Research on the Stability of Pickering Emulsion and Its Application in Food Field
-
摘要: 皮克林(Pickering)乳液是一种由固体颗粒代替传统乳化剂形成的新型乳液体系,具有稳定性强、对环境友好、安全性高等天然优势,在食品、化妆品、化工材料、生物医药等多个领域一直备受青睐。本文阐述了Pickering乳液的稳定机制,在其基础上从六个方面主要讨论影响Pickering乳液稳定性的相关因素,分别为固体颗粒的类型、形状、浓度、表面电荷、油水相体积分数及湿润性;同时,总结了近几年Pickering乳液用于制备智能食品薄膜、防止脂质氧化、递送生物活性物质、合成分子印迹聚合物、实现双相催化、构建4D打印食品原材料的国内外研究成果,旨在为食品工业及其他相关领域的多元化发展提供理论依据和技术支撑。
-
关键词:
- Pickering乳液 /
- 稳定机制 /
- 影响因素 /
- 功能性 /
- 食品应用
Abstract: Pickering emulsions is a new emulsions system formed by replacing traditional emulsifiers with solid particles, which has some advantages such as strong stability, environmentally-friendly, high safety and so on. It has been highly favored in the fields of food, cosmetics, chemical materials and biomedicine. Based on the stability mechanism of Pickering emulsions, this review mainly discusses relevant factors affecting its stability from six aspects, including the type of solid particles, shape of solid particles, concentration of solid particles, surface charge of aqueous phase, volume fraction of oil-water phase and the wettability. Meanwhile, the achievements of domestic and overseas on Pickering emulsions are also summarized, including preparing the intelligent food films, preventing the lipid oxidation, delivering the bioactive substances, synthesizing the molecularly imprinted polymers, achieving biphasic catalysis, and constructing 4D printed food raw materials in recent years. This paper aims to provide theoretical basis and technical support to a certain extent for the diversified development of food industry and other related fields.-
Keywords:
- Pickering emulsions /
- stability mechanism /
- interfering factors /
- function /
- food application
-
