysis method[J]. Science and Technology of Food Industry,2019,40(2):183−188.]

    FENG Yue, FENG Yin. Optimization of extraction process of bound phenol from sweet potato by acidic hydrolysis method[J]. Science and Technology of Food Industry, 2019, 40(2): 183−188.

    [62] 徐菲, 杨希娟, 党斌, 等. 酸法提取青稞麸皮结合酚工艺优化[J]. 农业工程学报,2016,32(17):301−308. [XU Fei, YANG Xijuan, DANG Bin, et al. Optimization of combined phenols extraction with sulfuric acid from hulless barley bran[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(17):301−308.] doi: 10.11975/j.issn.1002-6819.2016.17.040

    XU Fei, YANG Xijuan, DANG Bin, et al. Optimization of combined phenols extraction with sulfuric acid from hulless barley bran[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 301−308. doi: 10.11975/j.issn.1002-6819.2016.17.040

    [63]

    KIM K, TSAO R, YANG R, et al. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions[J]. Food Chemistry,2005,95(3):466−473.

    [64]

    TANYAWAN S, KRITTAPORN W, KANOKPHAT A, et al. Protein glycation inhibitory activity and antioxidant capacity of clove extract[J]. Journal of Food Science and Technology,2015,52(6):3843−3850.

    [65] 彭瀚. 黑豆不同形态多酚的组成、消化特性及其抗氧化活性的研究[D]. 南昌:南昌大学, 2017. [PENG Han. Study on the extractable free and unextractable buund phenolic composition of black soybean, and its bioaccessability and antioxidant activities[D]. Nanchang:Nanchang University, 2017.]

    PENG Han. Study on the extractable free and unextractable buund phenolic composition of black soybean, and its bioaccessability and antioxidant activities[D]. Nanchang: Nanchang University, 2017.

    [66] 刘甜甜, 吴晓娟, 吴伟. 多酚-膳食纤维相互作用及其影响多酚生物利用率研究进展[J]. 中国粮油学报,2022,37(7):179−187. [LIU Tiantian, WU Xiaojuan, WU Wei. Research progress of polyphenol - dietary fiber interaction and its influence on the bioavailability of polyphenols[J]. Journal of the Chinese Cereals and Oils Association,2022,37(7):179−187.] doi: 10.3969/j.issn.1003-0174.2022.07.026

    LIU Tiantian, WU Xiaojuan, WU Wei. Research progress of polyphenol - dietary fiber interaction and its influence on the bioavailability of polyphenols[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(7): 179−187. doi: 10.3969/j.issn.1003-0174.2022.07.026

    [67] 冯舒涵, 易建勇, 毕金峰, 等. 苹果酚类物质与膳食纤维的结合作用[J]. 中国食品学报,2021,21(12):335−346. [FENG Shuhan, YI Jianyong, BI Jinfeng, et al. Combination effect of apple phenolic compounds and dietary fibers[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(12):335−346.]

    FENG Shuhan, YI Jianyong, BI Jinfeng, et al. Combination effect of apple phenolic compounds and dietary fibers[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 335−346.

    [68]

    JAKOBEK L, MATIĆ P. Non-covalent dietary fiber - polyphenol interactions and their influence on polyphenol bioaccessibility[J]. Trends in Food Science & Technology,2018,83:235−247.

    [69] 王小艳, 向宇楠, 冯慧, 等. 酶法提取余甘子总多酚的研究[J]. 中国民族民间医药,2020,29(3):36−40. [WANG Xiaoyan, XIANG Yunan, FENG Hui, et al. Study on enzymatic extraction of total polyphenols from Phyllanthus emblica L doi: 10.3969/j.issn.1007-8517.2020.3.zgmzmjyyzz202003010

    J]. Chinese Journal of Ethnomedicine and Ethnopharmacy,2020,29(3):36−40. doi: 10.3969/j.issn.1007-8517.2020.3.zgmzmjyyzz202003010

    [70]

    MÄKILÄ L, LAAKSONEN O, KALLIO H, et al. Effect of processing technologies and storage conditions on stability of black currant juices with special focus on phenolic compounds and sensory properties[J]. Food Chemistry,2017,221:422−430. doi: 10.1016/j.foodchem.2016.10.079

    [71]

    GEMA B, EVA-MARIA B, SHARON W, et al. The colonic metabolites dihydrocaffeic acid and dihydroferulic acid are more effective inhibitors ofin vitro platelet activation than their phenolic precursors[J]. Food & Function,2017,8(3):1333−1342.

