Pharmacological Analyses of the Mechanisms of Morinda officinalis How. in the Treatment of Alzheimer's Disease
-
摘要: 目的:基于网络药理学、分子对接和GEO数据分析巴戟天治疗阿尔茨海默病(Alzheimer's disease,AD)的潜在靶点和作用机制。方法:利用中药系统药理学数据库与分析平台(TCMSP),获取巴戟天的主要活性成分,用SwissTargetPrediction获取巴戟天全部作用靶点。从DrugBank、PathCard、Chemogenomic Database和PubChem数据库获得AD相关靶点。使用韦恩图取交集,得到巴戟天治疗AD的共同作用靶点。利用Cytoscape 3.8.0构建靶点的“成分-靶点”网络图,并分析靶点的相互作用PPI网络图、基因本体论(GO)和KEGG信号通路等。使用Autodock对关键成分和靶点进行分子对接,并用Pymol和Discovery Studio展示对接结果。最后利用GEO数据库Alzdata分析关键靶点基因在AD中的表达。结果:预测得到巴戟天的50种主要活性成分,636个作用靶点,674个AD相关靶点,其中巴戟天治疗AD共同靶点124个。GO富集分析得到蛋白质磷酸化、磷酸化的正调控、细胞对氮化合物的反应、水解酶活性的调节、细胞对化学刺激的反应。KEGG富集分析显示阿尔茨海默病为最显著的通路。分子对接显示,巴戟天的5个核心成分2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌、1-羟基-3-甲氧基-9,10-蒽醌、大黄素-A、甲基异茜草素、甲基异茜草素-1-甲醚和3个核心靶点EGFR、PARP1、FTO的结合较好,并且Egfr在AD病人中显著(P<0.05)上调表达,Parp1和Fto在AD病人中显著(P<0.05)下调表达。结论:巴戟天可能通过多个成分、多个靶点、多个通路,参与调控AD疾病进程。Abstract: Objective: To analyze the potential targets and mechanism of action underlying the therapeutic action of Morinda officinalis How. against Alzheimer's disease (AD) based on network pharmacology, molecular docking, and gene expression omnibus (GEO) data. Methods: Using the traditional chinese medicine systematic pharmacology database and analysis platform (TCMSP), the main active components of Morinda officinalis were identified, and the targets of Morinda officinalis were obtained via SwissTargetPrediction. AD-related targets were obtained from DrugBank, PathCard, Chemogenomic Database, and PubChem databases. Then, Venn diagram was used to obtain the common targets of both Morinda officinalis and AD. Cytoscape 3.8.0 was used to construct ''component-target'' network diagrams of the targets. The protein-protein interaction (PPI) network diagrams, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways of the targets were analyzed. The molecular docking of key components and targets was performed using AutoDock, and the docking results were visualized using Pymol and Discovery Studio. Finally, the expressions of key AD-related target genes were analyzed using the GEO database from Alzdata. Results: Fifty main active components of Morinda officinalis were predicted. A total of 636 action targets and 674 AD-related targets were obtained, including 124 common targets related to AD treatment. GO enrichment analysis yielded protein phosphorylation, positive regulation of phosphorylation, cellular response to nitrogen compounds, regulation of hydrolase activity and cellular response to chemical stress. KEGG enrichment analysis showed that Alzheimer's disease as the most significant pathway. Molecular docking revealed that the five core components of Morinda officinalis, including 2-hydroxy-1,5-dimethoxy-6-(methoxymethyl)-9,10-anthraquinone, 1-hydroxy-3-methoxy-9,10-anthraquinone, rhododendron-A, rubiadin and rubiadin-1-methyl ether, exhibited strong binding with the three core targets, EGFR, PARP1 and FTO. The expression of Egfr was significantly (P<0.05) upregulated in AD patients, while Parp1 and Fto were significantly (P<0.05) downregulated. Conclusion: Morinda officinalis might be useful in regulating AD progression via multiple components, targets and pathways.
-
随着社会不断发展,人口老龄化日益严重,AD发生率逐年上升。AD是以进行性认知功能下降为主要特点的神经退行性疾病。AD主要的病理特点是胞内过度磷酸化Tau蛋白聚集形成的神经纤维缠结和胞外β淀粉样蛋白聚集形成的老年斑[1]。随着疾病进程不断发展,AD大脑中出现细胞凋亡和神经炎症反应,导致学习记忆不断下降[2]。截至目前,AD的发病机制复杂,仍未被完全阐明。针对AD的药物主要是乙酰酯酶抑制剂和N-甲基-D-天冬氨酸受体拮抗剂[3],但它们的治疗效果有限,因此迫切需要研究AD发病机制和开发AD治疗药物。近年来,中国传统中医药在现代疾病治疗中发挥重要作用,巴戟天作为中药材之一,具有一定延缓衰老的作用,但其作用机制尚不明确。