乳液一般由互不相容的两相组成,一相(内相或分散相)以液滴形式分散到另一相(外相或连续相)中。传统乳液一般通过物理化学方式(如聚结、絮凝、奥氏熟化等)迫使油水相分离,属于热力学不稳定体系,因此,需借助乳化剂(吐温、司盘、双亲性高分子聚合物等)作用于油水界面来保持乳液稳定,然而这种乳化剂稳定性低、成本高、毒性强,使乳液在生产加工中受到了严重的限制。20世纪初,科学家Pickering[1]证明由无机固体颗粒稳定的石蜡油乳液,较传统乳液具有更好的稳定性,并以姓氏命名。固体颗粒不同于传统乳化剂,能够不可逆地吸附在两相界面中形成稳固的机械屏障(如图1所示),得到的乳液体系具有稳定性高、毒性低、环保性强、生物相容性好等优势,目前已被广泛应用于化妆品、医药、食品、化工、材料等多个领域。
目前,关于Pickering乳液食品领域发展前景十分可观,但关于稳定机制的研究仍然欠缺,本文在阐述Pickering乳液体系稳定机制的基础上,重点从固体颗粒的类型、形状、浓度、表面电荷、油水相体积分数、湿润性六个方面分析影响其稳定性的因素。同时,结合国内外食品领域发展现状,总结了Pickering乳液在制备智能食品薄膜、防止脂质氧化、递送生物活性物质、合成分子印迹聚合物、实现双相催化、构建4D打印食品原材料的应用进展,为Pickering乳液在食品工业领域的发展提供参考和依据。
1. Pickering乳液的稳定机制
Pickering乳液的稳定性是通过颗粒在两相界面上的吸附形成机械屏障,改变颗粒间的空间位阻而实现的,是一个热力学不可逆过程[2]。根据经典Bancroft定律[3]:
(1) 式中,△Gd为解吸自由能(J),r为颗粒半径(m),γo/w为油水界面张力(N/m),θ为三相接触角(°)。
从式(1)看出,解吸自由能和三相接触角、颗粒半径、界面张力密切相关。从热力学角度分析得出,当r和γo/w越大,θ越接近90°时,颗粒脱离界面的解吸能远大于热能,从而使乳液体系越稳定。相对于传统乳液,当位于界面间的固体颗粒吸附发生形变时,产生的横向毛细管压力可以防止颗粒分解并形成一种界面膜,位于界面间相邻却形状方向各异的颗粒产生的毛细管压力越强,界面能量也随之增强[4−5]。界面膜的形成是来自颗粒与颗粒之间以及颗粒与两相之间的相互作用力。颗粒与液滴之间在范德华力、静电、疏水等作用下形成多层吸附层或凝胶网络,并使吸附层具有一定的刚性、粘弹性和机械强度,降低颗粒的迁移速率,阻碍液滴絮凝和聚结,从而提供一道物理屏障促进了乳液的稳定性[2−3,6]。
2. 影响Pickering乳液稳定性的因素
2.1 固体颗粒类型
2.1.1 无机颗粒
无机颗粒是目前制备Pickering乳液使用最广泛的一类,如二氧化硅(Silica,SiO2)、二氧化钛(Titanium Dioxide,TiO2)、蒙脱土(Montmorillonite,MMT)、碳纳米管(Carbon Nanotubes,CNTs)等。SiO2具有易改性、耐酸碱、形态清晰、尺寸范围广等特点[7−8]。由于SiO2表面带有Si-OH基团[9],从而产生很强的亲水性,处于酸碱条件下则易聚集,乳液体系不稳定。因此,天然SiO2通常经由化学改性后使用[3]。TiO2是一种金属氧化物,且易加工、成本低。作为新型绿色高效的光催化和传感器材料之一[10−12],具有良好的化学稳定性、安全性和半导体性能。研究证明TiO2可增强油水界面覆盖率,形成更厚的界面吸附层,高效防止液滴间碰撞和聚结[13]。MMT由两片四面体SiO2和八面体Al(OH)3或Mg(OH)2组成[14],是一种粘土颗粒,储量丰富,具有良好的吸附性、表面积特异性和分散性能[15−16]。与SiO2相似,天然的MMT亲水性很强,也需将其改性才可使用[17],当与海藻酸钠(SA)复合后,该Pickering乳液表现出良好的分散性和稳定性[14]。CNTs因具有高机械强度、较大的比表面积以及良好的电气性能[18],使其成为一种理想的纳米材料。但由于疏水性较强,需改性使其更亲水来稳定油水界面,常见的改性方法是利用氧等离子体处理,引入亲水性官能团(羟基和羧基)[19−20],而Quynh等[21]利用动态共价平衡改性,通过3,5-二硝基苯基引入官能团作用于CNTs表面,一步制备稳定的Pickering乳液。
2.1.2 有机颗粒
有机颗粒中大多数为天然大分子物质,常常被用作制备食品级Pickering乳液,如蛋白质基颗粒、多糖基颗粒、多酚基颗粒、脂质基颗粒等。