    [72]

    PUTNIK P, GABRIĆ D, ROOHINEJAD S, et al. An overview of organosulfur compounds from Allium spp:From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties[J]. Food Chemistry, 2018, 276:680-691.

    [73]

    LIU H R. Whole grain phytochemicals and health[J]. Journal of Cereal Science,2007,46(3):207−219. doi: 10.1016/j.jcs.2007.06.010

    [74] 张露, 杨斯涵, 涂宗财, 等. 体外模拟消化对鸡爪槭叶多酚稳定性及其自由基清除和α-葡萄糖苷酶抑制活性的影响[J]. 天然产物研究与开发,2018,30(3):354−361. [ZHANG Lu, LIN Sihan, TU Zongcai, et al. Influence of in vitro simulated digestion on stability and free radical scavenging and ɑ-glucosidase inhibitory activities of acer palmatum leaves polyphenols[J]. Natural Product Research and Development,2018,30(3):354−361.]

    ZHANG Lu, LIN Sihan, TU Zongcai, et al. Influence of in vitro simulated digestion on stability and free radical scavenging and ɑ-glucosidase inhibitory activities of acer palmatum leaves polyphenols[J]. Natural Product Research and Development, 2018, 30(3): 354−361.

    [75] 解王晶. 百合鳞茎酚类物质抗氧化及调节脂质代谢作用研究[D]. 扬州:扬州大学, 2020. [XIE Wangjing. Study on antioxidation and lipid metabolism regulation of polyohenols in lily bulbs[D]. Yangzhou:Yangzhou University, 2020.]

    XIE Wangjing. Study on antioxidation and lipid metabolism regulation of polyohenols in lily bulbs[D]. Yangzhou: Yangzhou University, 2020.

    [76] 陈月. 体外模拟消化对苦荞酚类化合物生物利用率的影响[D]. 贵阳:贵州大学, 2021. [CHEN Yue. Effect of simulated digestion on bioavailability of Tartary buckwheat phenolic compounds in vitro[D]. Guiyang:Guizhou University, 2021.]

    CHEN Yue. Effect of simulated digestion on bioavailability of Tartary buckwheat phenolic compounds in vitro[D]. Guiyang: Guizhou University, 2021.

    [77] 师聪, 陈学红, 李茹, 等. 体外模拟胃肠消化对覆盆子抗氧化成分及其活性的影响[J]. 中国食品学报,2023,23(2):83−90. [SHI Cong, CHEN Xuehong, LI Ru, et al. Effects of in vitro simulated gastrointestinal digestion on antioxidant components and activity of raspberry[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(2):83−90.]

    SHI Cong, CHEN Xuehong, LI Ru, et al. Effects of in vitro simulated gastrointestinal digestion on antioxidant components and activity of raspberry[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(2): 83−90.

    [78] 李斌, 张继月, 耿丽娟, 等. 软枣猕猴桃在体外模拟消化过程中酚类物质及抗氧化活性的变化规律[J]. 食品科学,2021,42(23):196−205. [LI Bin, ZHANG Jiyue, GENG Lijuan, et al. Changes of phenolics and antioxidant activities of kiwiberry (Actinidia arguta) fruit during in vitro simulated digestion[J]. Food Science,2021,42(23):196−205.] doi: 10.7506/spkx1002-6630-20210109-094

    LI Bin, ZHANG Jiyue, GENG Lijuan, et al. Changes of phenolics and antioxidant activities of kiwiberry (Actinidia arguta) fruit during in vitro simulated digestion[J]. Food Science, 2021, 42(23): 196−205. doi: 10.7506/spkx1002-6630-20210109-094

    [79] 谢乐怡, 张兵, 李红艳. 绿茶、橘皮、大豆中酚类物质体外消化前后稳定性及抗氧化活性的研究[J]. 食品工业科技,2022,43(15):374−382. [XIE Leyi, ZHANG Bing, LI Hongyan. Study on the stability and antioxidant activity of phenolics in green Tea, citrus peel and soybean before and after in vitro digestion[J]. Science and Technology of Food Industry,2022,43(15):374−382.]

    XIE Leyi, ZHANG Bing, LI Hongyan. Study on the stability and antioxidant activity of phenolics in green Tea, citrus peel and soybean before and after in vitro digestion[J]. Science and Technology of Food Industry, 2022, 43(15): 374−382.