巴戟天(Morinda officinalis How.)是茜草科植物,是中国南方最著名的中草药之一[4]。巴戟天作为一种药食同源植物,产地分布于福建、广东、广西等南方地区,素有“南方人参”之称[5]。巴戟天含有多种活性成分,包括多糖、生物碱、醌类、黄酮等。研究表明,巴戟天中的黄酮类和其他抗氧化物质具有清除自由基的能力,有助于防止氧化应激,从而对维护健康有益[6]。巴戟天具有重要的药用价值,可以搭配其它食药材炖汤,发挥食药滋补作用。在临床上,巴戟天已被应用于治疗抑郁症[7],并且它作为中药复方地黄饮子的组成成分,具有治疗记忆衰退的作用[8]。此外,巴戟天能延缓衰老,具有抗抑郁和抗肿瘤的作用。有研究报道,巴戟天水提取物或低聚糖,通过增强抗氧化能力,改善大鼠痴呆症状[9−10]。
本文基于网络药理学、分子对接和基因表达(Gene Expression Omnibus,GEO)数据,筛选巴戟天治疗AD的共同靶点,并对靶点进行基因本体(Gene ontology,GO)和京都基因与基因百科全书(Kyoto encyclopedia of genes and genomes,KEGG)富集分析,将核心成分和靶点进行分子对接,并用GEO数据库验证了核心靶点在AD中的表达。总体上,阐明巴戟天治疗AD的潜在分子机制,为后续实验及临床应用提供理论基础。
1. 材料与方法
1.1 数据材料
中药系统药理学数据库与分析平台(TCMSP,https://old.tcmsp-e.com/index.php);PubChem数据库(https://pubchem.ncbi.nlm.nih.gov/);SwissTargetPrediction数据库(http://old.swisstargetprediction.ch/);DrugBank数据库(https://www.drugbank.com/);PathCard数据库(https://pathcards.genecards.org/);Chemogenomic Database数据库(https://www.cbligand.org/CCGS/#database);韦恩图在线工具Evenn(http://www.ehbio.com/test/venn/#/);Cytoscape 3.8.0;STRING 12.0数据库(https://cn.string-db.org/);Metascape(https://metascape.org/gp/index.html#/main/step1);GraphPad prism 9;Autodock 4.2.6软件;Pymol软件;Discovery Studio软件;AlzData数据库(http://www.alzdata.org/)。
1.2 实验方法
1.2.1 巴戟天的活性成分收集和筛选
利用中药系统药理学数据库与分析平台(TCMSP,https://old.tcmsp-e.com/index.php)[11]收集巴戟天的活性成分,并根据口服生物利用度百分比OB≥10%、类药性DL≥0.1、血脑屏障通过率BBB≥−0.3筛选巴戟天的主要活性成分。
1.2.2 巴戟天的作用靶点预测分析
采用PubChem数据库(https://pubchem.ncbi.nlm.nih.gov/)获取巴戟天化学成分的Canonical SMILES编号,并上传至SwissTargetPrediction数据库(http://old.swisstargetprediction.ch/),以Probability>0为标准,筛选主要活性成分的作用靶点,取各成分靶点并集后,得到巴戟天的所有作用靶点。
1.2.3 AD靶点筛选和巴戟天治疗AD的共同作用靶点分析
使用DrugBank(https://www.drugbank.com/)[12]、PathCard(https://pathcards.genecards.org/)[13]、Chemogenomic Database(https://www.cbligand.org/CCGS/#database)[14]和PubChem(https://pubchem.ncbi.nlm.nih.gov/)[15]等数据库获取AD相关靶点,删掉重复靶点,取并集得到AD靶点基因。再用韦恩图在线工具Evenn(http://www.ehbio.com/test/venn/#/)[16],取巴戟天成分靶点和AD靶点的交集,得到巴戟天治疗AD的共同靶点。
1.2.4 构建巴戟天治疗AD的“成分-共同靶点”网络图
把巴戟天的主要活性成分和巴戟天治疗AD的共同靶点进行拓扑学分析与关联,利用Cytoscape 3.8.0构建靶点的“成分-共同靶点”网络图,并根据节点连接度(degree)筛选核心节点。
1.2.5 构建共同靶点蛋白质相互作用(PPI)网络图
将共同靶点蛋白质输入STRING 12.0数据库(https://cn.string-db.org/),选择物种为“Homo sapiens”,其它设置选择默认,下载蛋白质相互作用文件,再利用Cytoscape分析得到共同靶点蛋白质之间的相互作用网络图。
1.2.6 GO富集分析与KEGG信号通路分析
利用Metascape(https://metascape.org/gp/index.html#/main/step1)[17]对巴戟天治疗AD靶点进行GO富集分析与KEGG信号通路分析。设定P<0.01,按照富集因子enrich factor、基因数量count筛选得到GO与KEGG信号通路条目。利用GraphPad prism 9制作GO和KEGG富集分析气泡图。
1.2.7 利用分子对接验证核心成分和靶点的结合
采用Autodock 4.2.6对关键成分和靶点进行分子对接。首先,使用蛋白质数据库PDB,下载靶点蛋白质文件,再用Pymol去配体,在Autodock中读取蛋白质,删掉水分子、加氢,另存为蛋白质的.pdbqt格式文件。其次,从PubChem下载主要化学成分的.sdf文件,再用OpenBabel-3.1.1软件转化为.mol2文件,在Autodock中读取成分文件,加氢后,另存为成分的.pdbqt格式文件。接着,在Autodock中进行Grid,生成.gpf文件,运行Autogrid生成.glg文件,再运行Autodock,生成对接结果.dlg文件。最后,查看对接结果,并用Pymol和Discovery Studio展示对接结果。
1.2.8 GEO数据库验证AD信号通路靶点变化
AlzData数据库(http://www.alzdata.org/)[18]整合了GEO数据库中AD病人和对照人脑组织的基因表达谱,本研究把核心靶点输入该数据库,验证核心靶点在AD人脑中的表达变化情况。
2. 结果与分析
2.1 巴戟天的主要活性成分和成分靶点预测
在中药系统药理学数据库与分析平台(TCMSP),输入“巴戟天”,点击拉丁名字“Morindae Officinalis Radix”进入主页面,根据OB≥10%、DL≥0.1、BBB≥−0.3标准,筛选巴戟天活性成分。根据成分名字,在PubChem上获取Canonical SMILES编号,利用SwissTargetPrediction预测活性成分的靶点基因,去掉没有预测靶点和靶点可能性小于0的活性成分,得到50种主要活性成分(表1)。综合这50个主要活性成分的靶点,删掉重复,合并一共得到636个巴戟天的靶点。
表 1 巴戟天的主要活性成分Table 1. Main active components of Morinda officinalis分子编号
(MOL ID)分子名字 分子量MW 口服生物
利用度OB(%)血脑屏障
通过率BBB类药性DL MOL000012 花生酸
Arachic acid312.60 16.66 1.09 0.19 MOL000131 亚油酸
EIC280.50 41.90 0.90 0.14 MOL001497 十五酸乙酯
Ethylpentadecanoate270.51 19.74 1.28 0.11 MOL001506 角鲨烯
Supraene410.80 33.55 1.73 0.42 MOL001649 2-羟基-3-甲基蒽醌
2-Hydroxy-3-methylanthraquinone238.25 26.09 −0.22 0.18 MOL002879 邻苯二甲酸二异辛酯
Diop390.62 43.59 0.26 0.39 MOL002883 油酸乙酯
Ethyl oleate(NF)310.58 32.40 1.10 0.19 MOL000358 β-谷甾醇
Beta-sitosterol414.79 36.91 0.99 0.75 MOL000359 谷甾醇
Sitosterol414.79 36.91 0.87 0.75 MOL003991 2-甲基蒽醌
Tectochinon222.25 26.65 0.24 0.16 MOL005402 十七烷酸甲酯