2.1.2.1 蛋白质基颗粒
蛋白质基颗粒,如醇溶蛋白[22−26]、大豆蛋白[27−29]、乳清蛋白[30−31]、明胶[32]等,富含多种氨基酸,拥有良好的界面空间和乳化活性,其结构、可持续性、生物降解性及相容性深受研究者关注[33]。作为Pickering乳液稳定剂的优质原料,可通过氢键、范德华力、静电相互作用形成刚性物理屏障,还可通过不同的制备方法对蛋白质改性从而得到更稳定的Pickering乳液(见表1)。
表 1 部分蛋白质基颗粒稳定Pickering乳液的研究Table 1. Study on several protein based particles for stabilizing Pickering emulsions蛋白质名称 材料 油相 制备方法 乳液表现特征 参考文献 玉米醇溶蛋白 玉米醇溶蛋白/果胶 玉米油 反溶剂法,油体积比80%,10000 r/min,
高速剪切2 min突出粘弹性和氧化稳定性 [22] 玉米醇溶蛋白/
可溶性大豆多糖大豆油 70%乙醇溶液中溶解不同浓度Zein,
8000 r/min,高速剪切3 min在25 ℃下具有较高的稳定性 [23] 玉米醇溶蛋白/
亚麻籽胶玉米油 反溶剂法,超声波处理,15000 r/min,
高速分散3 min良好的储存稳定性 [24] 玉米醇溶蛋白/
纤维素纳米晶中链甘油三酯 溶剂蒸发法,18000 r/min,均化5 min 界面性质保持良好,乳液表现出良好的储存稳定性 [25] 麦醇溶蛋白 麦醇溶蛋白/阿拉伯胶 玉米油 一步法,70%乙醇溶液溶解,调节pH4.9,12000 r/min,高速剪切2 min 稳定的表观粘度,储能模量更高 [26] 大豆蛋白 大豆蛋白 大豆油 酸诱导自组装法,12000 r/min,
高速剪切2 min界面间保持稳定,聚集程度良好 [27] 大豆蛋白/花青素 大豆油 颗粒之间共价复合,调节pH为7.0后
10000 r/min,高速剪切2 min良好的储存稳定性 [28] 大豆蛋白/细菌纤维素纳米纤维 中链甘油三酯 以2:8的油水体积比制备,16000 r/min,
高速均化2 min良好的储存稳定性 [29] 乳清蛋白 乳清蛋白/乳清蛋白原纤维 大豆油 湿法磷酸纯化WPI,然后制备与WPI复合物溶液混合为油分数25%的乳液,
8000 r/min,高速均化2 min弹性凝胶状和高稳定性 [30] 乳清蛋白/植物甾醇 大豆油 抗溶剂法,8000 r/min,均质3 min 弹性凝胶状和高稳定性 [31] 明胶 明胶 大豆油 两步去溶剂法,13500 r/min,
混合均质1 min良好的储存稳定性 [32] 2.1.2.2 多糖基颗粒
多糖基颗粒也常用于稳定Pickering乳液(见表2)。淀粉作为一种天然植物多糖,由线性直链淀粉和分枝支链淀粉组成,具有生物降解、无刺激和无毒性等优势。然而天然的淀粉颗粒不适合直接稳定Pickering乳液,原因是淀粉颗粒中含有较多羟基结构,导致其疏水性较差[34−35]。因此,可通过辛烯基琥珀酸酐(Octenyl Succinic Anhydride,OSA)改善两亲性[36−37]。纤维素由β-1,4-D-吡喃葡萄糖的重复环组成,属于一种线性大分子,可再生性强[38]。将其经过强酸水解,去除无定形区得到的纤维素纳米晶(Cellulose Nanocrystals,CNCs),呈宽棒状或针状,具有高结晶度、高纵横比等特点[39],通过改性还可提高其乳化能力[40],Chen等[41]研究证明,改性后的CNCs即使存在于颗粒浓度非常低的水相中,也能制备出稳定的高内相Pickering乳液。壳聚糖(Chitosan,CS)是由无规则分布的脱乙酰基(β-(1→4)-D-葡萄糖胺)和乙酰化单元(N-乙酰基-D-葡萄糖胺)组成的多糖[42],也是天然多糖中唯一的阳离子多糖。在碱性条件下,壳聚糖的氨基基团去质子化,表面电荷降低,使壳聚糖自组装成胶体颗粒,吸附在油水界面,阻碍液滴聚集,成功稳定Pickering乳液[43]。另外,由于它独特的抗菌性、粘性、生物降解和生物相容性,在生物医药领域具有高开发前景[44]。