    [80] 满朝坤, 白琼, 姜忠丽, 等. 不同颜色糙米酚类物质消化特性及差异性分析[J]. 粮食与油脂,2022,35(5):70−75. [MAN Chaokun, BAI Qiong, JIANG Zhongli, et al. Analysis on the digestive characteristics and differences of phenolic substances in brown rice with different colors[J]. Cereals & Oils,2022,35(5):70−75.] doi: 10.3969/j.issn.1008-9578.2022.05.017

    MAN Chaokun, BAI Qiong, JIANG Zhongli, et al. Analysis on the digestive characteristics and differences of phenolic substances in brown rice with different colors[J]. Cereals & Oils, 2022, 35(5): 70−75. doi: 10.3969/j.issn.1008-9578.2022.05.017

    [81] 施宇萌, 梁富强, 郭锐林, 等. 米糠不溶性膳食纤维结合酚结构特性及其对肠道菌群的影响[J]. 食品工业科技,2023,44(10):1−10. [SHI Yumeng, LIANG Fuqiang, GUO Ruilin, et al. Structural characteristics of rice bran insoluble dietary fiber bound phenolic and its effect on gut microbiota[J]. Science and Technology of Food Industry,2023,44(10):1−10.]

    SHI Yumeng, LIANG Fuqiang, GUO Ruilin, et al. Structural characteristics of rice bran insoluble dietary fiber bound phenolic and its effect on gut microbiota[J]. Science and Technology of Food Industry, 2023, 44(10): 1−10.

    [82]

    ZHANG Xinwen, ZHANG Mingwei, DONG Lihong, et al. Phytochemical profile, bioactivity, and prebiotic potential of bound phenolics released from rice bran dietary fiber duringin vitro gastrointestinal digestion and colonic fermentation[J]. Journal of Agricultural and Food Chemistry,2019,67(46):12796−12805. doi: 10.1021/acs.jafc.9b06477

    [83]

    LUIS J O, ALICIA M, JAVIER F R, et al. In vitro gastrointestinal digestion and colonic catabolism of mango (Mangifera indica L.) pulp polyphenols[J]. Foods,2020,9(12):1836.

    [84] 李滨旭. 黑莓酚类物质抗氧化活性及体外模拟消化研究[D]. 沈阳:沈阳农业大学, 2020. [LI Binxu. Study on antioxidant activity of blackberry phenolic compounds and in vitro simulated digestion[D]. Shenyang:Shenyang Agricultural University, 2020.]

    LI Binxu. Study on antioxidant activity of blackberry phenolic compounds and in vitro simulated digestion[D]. Shenyang: Shenyang Agricultural University, 2020.

    [85]

    SU Juan, FU Xiong, HUANG Qiang, et al. Phytochemical profile, bioactivity and prebiotic potential of bound polyphenols released from Rosa roxburghii fruit pomace dietary fiber during in vitro digestion and fermentation[J]. Food & Function,2022,13(17):8880−8891.

    [86]

    WANG M, WICHIENCHOT S, HE X, et al. In vitro colonic fermentation of dietary fibers:Fermentation rate, short-chain fatty acid production and changes in microbiota[J]. Trends in Food Science & Technology,2019,88:1−9.

    [87] 王小超, 程妮, 段倩倩, 等. 体外消化和结肠发酵对蜂花粉酚类化合物及抗氧化活性的影响[J]. 食品与发酵工业,2022,48(6):141−146. [WANG Xiaochao, CHENG Ni, DUAN Qianqian, et al. Effects of digestion and colonic fermentation in vitro on phenolic compounds and antioxidant activities of bee pollen[J]. Food and Fermentation Industries,2022,48(6):141−146.]

    WANG Xiaochao, CHENG Ni, DUAN Qianqian, et al. Effects of digestion and colonic fermentation in vitro on phenolic compounds and antioxidant activities of bee pollen[J]. Food and Fermentation Industries, 2022, 48(6): 141−146.