Methyl margarate284.54 17.41 1.25 0.14 MOL005521 植烷
Phytane282.62 13.86 1.83 0.11 MOL005723 异嗪皮啶
Phytodolor222.21 52.32 0.44 0.10 MOL005840 1-萘氨基苯
PANA219.30 50.35 1.61 0.13 MOL006147 茜素-2-甲醚
Alizarin-2-methylether254.25 32.81 −0.14 0.21 MOL006158 甲基异茜草素
Rubiadin254.25 25.02 −0.34 0.21 MOL006163 1-羟基-2-甲基蒽醌
1-Hydroxy-2-methylanthraquinone238.25 24.77 0.08 0.18 MOL000663 油酸廿四烷酸
Lignoceric acid368.72 14.90 1.01 0.33 MOL000675 油酸
Oleic acid282.52 33.13 0.78 0.14 MOL000676 邻苯二甲酸二丁酯
DBP278.38 64.54 0.56 0.13 MOL000860 硬脂酸
Stearic acid284.54 17.83 1.22 0.14 MOL000875 柏木脑
Cedrol222.41 16.23 1.46 0.12 MOL009492 1,2-二羟基-3-甲基-9,10-蒽醌
1,2-Dihydroxy-3-methyl-9,10-anthraquinone254.25 24.39 −0.25 0.21 MOL009493 1,3-二羟基-2-甲氧基蒽醌
1,3-Dihydroxy-2-methoxyanthraquinone270.25 18.51 −0.33 0.24 MOL009494 1,4-二羟基-2-甲氧基-7-甲基蒽醌
1,4-Dihydroxy-2-methoxy-7-methylanthracenequinone284.28 21.86 −0.24 0.27 MOL009495 2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌
2-Hydroxy-1,5-dimethoxy-6-(methoxymethyl)-9,10-anthraquinone328.34 95.85 −0.17 0.37 MOL009496 1,5,7-Trihydroxy-6-methoxy-2-methoxymethylanthracenequinone 330.31 80.42 −0.63 0.38 MOL009498 1,6-二羟基-2,4-二甲氧基蒽醌
1,6-Dihydroxy-2,4-dimethoxyanthraquinone300.28 18.42 −0.48 0.30 MOL009499 1,6-二羟基-2-甲氧基蒽醌
1,6-Dihydroxy-2-methoxyanthraquinone270.25 18.46 −0.48 0.24 MOL009500 1,6-二羟基-5-甲氧基-2-(甲氧甲基)-9,10-蒽醌
1,6-Dihydroxy-5-methoxy-2-(methoxymethyl)-9,10-anthraquinone314.31 104.54 −0.30 0.34 MOL009501 1-羟基-2,3-二甲基-9,10-蒽醌
1-Hydroxy-2,3-dimethyl-9,10-anthraquinone252.28 18.47 0.01 0.20 MOL009503 1-羟基-3-甲氧基-9,10-蒽醌
1-Hydroxy-3-methoxy-9,10-anthraquinone254.25 104.33 −0.24 0.21 MOL009506 1-羟基蒽醌
Hydroxyanthraquinone224.22 21.45 −0.02 0.16 MOL009512 Methyl 9,10-dioxoanthracene-2-carboxylate 266.26 21.83 −0.52 0.24 MOL009516 2-羟基蒽醌
2-Hydroxyanthraquinone224.22 27.45 −0.30 0.16 MOL009517 1,3,6-三羟基-2-甲氧基蒽醌
1,3,6-Trihydroxy-2-methoxy-9,10-anthraquinone286.25 18.62 −0.75 0.27 MOL009519 (2R,3S)-(+)-3',5-Dihydroxy-4 ,7-dimethoxydihydroflavonol 332.33 77.24 −0.39 0.33 MOL009521 3-Hydroxy-1,2-dimethoxyanthracenequinone 284.28 20.28 −0.23 0.27 MOL009524 3β,20(R),5-烯基柱头
3beta,20(R),5-alkenyl-stigmastol414.79 36.91 0.89 0.75 MOL009529 5alpha-Hydroxy-2alpha-(alpha-methylbutyryl)-oxy-7beta,9alpha,10beta-triacetoxy-4(20),11-taxadiene 562.77 27.89 −0.31 0.79 MOL009536 茜草素-1-甲醚
Alizarin-1-methyl ether268.28 23.15 −0.09 0.24 MOL009538 4-[3-Hydroxymethyl-6-(3-hydroxy-propenyl)-2,3-dihydro-benzo[1,4]dioxin-2-yl]-benzene-1,2-diol 330.36 21.36 −1.37 0.34 MOL009539 2-Anthraquinonecarboxaldehyde 236.23 19.50 −0.44 0.19 MOL009541 四乙酰车叶草苷
Asperuloside tetraacetate582.56 45.47 −1.73 0.82 MOL009546 去乙酰车叶草甙
Deacetyl asperuloside372.36 15.27 −2.08 0.54 MOL009551 Isoprincepin 494.53 49.12 −1.47 0.77 MOL009558 2-Hydroxyethyl 5-hydroxy-2-(2-hydroxybenzoyl)-4-(hydroxymethyl)benzoate 332.33 62.32 −1.71 0.26 MOL009562 大黄素-A
Ohioensin-A372.39 38.13 −0.17 0.76 MOL009565 甲基异茜草素-1-甲醚
Rubiadin-1-methyl ether268.28 20.03 −0.16 0.23 MOL000971 棕榈酸乙酯
Ethylpalmitate284.54 18.99 1.15 0.14 2.2 AD靶点获取和巴戟天治疗AD共同靶点筛选
在DrugBank、PathCard、Chemogenomic Database和PubChem等数据库,输入或点击关键词“Alzheimer's disease”,分别得到7个、320个、198个、262个AD相关靶点,删掉重复靶点,得到674个AD靶点基因。再用韦恩图工具,取巴戟天成分靶点和AD靶点的交集,得到巴戟天治疗AD的共同靶点124个(图1)。
2.3 构建巴戟天治疗AD的“成分-共同靶点”网络图
将巴戟天的活性成分、共同靶点导入Cytoscape 3.8.0软件,构建活性成分-共同作用靶点相互作用关系网络图(图2)。按照degree度值大小,分别排列主要活性成分,10个主要活性成分和70个共同靶点,形成174个节点,528条边。为了更直观显示相互作用关系网络图,根据度值大小显示,得分较高的主要活性成分分别为2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌(2-hydroxy-1,5-dimethoxy-6-(methoxymethyl)-9,10-anthraquinone)、大黄素-A(Ohioensin-A)、甲基异茜草素(Rubiadin)、1-羟基-3-甲氧基-9,10-蒽醌(1-hydroxy-3-methoxy-9,10-anthraquinone)、甲基异茜草素-1-甲醚(rubiadin-1-methyl ether)、1,3-二羟基-2-甲氧基蒽醌(1,3-dihydroxy-2-methoxyanthraquinone)、亚油酸(EIC)、methyl 9,10-dioxoanthracene-2-carboxylate、1,4-二羟基-2-甲氧基-7-甲基蒽醌(1,4-dihydroxy-2-methoxy-7-methylanthracenequinone)、1,3,6-三羟基-2-甲氧基蒽醌(1,3,6-trihydroxy-2-methoxy-9,10-anthraquinone)(图3)。得分较高的靶点分别是ESR2、ESR1、LCK、EGFR、CSNK2A1、CDC25A、PARP1、FTO、BACE1、MMP2(图4)。