表 2 部分多糖基颗粒稳定Pickering乳液的研究Table 2. Study on several polysaccharide based particles for stabilizing Pickering emulsions糖类名称 材料 油相 制备方法 乳液表现特征 参考文献 淀粉 大米淀粉 中链甘油三酯 涡流混合将淀粉分散在水相中,添加油相,20000 r/min,
高速剪切1 min增强乳液稳定性 [45] 高粱淀粉 大豆油 用不同的油体积比和淀粉浓度制备乳液,16000 r/min
剪切油水混合物2 min良好的储存稳定性 [46] 纤维素 CNCs/姜黄素 红棕榈油 将姜黄素粉末溶解于油相中并在30 ℃下磁力搅拌12 h制备。
采用两步法,油水比为1:4的Pickering乳液良好的稳定性 [47] 壳聚糖 阿拉伯胶/
白芦藜醇橄榄油 离子凝胶法,将橄榄油缓慢加入纳米颗粒分散体,13500 r/min,
均化5~7 min增强乳液稳定性 [48] 海藻酸钠 棕榈油 将棕榈油精添加到壳聚糖颗粒分散液(pH6.9)中,5000 r/min,
均化5 min增强乳液稳定性 [49] 大麦醇溶蛋白 辛癸酸三酰甘油酯 抗溶剂沉淀法,pH5.0,10000 r/min,高速均化8 min 能够长期储存 [50] 阿拉伯胶 卵清蛋白 植物油 将紫苏籽油添加到复合物悬浮液中,复合物与油的质量比
达到1:4,17000 r/min,分散5 min。较强的稳定性和良好的分散性 [51] 壳聚糖 橄榄油 固定复合物浓度为1.5%(w/v),质量比为1:1,13500 r/min,
高速均化7 min良好的储存稳定性 [52] 果胶 卵清蛋白/
姜黄素橄榄油 复合物pH4.4,15000 r/min,1 min高速剪切制备 增强乳液稳定性 [53] 玉米醇溶蛋白 玉米油 抗溶剂沉淀法,pH4.0,将玉米油缓慢添加到复合物
悬浮液中,12000 r/min高速均质3 min增强乳液稳定性 [54] 2.1.2.3 多酚基颗粒
多酚基颗粒[55]是普遍存在于自然界中的植物次生代谢产物,具有不同数量芳香羟基环。利用多酚基颗粒制备Pickering乳液,可以提高多酚化合物的生物可及性,同时赋予Pickering乳液更多抗氧化、抗菌、抗炎等功能特性[28,48,55]。然而多酚基颗粒稳定Pickering乳液食品方面的研究目前不多见。Zhao等[56]制备松子油Pickering乳液,发现单宁酸和没食子酸两种酚类化合物均表现出最佳乳化能力,提高乳液氧化稳定性。由于单宁酸含有较多数量羟基基团,乳液稳定性方面表现更为显著。Noon等[57]制备芦丁水合物稳定的Pickering乳液,发现芦丁既可作为常规Pickering乳液稳定剂,还可作为抗氧化剂提高乳液氧化稳定性。
2.1.2.4 脂质基颗粒
脂质基颗粒具有高熔点和良好的界面活性,通常由熔融-冷却法制备而成。但因其疏水性较强,在制备乳液时,需加入少量表面活性剂或其它乳化剂,改善两亲性减少液滴聚结[58]。相关研究表明,由脂质基颗粒制备的Pickering乳液,相比传统乳液,表现的物理稳定性更强[59−61]。然而,截至目前脂质基颗粒应用于Pickering乳液的研究还较少,需在其类型、制备方法和稳定机制等方面加深探索。
2.1.2.5 植物甾醇
植物甾醇[31,62]也能稳定Pickering乳液体系,其主要来源于油脂含量高的植物性食物[63],是植物中特有的活性成分,也是细胞膜的基本成分,结构与胆固醇相关。Lan等[64]制备Pickering乳液中发现,将干燥的植物甾醇颗粒以微晶形式分散到油相中,这种界面结晶的形式能够高效促进乳液稳定。
2.2 固体颗粒形状
颗粒形状(球形和非球形)也是影响Pickering乳液稳定性的一个关键因素。球形颗粒,如SiO2、TiO2、多孔微球等,不仅易于制备,而且很容易吸附到油水界面,形成良好的空间位阻效应,提高乳液的稳定性;棒状颗粒与球形颗粒不同,颗粒间会因排列重叠形成一种毛细管作用力[65],而另一种波动导向力是由流体界面处能量激发毛细管波所引起的[66],因此,随着纵横比增加,颗粒间强烈的碰撞纠缠使其形成无序的网络结构[67],这成为稳定Pickering乳液的决定性因素;片状颗粒与2D界面相似,有相关研究表明,添加电解质或改变pH可降低片状颗粒的Zeta电位,使其更容易吸附到界面,形成稳固的凝胶网络,提高乳液的稳定性[68];盘状颗粒可通过液滴表面覆盖率来判断,覆盖能力越强,界面作用力越强,从而影响乳液的稳定性[69]。