    [88] 邹青飞, 杨士花, 李永强, 等. 体外结肠发酵对青稞膳食纤维中酚类化合物的含量及抗氧化活性的影响[J]. 食品科学,2020,41(2):94−100. [ZOU Qingfei, YANG Shihua, LI Yongqiang, et al. Effects of in vitro colonic fermentation on phenolic content and antioxidant activity in dietary fiber from highland barley[J]. Food Science,2020,41(2):94−100.] doi: 10.7506/spkx1002-6630-20181207-098

    ZOU Qingfei, YANG Shihua, LI Yongqiang, et al. Effects of in vitro colonic fermentation on phenolic content and antioxidant activity in dietary fiber from highland barley[J]. Food Science, 2020, 41(2): 94−100. doi: 10.7506/spkx1002-6630-20181207-098

    [89]

    GENILTON A, ARAÚJO L L, PILOTTO C M R D, et al. Bioaccessibility and gut metabolism of free and melanoidin-bound phenolic compounds from coffee and bread[J]. Frontiers in Nutrition,2021,8:708928. doi: 10.3389/fnut.2021.708928

    [90]

    ZHU Liuying, LI Wenting, DENG Zeyuan, et al. The composition and antioxidant activity of bound phenolics in three legumes, and their metabolism and bioaccessibility of gastrointestinal tract[J]. Foods,2020,9(12):1816.

  • 期刊类型引用(15)

    1. 郭松,肖善芳,江凯欣,梁湘兰. 暖骨风多酚的提取工艺优化及其抗氧化和抑菌性的初步研究. 饲料工业. 2024(04): 113-120 . 百度学术
    2. 安小雯,李帅,王玲玲,孙沛,吴澎. 我国药食同源物质保健食品的发展现状及对策研究. 中国果菜. 2024(05): 15-19+72 . 百度学术
    3. 罗维巍,吕琳琳,孙丽阳,李铁纯,郭俊生,刁全平. 黑涩石楠总多酚超声辅助提取工艺优化、抗氧化活性评价及单体酚分析. 中国酿造. 2024(05): 199-205 . 百度学术
    4. 侯文翼,段振华,易弋. 微波干燥对月柿果片不同区域酚类含量及色泽的影响. 现代食品科技. 2024(10): 259-269 . 百度学术
    5. 刘庆双,杨晓宽. 一种新型板栗醋多酚的提取纯化及其减肥降脂作用. 食品与发酵工业. 2024(24): 212-220 . 百度学术
    6. 李琼. 沙棘复合果汁饮料研制及HACCP质量控制研究. 食品工业. 2023(02): 41-45 . 百度学术
    7. 刘勇,张彩虹,谢普军,邓叶俊,黄立新. 皂角刺化学组成及药理活性应用研究进展. 生物质化学工程. 2023(02): 89-98 . 百度学术
    8. 刘桢,吕玉秀,张璟雯,谢东,王琪,雷悦,赵平,朱绍志,杨晓琴. 雀嘴茶中三大酚类成分的抗氧化活性和酪氨酸酶抑制活性分析. 食品工业科技. 2023(08): 405-411 . 本站查看
    9. 华玮,熊丽娜,张永鑫,孙鹏,岳龙,付鸿博. 草莓多酚提取工艺优化及抗氧化性分析. 果树资源学报. 2023(06): 17-22 . 百度学术
    10. 李晓静,魏晓博,程雪,张志刚,刘洪涛,刘慧燕,方海田. 人肠道乳酸片球菌的分离鉴定及其发酵枸杞汁性能分析. 食品工业科技. 2023(22): 143-151 . 本站查看
    11. 李爽,韩海霞,沙比拉·祖农买买提,马瑞,高娟娟. 姜草枣复合膏的制备及其贮藏稳定性. 食品研究与开发. 2023(22): 108-115 . 百度学术
    12. 代琪,白苑丁,叶俏波,杨小艳,赵小勤,王欣. 不同产地大枣化学成分及其药理作用研究进展. 中国药物评价. 2023(06): 506-511 . 百度学术
    13. 李静,葛世浩,多佳,严欢,马梦亚,刘军. 短时黑蒜体外抗氧化活性及其多酚提取优化. 食品工业. 2022(11): 117-123 . 百度学术
    14. 罗宇鑫,金灵,马慧敏,向延菊. 阿拉尔地区不同品种红枣品质分析. 食品工业. 2022(11): 331-335 . 百度学术
    15. 张婷飞,孟秀梅,张兰,曹阳,田其英,李琴,张丽芳. 槐米红枣面包的研制. 现代食品. 2022(20): 69-73 . 百度学术

    其他类型引用(14)

  • 其他相关附件

图(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 29
出版历程
  • 收稿日期:  2023-08-28
  • 网络出版日期:  2024-05-15
  • 刊出日期:  2024-07-14

目录

/

返回文章
返回
x 关闭 永久关闭