2.4 巴戟天治疗AD靶点PPI图的构建与分析
在String 12.0数据库中导入巴戟天治疗AD的124个靶点,进行蛋白质互作分析,得到巴戟天治疗AD靶点PPI网络图(图5),该PPI网络图包含124个节点,1684条边。根据综合得分,将PPI网络图中蛋白质相互作用进行排序,得到相互作用能力较强的前十个蛋白质组合,分别是AKT1与MTOR、APH1A与NCSTN、APH1B与PSENEN、APP与BACE1、BRAF与MAP2K1、CASP1与CASP8、CASP3与PARP1、CDC25C与CDK1、CDK5与CDK5R1、CHUK与TNFRSF1A。
2.5 巴戟天治疗AD共同靶点GO和KEGG富集分析
Metascape是一个基因功能注释分析工具,可以对靶点基因进行GO和KEGG富集分析。将124个共同靶点导入Metascape,选择“Homo sapiens”进行分析,将结果在GraphPad prism 9优化制作成气泡图,X轴表示富集因子,Y轴表示GO条目名称,气泡大小代表-lg(P),表示富集显著性,气泡颜色为靶点数量。GO富集分析中前20个条目含有蛋白质磷酸化(Protein phosphorylation)、磷代谢过程的正调控(Positive regulation of phosphorus metabolic process)、细胞对氮化合物的反应(Cellular response to nitrogen compound)、水解酶活性的调节(Regulation of hydrolase activity)、细胞对化学刺激的反应(Cellular response to chemical stress)等(图6),此外,还包括淀粉样β蛋白反应(Response to amyloid-beta)和化学突触传递的调节(Modulation of chemical synaptic transmission)。KEGG信号通路富集分析得到前16个条目(图7),主要包括阿尔茨海默病(Alzheimer's disease)、钙离子信号通路(Calcium signaling pathway)、NF-κB信号通路(NF-kappa B signaling pathway)等。
2.6 巴戟天主要成分和AD靶点的分子对接
对度值大于20的巴戟天关键成分,2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌、大黄素-A、甲基异茜草素、1-羟基-3-甲氧基-9,10-蒽醌和甲基异茜草素-1-甲醚,分别与度值排名前十的核心靶点,进行分子对接。
对接结果显示,大黄素-A与PARP1、EGFR、CDC25A、LCK的结合自由能均小于−7 kcal/mol,2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌与EGFR、ESR1、BACE1、ESR2的结合自由能均小于-7 kcal/mol,1-羟基-3-甲氧基-9,10-蒽醌与EGFR、CSNK2A1、ESR2、BACE1的结合自由能均小于−7 kcal/mol,甲基异茜草素与FTO、MMP2、ESR1、ESR2的结合自由能均小于−7 kcal/mol,甲基异茜草素-1-甲醚与PARP1、MMP2、ESR1、ESR2的结合自由能均小于−6 kcal/mol(表2),说明它们具有比较强的结合能力。2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌与EGFR、1-羟基-3-甲氧基-9,10-蒽醌与EGFR、大黄素-A与PARP1的分子对接图见图8。
表 2 巴戟天主要成分-作用靶点分子对接自由能Table 2. Free energy for main components–target genes of Morinda officinalis by molecular docking分子编号
(MOL ID)主要成分 靶点蛋白质名称 蛋白质PDB编号 自由能(kcal/mol) MOL009495 2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌
2-Hydroxy-1,5-dimethoxy-6-(methoxymethyl)-9,10-anthraquinoneEGFR 8A27 −7.62 ESR1 6VPF −7.59 BACE1 6UWP −7.50 ESR2 7XVY −7.46 CSNK2A1 3OWK −6.87 LCK 2IIM −5.94 MOL009503 1-羟基-3-甲氧基-9,10-蒽醌
1-Hydroxy-3-methoxy-9,10-anthraquinoneEGFR 8A27 −7.75 CSNK2A1 3OWK −7.48 ESR2 7XVY −7.39 BACE1 6UWP −7.08 LCK 2IIM −6.83 ESR1 6VPF −6.71 MMP2 7XJO −5.61 MOL009562 大黄素-A
Ohioensin-APARP1 2RCW −9.97 EGFR 8A27 −9.08 CDC25A 1C25 −7.84 LCK 2IIM −7.53 MOL006158 Rubiadin
甲基异茜草素FTO 7WCV −8.21 MMP2 7XJO −7.67 ESR1 6VPF −7.55 ESR2 7XVY −7.37 EGFR 8A27 −3.84 MOL009565 Rubiadin-1-methyl ether
甲基异茜草素-1-甲醚PARP1 2RCW −7.82 MMP2 7XJO −7.68 ESR1 6VPF −7.36 ESR2 7XVY −6.63 2.7 巴戟天治疗AD共同靶点的验证
为了验证核心靶点在AD中的表达,本研究使用AlzData数据库检索Esr2、Lck、Egfr、Mmp2、Parp1、Bace1、Fto靶点的表达。该数据显示,与对照相比,Esr2、Egfr、Mmp2在AD内嗅皮层中显著(P<0.05)上调表达。Egfr在AD颞叶皮层中显著(P<0.05)上调表达,而Parp1、Bace1和Fto在AD颞叶皮层中显著(P<0.05)下调表达。此外,Egfr在AD海马组织中显著(P<0.05)上调表达,Fto在AD额叶皮层中显著(P<0.05)上调表达(图9)。
3. 讨论与结论
AD是最常见的痴呆类型,对于65以上的老年人,发病率逐年上升。据2021年《中国阿尔茨海默病报告》表明,我国目前有1000万名AD患者,而且AD患者的治疗成本逐年上升,预计到2050年,我国AD患者的年治疗费用高达18亿美元以上[19],给社会带来严重的经济负担。目前FDA批准用于治疗AD的药物主要有多奈哌齐、利凡斯的明、加兰他敏和美金刚等[20],分别属于乙酰胆碱酯酶抑制剂和NMDA受体拮抗剂,但是其治疗效果均只能延缓症状,无法治愈AD,需要开发其它类型药物。有学者报道,巴戟天水提取物通过增强超氧化物歧化酶(SOD)活性、降低丙二醛(MDA)含量、提高老年痴呆模型大鼠的抗氧化能力,从而改善其认知功能[10]。此外,巴戟天多糖通过提高抗氧化能力、激活脑能量代谢等,改善大鼠痴呆症状[9]。这些研究表明,巴戟天对AD具有保护作用。因此,探讨巴戟天治疗AD的机制具有重要意义。