2.3 固体颗粒浓度
固体颗粒浓度直接影响Pickering乳液体系的微观结构和流变学特性[2],如液滴尺寸、乳液粘弹性、颗粒堆积密度等。随着颗粒浓度增加,液滴表面粒子的吸附率增强,相应液滴的尺寸逐渐减小,液滴间的吸附层从最初稳定的融合状态逐渐形成单层颗粒吸附层,当液滴尺寸减小到一定值并保持不变时,此时液滴间形成多层吸附层或凝胶网络,这种凝胶网络有助于固定液滴,阻碍液滴碰撞聚结,提高乳液稳定性[3,6,58]。
2.4 表面电荷
Zeta电位一般可作为评定颗粒表面电荷能力的指标。乳液水相中的盐离子会对颗粒产生静电屏蔽作用,导致颗粒在界面间不可逆地吸附力和表面电荷发生改变,从而影响乳液的稳定性。当盐离子浓度过高时,存在较多反向离子,表面电荷会屏蔽并减小颗粒间的静电斥力,导致乳液体系不稳定[70−71];当盐离子浓度降至很低时,所产生的静电斥力可忽略不计。除了改变颗粒在界面间的作用力外,离子强度还能改变颗粒的疏水性使乳液体系保持稳定[72−73]。另外,pH也会使颗粒表面电荷发生变化,影响其静电相互作用,出现分散或絮凝现象,使乳液失稳[74]。
2.5 油相的选择及油水相体积分数
Sakiko等[75]研究N-异丙基丙烯酰胺颗粒与多种油类型(十六烷、庚烷和三氯乙烯)制备的Pickering乳液,结果证明这些油相均与水相表面形成连贯的颗粒层,表面覆盖率达到75%~100%,具有很强的吸附力,形成的O/W型Pickering乳液室温储存达到3个月以上。Zhang等[76]通过显微镜观察癸烷或十六烷制备的Pickering乳液发现,与使用癸烷相比,由十六烷制备的乳液液滴明显更大、更均匀。Liu等[77]和He等[78]从制备的Pickering乳液中发现,当增加油相体积分数时,乳液类型可从O/W转相成W/O,因此,油相的选择以及油水相比例决定了油水界面张力,并影响其与颗粒间的相互作用,从而影响乳液的稳定性。
2.6 湿润性
油水界面间的三相接触角(θ)通常作为Pickering乳液的湿润性及类型的评价指标。
(2) 式中,γp/o、γp/w和γo/w分别表示油、水以及油/水界面上的张力。
从杨氏方程[3]式(2)看出,θ与界面张力直接相关,并能决定乳液的类型和性质。当θ<90°时,颗粒亲水,倾向O/W型Pickering乳液;θ>90°时,颗粒疏水,倾向W/O型Pickering乳液[68];当θ接近90°时,此时颗粒呈两亲性,油水界面达到良好的稳定状态,同时颗粒吸附到界面的能量最高;当θ为0°或180°时,颗粒可能会全部分散在水相或者油相中,导致絮凝或沉淀,乳液难以达到稳定状态,使乳液失稳[7,68]。
3. Pickering乳液在食品领域的应用
3.1 制备智能食品薄膜
在食品包装行业中,一般选择薄膜来隔离分解微生物细菌和外来污染物的侵入。近年来,智能食品包装激发了研究者的兴趣,其优势在于利用生物传感器对食物新鲜度的监测和追踪,为食品安全和人体健康提供有效保障[79]。Wang等[80]利用明胶颗粒通过两步去溶剂法制备Pickering乳液,并制备成双功能智能食品包装膜。结果表明,该膜表现出优异的抗菌、抗氧化性以及良好的机械性和避光性。该方法对pH/NH3快速准确、可逆的响应以及对颜色敏感的切换(黄色→红色),与监测富含蛋白质食物新鲜度的标准方法(TVB-N)相比,成功抑制其微生物生长,达到了延长保质期的目的(如图2所示)。Liu等[81]将肉桂油Pickering乳液和姜黄素(Curcumin, Cur)加入明胶/壳聚糖膜基质中,制备一种智能生物质复合膜。相关研究结果表明,该膜具有良好的机械性、优异的抗菌、抗氧化活性、以及水蒸气和紫外线阻隔性;利用TVB-N监测Cur样品膜对猪肉的保鲜效果,颜色从亮棕色切换成暗棕色,延缓了猪肉的腐败程度,这些结果为肉类食品包装应用提供一种新策略。Liu等[82]将负载Cur的Pickering乳液与玉米淀粉和聚乙烯醇基质结合,制备了智能食品包装膜。结果表明,该膜具备的抗氧化活性,可以减少Cur在制备和储存过程中的分解。随着时间的变化,负载Cur的Pickering乳液所制备的薄膜比Cur溶液制备的薄膜颜色变化更明显(黄色→红色)。食品新鲜度监测是食品加工生产中备受重视的问题,利用改性的天然生物材料制备的Pickering乳液和智能包装结合既满足了低成本、绿色环保等发展理念,同时,对食品安全和营养健康具有重要意义。