为了深入探讨巴戟天治疗AD的分子机制,首先,本研究利用网络药理学方法,在TCMSP数据库中筛选出巴戟天的主要活性成分,主要是蒽醌、萜类、酯类等有机物化合物,这与文献报道的相类似[21]。据报道,β-谷甾醇作为巴戟天的主要活性成分之一,通过抑制IL-17-p53信号通路,减轻AD模型小鼠神经炎症,从而改善AD的认知功能[22]。此外,本课题组还筛选出巴戟天的活性成分—大黄素-A可能具有抗AD的作用效果,这与文献[23]报道的结果相吻合,大黄素通过恢复大鼠皮层神经元抗氧化酶的活性,抑制CytC的释放,进而抵抗Aβ25-35引起的氧化应激损伤。来源于巴戟天的巴戟甲素[24],并不符合本课题组的筛选标准,但有报道表明它可以增强抗氧化能力、促进能量代谢、抑制神经元凋亡、改善Aβ诱导的学习和记忆障碍,发挥对AD的保护作用[25]。后续需要把实验测定的化学成分和TCMSP筛选标准结合起来,才能避免某些有效成分被排除,更好地探索中药或复方的分子作用机制。
基于GO和KEGG信号通路富集分析,课题组发现巴戟天治疗AD,主要涉及蛋白质磷酸化和磷代谢过程的正调控等,可能与体内各种蛋白质翻译后修饰密切相关。此外,信号通路富集分析发现淀粉样β蛋白反应和化学突触传递的调节,也可能参与巴戟天治疗AD。另外,还有淀粉样β蛋白反应、NF-κB信号通路等,也是巴戟天治疗AD的富集通路之一,它们分别作为AD淀粉样蛋白病变和神经炎症反应病变,调节AD疾病进程。
根据度值,通过“成分-核心靶点”网络图分析,本研究得到巴戟天治疗AD的核心靶点主要有ESR2、ESR1、LCK、EGFR、CSNK2A1、CDC25A、PARP1、FTO、BACE1、MMP2。其中LCK、BACE1参与AD的Tau病理改变[26],雌激素受体介导的信号通路参与调控绝经后女性AD疾病进展[27],酪蛋白激酶2α1(CSNK2A1)被报道参与AD自噬过程调控[28],细胞周期调控因子25A(CDC25A)的表达在AD小鼠中显著升高,并且小分子药物抑制CDC25A后,可以保护神经元凋亡[29]。通过分子对接,本研究分析了巴戟天主要活性成分和核心靶点的结合情况。β-位点淀粉样前体蛋白裂解酶-1(BACE1)是一种天冬氨酸蛋白酶,可以切割淀粉样蛋白前体蛋白(Amyloid precursor protein,APP)产生40或42个氨基酸的β-淀粉样蛋白肽(Amyloid-β peptide)[30],它可以和2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌与1-羟基-3-甲氧基-9,10-蒽醌结合,参与调控AD淀粉样蛋白剪切过程。研究表明,在APP/PS1双转AD基因小鼠中,Aβ蛋白纤维可结合表皮生长因子受体(EGFR),激活细胞内EGFR受体信号通路,增加表皮生长因子受体酪氨酸激酶结构域的聚集,促进细胞对Aβ蛋白纤维的吸收和大脑内传播[31],本研究分子对接发现,巴戟天的3种关键活性成分:2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌、1-羟基-3-甲氧基-9,10-蒽醌和大黄素-A都能与EGFR结合,且结合自由能都偏低,说明结合相对较好,提示巴戟天可能参与调控AD中β淀粉样蛋白的病变过程。此外,大黄素-A与聚(ADP-核糖)聚合酶1(Description poly(ADP-ribose) polymerase 1,PARP1)结合也比较好,据报道,在AD患者海马锥体细胞中,核仁PARP1表达显著降低,PARP1参与应激信号传导,包括由炎症和自噬失调引起的应激信号,靶向PARP1为AD治疗提供新思路[32−34]。
综上所述,本研究基于整合药理学,筛选出巴戟天的核心成分和核心靶点,构建并分析巴戟天治疗AD的“成分-共同靶点”网络图,并通过GO与KEGG富集分析,明确了关键信号通路,使用分子对接验证了巴戟天主要活性成分与核心靶点的结合,并在GEO数据库中验证了核心靶点在AD中的表达,系统性探讨了巴戟天通过蒽醌与大黄素-A等成分和EGFR与PARP1等核心靶点,调节蛋白质磷酸化、细胞凋亡等信号通路,发挥AD保护作用的机制。后续利用AD相关细胞或动物模型验证巴戟天对AD保护作用。总之,本研究可为巴戟天治疗AD的分子机制,奠定理论基础,为AD治疗来提供新的方法和思路。
-
表 1 巴戟天的主要活性成分
Table 1 Main active components of Morinda officinalis
分子编号
(MOL ID)分子名字 分子量MW 口服生物
利用度OB(%)血脑屏障
通过率BBB类药性DL MOL000012 花生酸
Arachic acid312.60 16.66 1.09 0.19 MOL000131 亚油酸
EIC280.50 41.90 0.90 0.14 MOL001497 十五酸乙酯
Ethylpentadecanoate270.51 19.74 1.28 0.11 MOL001506 角鲨烯
Supraene410.80 33.55 1.73 0.42 MOL001649 2-羟基-3-甲基蒽醌
2-Hydroxy-3-methylanthraquinone238.25 26.09 −0.22 0.18 MOL002879 邻苯二甲酸二异辛酯
Diop390.62 43.59 0.26 0.39 MOL002883 油酸乙酯
Ethyl oleate(NF)310.58 32.40 1.10 0.19 MOL000358 β-谷甾醇
Beta-sitosterol414.79 36.91 0.99 0.75 MOL000359 谷甾醇
Sitosterol414.79 36.91 0.87 0.75 MOL003991 2-甲基蒽醌
Tectochinon222.25 26.65 0.24 0.16 MOL005402 十七烷酸甲酯
Methyl margarate284.54 17.41 1.25 0.14 MOL005521 植烷
Phytane282.62 13.86 1.83 0.11 MOL005723 异嗪皮啶
Phytodolor222.21 52.32 0.44 0.10 MOL005840 1-萘氨基苯
PANA219.30 50.35 1.61 0.13 MOL006147 茜素-2-甲醚
Alizarin-2-methylether254.25 32.81 −0.14 0.21 MOL006158 甲基异茜草素
Rubiadin254.25 25.02 −0.34 0.21 MOL006163 1-羟基-2-甲基蒽醌
1-Hydroxy-2-methylanthraquinone238.25 24.77 0.08 0.18 MOL000663 油酸廿四烷酸
Lignoceric acid368.72 14.90 1.01 0.33 MOL000675 油酸
Oleic acid282.52 33.13 0.78 0.14 MOL000676 邻苯二甲酸二丁酯
DBP278.38 64.54 0.56 0.13 MOL000860 硬脂酸
Stearic acid284.54 17.83 1.22 0.14 MOL000875 柏木脑
Cedrol222.41 16.23 1.46 0.12 MOL009492 1,2-二羟基-3-甲基-9,10-蒽醌
1,2-Dihydroxy-3-methyl-9,10-anthraquinone254.25 24.39 −0.25 0.21 MOL009493 1,3-二羟基-2-甲氧基蒽醌
1,3-Dihydroxy-2-methoxyanthraquinone270.25 18.51 −0.33 0.24 MOL009494 1,4-二羟基-2-甲氧基-7-甲基蒽醌
1,4-Dihydroxy-2-methoxy-7-methylanthracenequinone284.28 21.86 −0.24 0.27 MOL009495 2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌
2-Hydroxy-1,5-dimethoxy-6-(methoxymethyl)-9,10-anthraquinone328.34 95.85 −0.17 0.37 MOL009496 1,5,7-Trihydroxy-6-methoxy-2-methoxymethylanthracenequinone 330.31 80.42 −0.63 0.38 MOL009498 1,6-二羟基-2,4-二甲氧基蒽醌
1,6-Dihydroxy-2,4-dimethoxyanthraquinone300.28 18.42 −0.48 0.30 MOL009499 1,6-二羟基-2-甲氧基蒽醌
1,6-Dihydroxy-2-methoxyanthraquinone270.25 18.46 −0.48 0.24 MOL009500 1,6-二羟基-5-甲氧基-2-(甲氧甲基)-9,10-蒽醌
1,6-Dihydroxy-5-methoxy-2-(methoxymethyl)-9,10-anthraquinone314.31 104.54 −0.30 0.34 MOL009501 1-羟基-2,3-二甲基-9,10-蒽醌
1-Hydroxy-2,3-dimethyl-9,10-anthraquinone252.28 18.47 0.01 0.20 MOL009503 1-羟基-3-甲氧基-9,10-蒽醌
1-Hydroxy-3-methoxy-9,10-anthraquinone254.25 104.33 −0.24 0.21 MOL009506 1-羟基蒽醌
Hydroxyanthraquinone224.22 21.45 −0.02 0.16 MOL009512 Methyl 9,10-dioxoanthracene-2-carboxylate 266.26 21.83 −0.52 0.24 MOL009516 2-羟基蒽醌
2-Hydroxyanthraquinone224.22 27.45 −0.30 0.16 MOL009517 1,3,6-三羟基-2-甲氧基蒽醌
1,3,6-Trihydroxy-2-methoxy-9,10-anthraquinone286.25 18.62 −0.75 0.27 MOL009519 (2R,3S)-(+)-3',5-Dihydroxy-4 ,7-dimethoxydihydroflavonol 332.33 77.24 −0.39 0.33 MOL009521 3-Hydroxy-1,2-dimethoxyanthracenequinone 284.28 20.28 −0.23 0.27 MOL009524 3β,20(R),5-烯基柱头
3beta,20(R),5-alkenyl-stigmastol414.79 36.91 0.89 0.75 MOL009529 5alpha-Hydroxy-2alpha-(alpha-methylbutyryl)-oxy-7beta,9alpha,10beta-triacetoxy-4(20),11-taxadiene 562.77 27.89 −0.31 0.79 MOL009536 茜草素-1-甲醚
Alizarin-1-methyl ether268.28 23.15 −0.09 0.24 MOL009538 4-[3-Hydroxymethyl-6-(3-hydroxy-propenyl)-2,3-dihydro-benzo[1,4]dioxin-2-yl]-benzene-1,2-diol 330.36 21.36 −1.37 0.34 MOL009539 2-Anthraquinonecarboxaldehyde 236.23 19.50 −0.44 0.19 MOL009541 四乙酰车叶草苷
Asperuloside tetraacetate582.56 45.47 −1.73 0.82 MOL009546 去乙酰车叶草甙
Deacetyl asperuloside372.36 15.27 −2.08 0.54 MOL009551 Isoprincepin 494.53 49.12 −1.47 0.77 MOL009558 2-Hydroxyethyl 5-hydroxy-2-(2-hydroxybenzoyl)-4-(hydroxymethyl)benzoate 332.33 62.32 −1.71 0.26 MOL009562 大黄素-A
Ohioensin-A372.39 38.13 −0.17 0.76 MOL009565 甲基异茜草素-1-甲醚
Rubiadin-1-methyl ether268.28 20.03 −0.16 0.23 MOL000971 棕榈酸乙酯
Ethylpalmitate284.54 18.99 1.15 0.14 表 2 巴戟天主要成分-作用靶点分子对接自由能
Table 2 Free energy for main components–target genes of Morinda officinalis by molecular docking
分子编号
(MOL ID)主要成分 靶点蛋白质名称 蛋白质PDB编号 自由能(kcal/mol) MOL009495 2-羟基-1,5-二甲氧基-6-(甲氧基甲基)-9,10-蒽醌
2-Hydroxy-1,5-dimethoxy-6-(methoxymethyl)-9,10-anthraquinoneEGFR 8A27 −7.62 ESR1 6VPF −7.59 BACE1 6UWP −7.50 ESR2 7XVY −7.46 CSNK2A1 3OWK −6.87 LCK 2IIM −5.94 MOL009503 1-羟基-3-甲氧基-9,10-蒽醌
1-Hydroxy-3-methoxy-9,10-anthraquinoneEGFR 8A27 −7.75 CSNK2A1 3OWK −7.48 ESR2 7XVY −7.39 BACE1 6UWP −7.08 LCK 2IIM −6.83 ESR1 6VPF −6.71 MMP2 7XJO −5.61 MOL009562 大黄素-A
Ohioensin-APARP1 2RCW −9.97 EGFR 8A27 −9.08 CDC25A 1C25 −7.84 LCK 2IIM −7.53 MOL006158 Rubiadin
甲基异茜草素FTO 7WCV −8.21 MMP2 7XJO −7.67 ESR1 6VPF −7.55 ESR2 7XVY −7.37 EGFR 8A27 −3.84 MOL009565 Rubiadin-1-methyl ether
甲基异茜草素-1-甲醚PARP1 2RCW −7.82 MMP2 7XJO −7.68 ESR1 6VPF −7.36 ESR2 7XVY −6.63 -
[1] 王建枝, 田青. Tau蛋白过度磷酸化机制及其在阿尔茨海默病神经元变性中的作用[J]. 生物化学与生物物理进展,2012,39(8):771−777. [WANG Jianzhi, TIAN Qing. Molecular mechanisms underlie Alzheimer-like tau hyperphosphorylation and neurodegeneration[J]. Progress in Biochemistry and Biophysics,2012,39(8):771−777.] doi: 10.3724/SP.J.1206.2012.00333 WANG Jianzhi, TIAN Qing. Molecular mechanisms underlie Alzheimer-like tau hyperphosphorylation and neurodegeneration[J]. Progress in Biochemistry and Biophysics, 2012, 39(8): 771−777. doi: 10.3724/SP.J.1206.2012.00333
[2] 李交, 肖友元, 谢沁, 等. 6-姜酚通过调节Wnt/β-catenin信号通路对Aβ诱导的AD大鼠细胞凋亡, 氧化应激和神经炎症的影响[J]. 安徽医科大学学报,2022,57(1):95−100. [LI Jiao, XIAO Youyuan, XIE Qin, et al. 6-gingerol relieves cell apoptosis, oxidative stress and neuroinflammation in rats with Alzheiemr’s disease by activating Wnt/β-catenin signaling pathway[J]. Acta Universitatis Medicinalis Anhui,2022,57(1):95−100.] LI Jiao, XIAO Youyuan, XIE Qin, et al. 6-gingerol relieves cell apoptosis, oxidative stress and neuroinflammation in rats with Alzheiemr’s disease by activating Wnt/β-catenin signaling pathway[J]. Acta Universitatis Medicinalis Anhui, 2022, 57(1): 95−100.