3.2 防止脂质氧化
脂质氧化过程是一种自由基链式反应,常常伴随初级(氢过氧化物)和次级氧化产物(醛和酮)的形成,这些有毒物质严重影响食品的外观口感和营养健康[83]。Pickering乳液体系中,由固体颗粒构成的界面层是控制脂质氧化的有效方法。利用界面间固体颗粒相互作用形成的致密层充当保护屏障,可以有效防止氧化剂的攻击[84]。Wang等[85]研究了明胶与儿茶素之间相互作用制备出的Pickering乳液(如图3所示)中,利用氢键、疏水键和共价键的结合能够稳定吸附在油水界面,经氧化剂作用12 d后,初级氧化产物含量仅为1.39±0.12 μmmol/L,与脂质过氧化抑制率整体变化趋势一致,为保护功能成分免受氧化攻击提供一种新方法。Wang等[86]采用米糠改性小麦面筋纳米粒子制备的Pickering乳液,在37 ℃储存20 d后,该Pickering乳液界面间形成的物理屏障使初级氧化物含量从1059.0±35.5 mmol/kg降至726.6±66.9 mmol/kg,次级氧化物含量从278.6±6.2 μmol/kg降至132.2±7.5 μmol/kg,成功延缓脂质氧化。Huang等[87]利用CS和酪蛋白磷酸肽制备的高内相Pickering乳液(High Internal Phase Pickering Emulsions,HIPPEs),所形成致密的界面层,使乳液在储存和消化过程中抑制了脂质氧化。结果表明,初级氧化产物含量和次级氧化物含量分别为13和1 mmol/kg,经60 ℃储存10 h后,初级氧化产物含量远低于20 mmol/kg。如今,关于控制食物中脂质氧化速率的问题仍是一项重大挑战,可利用Pickering乳液体系开发更多不同方法,为加工延长保质期的食品提供实际应用。
3.3 递送生物活性物质
生物活性物质,如类胡萝卜素、脂肪酸、植物甾醇、多酚和维生素等,极易受到光、酶、极端pH、高温和氧气的影响,在食品加工中受到限制。Pickering乳液体系经研究证实可提高生物活性物质的稳定性,Han等[88]制备壳聚糖/阿拉伯胶纳米颗粒稳定的Pickering乳液用于评估对Cur的输送情况,该乳液利用颗粒间的静电相互作用使油水界面保持稳定,体外模拟胃液和小肠对Cur的控制释放得出94%的高包封率,成功证明Pickering乳液可作为Cur的递送系统。Wei等[89]利用颗粒-生物聚合物-表面活性剂混合制备新型Pickering乳液用于递送β-胡萝卜素。结果表明,该乳液中三种不同乳化剂的共存可诱导界面处竞争性位移、多层沉积和颗粒间网络形成。在紫外照射条件下,β-胡萝卜素的保留率增加了2倍且持续8 h,实现了高效递送。Lv等[90]用高压诱导法制备一种Pickering乳液凝胶(如图4所示),用于评估番茄红素的体外释放情况。结果表明,在模拟胃肠期阶段前30 min快速释放番茄红素,并在剩余时间内保持恒定的释放速率,由此证明该Pickering乳液凝胶作为递送系统具有一定的控释潜力。基于健康和绿色生活理念导向,Pickering乳液在递送生物活性物质方面尚具有开发前景,进一步研究需深入探讨靶向递送生物活性物质的作用效果,实现理论与实践双突破。
3.4 合成分子印迹聚合物
食品加工过程中违规使用抗生素、农药残留超标、过量使用添加剂对人体健康和食品安全带来许多不良影响。分子印迹技术是一种对目标模板匹配并进行选择性识别[91−92],合成分子印迹聚合物(Molecularly Imprinted Polymers, MIPs)的方法,已广泛应用于食品样品分析检测。MIPs通常在有机溶剂中聚合,使用过多有机溶剂损失成本且对环境有害[93],利用Pickering乳液体系聚合既简单高效又经济环保,同时为食品检测提供新途径。Li等[94]通过β-环糊精稳定O/W型Pickering乳液聚合制备球型MIPs,用于红霉素的选择性识别和吸附。吸附动力学研究表明,该MIPs的快速吸附特性和模式遵循伪一阶模型,拟合良好,牛奶样品中红霉素的吸附容量为51.45 mg/g,接近目标值(55.26 mg/g),成功证明该Pickering乳液聚合的MIPs具有良好的吸附能力,可以作为食品中红霉素残留检测的一项候选。Zhang等[95]利用Pickering乳液体系聚合成虚拟分子印迹微球(DMIM) (如图5所示),用于鱼类样品中三种唑类杀菌剂的预处理。静态吸附实验结果表明,该DMIM对克林巴唑(CBZ)、克霉唑(CMZ)和咪康唑(MNZ)可进行良好的识别,并作为一种固相分散萃取吸附剂对CBZ、CMZ和MNZ进行分离检测,高效液相色谱显示,在225 nm处CBZ、CMZ和MNZ检出限分别为0.045、0.036和0.033 μg/g,这些结果证明,该DMIM对鱼类中唑类杀菌剂的预处理具有良好的应用前景。陈波等[96]利用Pickering乳液制备MIPs用于苹果中丁香菌酯的检测。结果表明,该MIPs遵循伪二级动力学模型,并作为固相分散萃取吸附剂分离检测苹果中的丁香菌酯,高效液相色谱显示,在320 nm处检出限为0.02 mg/kg,回收率达到86.52%~103.28%,成功为其在丁香菌酯的残留检测应用奠定基础。对于食品中蔬菜、水果、牛奶的生物残留,Pickering乳液合成MIPs是一种极具潜力的分析工具,未来应开发多类别、多分析物提取能力的方法,以便更好、更快地适应商业化发展。
3.5 实现双相催化
为提高鲜奶油、人造黄油、复原乳等食品在生产加工过程中的催化效率[97],Pickering乳液体系可作为绿色化学转化成高级催化系统的必选途径,利用其高界面层和高稳定性的内在优势与双相催化系统(Biphasic Systems,BS)[97−98]相结合,有利于固体颗粒和催化剂的回收利用。Huang等[99]利用CS纳米凝胶制备的Pickering乳液用于评估其催化能力。结果表明,脂肪酶与CS纳米凝胶的非共价结合,经过水解、酯化、脱酸,催化活性最高约80%,pH6.5时稳定性最强,经13次循环后仍保持55%的催化活性。Yu等[100]利用乙基纤维素壳聚糖复合颗粒(ECCPs)制备W/O型Pickering乳液,将其用于可循环式生物催化微反应器(如图6所示)。结果表明,随着水含量增加,该乳液的类型可从W/O转相为W/O/W和O/W,酯化反应的转化率在30 min达到64.6%,120 min达到88.3%。以脂肪酶催化己酸己酯模型,催化活性提高6.3倍,经15次循环后仍保持81%稳定值。Xi等[101]利用酪蛋白酸钠颗粒结合CO2响应制备Pickering乳液评估其催化能力。结果表明,该乳液经交替循环30多次后,回收的酶仍保持催化活性,每个循环后转化率超过90%,表现出的高反应效率,为食品转化工艺提供有利依据。先进的BS对于绿色可持续发展的食品工业具有潜在的应用前景,需开发更多天然材料制备Pickering乳液的方法,与BS的稳定性、功能性相结合,为食品加工生产实现更实用和商业化的转化。
3.6 构建4D打印食品原材料
4D打印是一种新兴附加制造技术,具备3D打印传统方法的全部优势,由Tibbits教授在2013年首次提出[102]。如今,4D打印食品技术可能更具吸引力,它可通过环境或人工刺激(如温度、pH、水、紫外、光等)的响应,使3D打印对象(第四维)的状态随时间发生物理或化学变化[103],不仅增强3D打印食品的营养价值,满足消费者饮食各异的偏好需求[104],还可定制功能营养食物维护健康和预防疾病[105]。Cen等[106]利用pH敏感的Cur制备Pickering乳液用于4D打印。当油相体积65%,复合物质量比2:2,浓度为2%时,该乳液表现出强大的凝胶网络结构和高粘弹性,满足4D打印的先决条件。加入Cur后,通过温度刺激,pH升高,样品颜色的变化(黄色→红色)成功验证其4D打印性能。Jiang等[107]利用植物甾醇制备了具有双支架网络结构的Pickering乳液凝胶(如图7所示)。结果表明,双支架网络分别由氢键和结晶形式构成。该乳液凝胶代替可可脂制备巧克力制品,表现出的高粘弹性和低油含量成功为4D打印奠定基础。当热诱导目标底部时,外壁逐渐熔化并掉落,其形状的变化实现4D打印效果,同时为加工低脂食品增添新的可能性。Li等[108]制备基于β-环糊精的HIPPEs,用于实现4D打印的颜色转换。结果表明,随着β-环糊精浓度的增加,小液滴紧密堆积,乳液表现出更高的粘弹性和印刷性;随着油相和水相分别加入Cur和NaHCO3,调节温度、时间、NaHCO3浓度,样品颜色从亮黄色转变为红棕色,成功验证其4D打印性能。在目前的研究中,3D打印技术结合Pickering乳液制备的食品会受温度等环境因素影响无法轻易改变形状,而4D打印结合Pickering乳液可以克服这种限制。随着时间的推移,4D打印技术通过对温度、湿度等变化做出响应,根据消费者爱好需求改变食品感官特性,带来不一样的用餐乐趣,尤其对胃口不佳的儿童具有实际意义。