[3] 李潭, 张萌, 林韬, 等. 阿尔茨海默病治疗药物的研究现状[J]. 中国临床药理学杂志,2019,35(19):2479−2482. [LI Tan, ZHANG Meng, LIN Tao, et al. Research status of anti-Alzheimer’s Disease drugs[J]. The Chinese Journal of Clinical Pharmacology,2019,35(19):2479−2482.] LI Tan, ZHANG Meng, LIN Tao, et al. Research status of anti-Alzheimer’s Disease drugs[J]. The Chinese Journal of Clinical Pharmacology, 2019, 35(19): 2479−2482.
[4] ZHANG Z W, GAO C S, ZHANG H, et al. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota[J]. Acta Pharmaceutica Sinica B,2022,12(8):3298−3312. doi: 10.1016/j.apsb.2022.02.032
[5] ZHANG Y, ZHANG M. Neuroprotective effects of Morinda officinalis How.:Anti-inflammatory and antioxidant roles in Alzheimer's disease[J]. Frontiers in Aging Neuroscience,2022,14:963041. doi: 10.3389/fnagi.2022.963041
[6] LI J Y, XU S Q, MEI Y, et al. Genomic-wide identification and expression analysis of R2R3-MYB transcription factors related to flavonol biosynthesis in Morinda officinalis[J]. BMC Plant Biology,2023,23(1):381. doi: 10.1186/s12870-023-04394-6
[7] 李囿松, 呼亚玲, 申静, 等. 巴戟天寡糖胶囊治疗广泛人群下急性发作期轻中度抑郁症的Ⅳ期临床研究[J]. 中药药理与临床,2022,38(4):136−139. [LI Yousong, HU Yaling, SHEN Jing, et al. Phase Ⅳ Clinical Trial of Morinda officinalis oligosaccharide capsules in treatment of mild and moderate depression of acute episodes in a broad population[J]. Pharmacology and Clinics of Chinese Materia Medica,2022,38(4):136−139.] LI Yousong, HU Yaling, SHEN Jing, et al. Phase Ⅳ Clinical Trial of Morinda officinalis oligosaccharide capsules in treatment of mild and moderate depression of acute episodes in a broad population[J]. Pharmacology and Clinics of Chinese Materia Medica, 2022, 38(4): 136−139.
[8] 张丽, 汪园园, 周静波, 等. 地黄饮子干预阿尔茨海默病患者的疗效观察及作用机制探讨[J]. 中华中医药杂志,2018,33(11):4948−4952. [ZHANG Li, WANG Yuanyuan, ZHOU Jingbo, et al. Effects and mechanisms of Dihuang Yinzi Decoction on the treatment of Alzheimer’s disease patients[J]. China Journal of Traditional Chinese Medicine and Pharmacy,2018,33(11):4948−4952.] ZHANG Li, WANG Yuanyuan, ZHOU Jingbo, et al. Effects and mechanisms of Dihuang Yinzi Decoction on the treatment of Alzheimer’s disease patients[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2018, 33(11): 4948−4952.
[9] 陈地灵, 张鹏, 林励, 等. 巴戟天低聚糖对Aβ25-35致拟痴呆模型大鼠的保护作用[J]. 中国中药杂志,2013,38(9):1306−1309. [CHEN Diling, ZHANG Peng, LIN Li, et al. Protective effect of oligosaccharides from Morinda officinalis on β-amyloid-induced dementia rats[J]. China Journal of Chinese Material Medica,2013,38(9):1306−1309.] CHEN Diling, ZHANG Peng, LIN Li, et al. Protective effect of oligosaccharides from Morinda officinalis on β-amyloid-induced dementia rats[J]. China Journal of Chinese Material Medica, 2013, 38(9): 1306−1309.
[10] 王馨, 李晶, 廖一兰, 等. 巴戟天水提物对老年痴呆模型大鼠的保护作用研究[J]. 中国药房,2013,24(31):2908−2910. [WANG Xin, LI Jing, LIAO Yilan, et al. Study on protective effect of water extract from Morindae officinalis on Alzheimer disease model rats[J]. China Pharmacy,2013,24(31):2908−2910.] WANG Xin, LI Jing, LIAO Yilan, et al. Study on protective effect of water extract from Morindae officinalis on Alzheimer disease model rats[J]. China Pharmacy, 2013, 24(31): 2908−2910.
[11] RU J L, LI P, WANG J N, et al. TCMSP:A database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of Cheminformatics,2014,6(1):13. doi: 10.1186/1758-2946-6-13
[12] WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0:A major update to the DrugBank database for 2018[J]. Nucleic Acids Research,2018,46(D1):D1074−D1082. doi: 10.1093/nar/gkx1037
[13] BELINKY F, NATIV N, STELZER G, et al. PathCards:Multi-source consolidation of human biological pathways[J]. Database (Oxford),2015,2015:bav006.
[14] LIU H B, WANG L R, LÜ M L, et al. AlzPlatform:An Alzheimer's disease domain-specific chemogenomics knowledgebase for poly pharmacology and target identification research[J]. Journal of Chemical Information and Modeling,2014,54(4):1050−1060. doi: 10.1021/ci500004h
[15] KIM S, CHEN J, CHENG T, et al. PubChem in 2021:New data content and improved web interfaces[J]. Nucleic Acids Research,2021,49(D1):D1388−D1395. doi: 10.1093/nar/gkaa971
[16] CHEN T, ZHANG H Y, LIU Y, et al. EVenn:Easy to create repeatable and editable Venn diagrams and Venn networks online[J]. Journal of Genetics and Genomics,2021,48(9):863−866. doi: 10.1016/j.jgg.2021.07.007
[17] ZHOU Y Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nature Communications,2019,10(1):1523. doi: 10.1038/s41467-019-09234-6
[18] XU M, ZHANG D F, LUO R C, et al. A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer's disease[J]. Alzheimers Dement,2018,14(2):215−229. doi: 10.1016/j.jalz.2017.08.012
[19] 任汝静, 殷鹏, 王志会, 等. 中国阿尔茨海默病报告2021[J]. 诊断学理论与实践,2021,20(4):317−337. [REN Rujing, YIN Peng, WANG Zhihui, et al. China Alzheimer's Disease Report 2021[J]. Journal of Diagnostics Concepts & Practice,2021,20(4):317−337.] REN Rujing, YIN Peng, WANG Zhihui, et al. China Alzheimer's Disease Report 2021[J]. Journal of Diagnostics Concepts & Practice, 2021, 20(4): 317−337.
[20] MELNIKOVA I. Therapies for Alzheimer's disease[J]. Nature Reviews Drug Discovery,2007,6(5):341−342. doi: 10.1038/nrd2314
[21] 姜振远, 王中琳. 基于网络药理学探讨巴戟天治疗阿尔茨海默病的物质基础与作用机制[J]. 中华中医药学刊,2021,39(3):255−258,285-286. [JIANG Zhenyuan, WANG Zhonglin. Material basis and mechanism of Bajitian (Morindae officinalis Radix) treating Alzheimer's disease[J]. Chinese Archives of Traditional Chinese Medicine,2021,39(3):255−258,285-286.] JIANG Zhenyuan, WANG Zhonglin. Material basis and mechanism of Bajitian (Morindae officinalis Radix) treating Alzheimer's disease[J]. Chinese Archives of Traditional Chinese Medicine, 2021, 39(3): 255−258,285-286.
[22] 王星烨, 孔祥日, 金梦丽, 等. β-谷甾醇对阿尔茨海默病模型小鼠认知功能的改善作用及其机制[J]. 吉林大学学报(医学版,2023,49(3):599−607. [WANG Xinghua, KONG Xiangri, JIN Mengli, et al. Improvement effect of β-sitosterol on cognitive function in Alzheimer's disease model mice and its mechanism[J]. Journal of Jilin University (Medicine Edition),2023,49(3):599−607.] WANG Xinghua, KONG Xiangri, JIN Mengli, et al. Improvement effect of β-sitosterol on cognitive function in Alzheimer's disease model mice and its mechanism[J]. Journal of Jilin University (Medicine Edition), 2023, 49(3): 599−607.
[23] 刘涛, 胡海涛. 大黄素抗Aβ25~35诱导原代大鼠皮层细胞氧化应激损伤的机制[J]. 中国老年学杂志,2013,33(18):4475−4478. [LIU Tao, HU Haitao. Emodin anti-oxidative stress damage of rat cortical neurons induced by Aβ25~35[J]. Chinese Journal of Gerontology,2013,33(18):4475−4478.] doi: 10.3969/j.issn.1005-9202.2013.18.046 LIU Tao, HU Haitao. Emodin anti-oxidative stress damage of rat cortical neurons induced by Aβ25~35[J]. Chinese Journal of Gerontology, 2013, 33(18): 4475−4478. doi: 10.3969/j.issn.1005-9202.2013.18.046
[24] 刘晓涵, 肖凤霞, 陈永刚, 等. HPLC-ELSD法测定巴戟天有效成分巴戟甲素含量[J]. 中药新药与临床药理,2009,20(5):446−448. [LIU Xiaohan, XIAO Fengxia, CHEN Yonggang, et al. Determination of Bajijiasu in Morinda officinalis How. by HPLC-ELSD[J]. Traditional Chinese Drug Research and Clinical Pharmacology,2009,20(5):446−448.] doi: 10.3321/j.issn:1003-9783.2009.05.014 LIU Xiaohan, XIAO Fengxia, CHEN Yonggang, et al. Determination of Bajijiasu in Morinda officinalis How. by HPLC-ELSD[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2009, 20(5): 446−448. doi: 10.3321/j.issn:1003-9783.2009.05.014
[25] CHEN D L, ZHANG P, LIN L, et al. Protective effects of bajijiasu in a rat model of Aβ25-35-induced neurotoxicity[J]. Journal of Ethnopharmacology,2014,154(1):206−217. doi: 10.1016/j.jep.2014.04.004
[26] 方迎艳, 苏振宏, 司文霞, 等. 白藜芦醇治疗阿尔茨海默病的作用机制:基于网络药理学方法[J]. 南方医科大学学报,2021,41(1):10−19. [FANG Yingyan, SU Zhenhong, SI Wenxia, et al. Network pharmacology-based study of the therapeutic mechanism of resveratrol for Alzheimer's disease[J]. Journal of Southern Medical University,2021,41(1):10−19.] FANG Yingyan, SU Zhenhong, SI Wenxia, et al. Network pharmacology-based study of the therapeutic mechanism of resveratrol for Alzheimer's disease[J]. Journal of Southern Medical University, 2021, 41(1): 10−19.
[27] TECALCO-CRUZ A C, ZEPEDA-CERVANTES J, ORTEGA-DOMÍNGUEZ B. Estrogenic hormones receptors in Alzheimer's disease[J]. Molecular Biology Reports,2021,48(11):7517−7526. doi: 10.1007/s11033-021-06792-1
[28] MA W H, SU Y L, ZHANG P, et al. Identification of mitochondrial-related genes as potential biomarkers for the subtyping and prediction of Alzheimer's disease[J]. Frontiers in Molecular Neuroscience,2023,16:1205541. doi: 10.3389/fnmol.2023.1205541
[29] PRAMANIK S K, SANPHUI P, DAS A K, et al. Small-molecule Cdc25A inhibitors protect neuronal cells from death evoked by ngf deprivation and 6-hydroxydopamine[J]. ACS Chemical Neuroscience,2023,14(7):1226−1237. doi: 10.1021/acschemneuro.2c00474
[30] SINGH N, DAS B, ZHOU J, et al. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance[J]. Science Advacnes,2022,8(29):eabo3610.
[31] MANSOUR H M, FAWZY H M, EL-KHATIB A S, et al. Potential repositioning of anti-cancer EGFR inhibitors in Alzheimer's disease:Current perspectives and challenging prospects[J]. Neuroscience,2021,469:191−196. doi: 10.1016/j.neuroscience.2021.06.013
[32] LEÓN R, GUTIÉRREZ D A, PINTO C, et al. c-Abl tyrosine kinase down-regulation as target for memory improvement in Alzheimer's disease[J]. Frontiers in Aging Neuroscience,2023,15:1180987. doi: 10.3389/fnagi.2023.1180987
[33] FENG L, FU S H, YAO Y, et al. Roles for c-Abl in postoperative neurodegeneration[J]. International Journal of Medical Sciences,2022,19(12):1753−1761. doi: 10.7150/ijms.73740
[34] REGIER M, LIANG J, CHOI A, et al. Evidence for decreased nucleolar PARP-1 as an early marker of cognitive impairment[J]. Neural Plasticity,2019,2019:4383258.
-
期刊类型引用(1)
1. 邓君晖,杜翔鹰,谢颖苑,容世清,黄成文,唐振卫,陈浪. 巴戟天在粤西生态林下多种套种模式的生长影响. 热带林业. 2024(04): 32-37 . 百度学术
其他类型引用(0)