4. 结论
Pickering乳液作为一种新型乳液体系,稳定性与固体颗粒、形状、浓度、表面电荷、湿润性、油相体积分数等因素密切相关,为了控制这些因素,进一步提高Pickering乳液稳定性,经常利用多种因素协同稳定Pickering乳液的机制,使其能够更稳定地存在于复杂的体系,促进Pickering乳液在多方面领域的应用。
近年来,消费者对健康养生的意识有所提高,食品行业个性化营养需求强劲。Pickering乳液在食品等方面的应用日益成熟,其优良性能已被多项研究证实,为精准营养、农残检测、绿色化学等领域的发展提供了更多可能。但因技术限制仍存在很多不足,例如,4D打印食品加工时间长,而随着5D、6D打印技术的发展或可弥补;从乳液中递送营养物质的控释与保留还需深入探索,尤其对特殊人群要避免引起不良过敏反应,应多评价其安全和有效性;MIPs面对复杂的样品分析检测仍具挑战性,应开发更多高选择性和高亲和力的分子印迹材料与Pickering乳液应用结合。总而言之,未来应注重挖掘高新技术,开发多种不同功能类型的Pickering乳液,以期为食品工业和其他相关领域实现多元化、商业化应用提供新思路。
-
表 1 部分蛋白质基颗粒稳定Pickering乳液的研究
Table 1 Study on several protein based particles for stabilizing Pickering emulsions
蛋白质名称 材料 油相 制备方法 乳液表现特征 参考文献 玉米醇溶蛋白 玉米醇溶蛋白/果胶 玉米油 反溶剂法,油体积比80%,10000 r/min,
高速剪切2 min突出粘弹性和氧化稳定性 [22] 玉米醇溶蛋白/
可溶性大豆多糖大豆油 70%乙醇溶液中溶解不同浓度Zein,
8000 r/min,高速剪切3 min在25 ℃下具有较高的稳定性 [23] 玉米醇溶蛋白/
亚麻籽胶玉米油 反溶剂法,超声波处理,15000 r/min,
高速分散3 min良好的储存稳定性 [24] 玉米醇溶蛋白/
纤维素纳米晶中链甘油三酯 溶剂蒸发法,18000 r/min,均化5 min 界面性质保持良好,乳液表现出良好的储存稳定性 [25] 麦醇溶蛋白 麦醇溶蛋白/阿拉伯胶 玉米油 一步法,70%乙醇溶液溶解,调节pH4.9,12000 r/min,高速剪切2 min 稳定的表观粘度,储能模量更高 [26] 大豆蛋白 大豆蛋白 大豆油 酸诱导自组装法,12000 r/min,
高速剪切2 min界面间保持稳定,聚集程度良好 [27] 大豆蛋白/花青素 大豆油 颗粒之间共价复合,调节pH为7.0后
10000 r/min,高速剪切2 min良好的储存稳定性 [28] 大豆蛋白/细菌纤维素纳米纤维 中链甘油三酯 以2:8的油水体积比制备,16000 r/min,
高速均化2 min良好的储存稳定性 [29] 乳清蛋白 乳清蛋白/乳清蛋白原纤维 大豆油 湿法磷酸纯化WPI,然后制备与WPI复合物溶液混合为油分数25%的乳液,
8000 r/min,高速均化2 min弹性凝胶状和高稳定性 [30] 乳清蛋白/植物甾醇 大豆油 抗溶剂法,8000 r/min,均质3 min 弹性凝胶状和高稳定性 [31] 明胶 明胶 大豆油 两步去溶剂法,13500 r/min,
混合均质1 min良好的储存稳定性 [32] 表 2 部分多糖基颗粒稳定Pickering乳液的研究
Table 2 Study on several polysaccharide based particles for stabilizing Pickering emulsions
糖类名称 材料 油相 制备方法 乳液表现特征 参考文献 淀粉 大米淀粉 中链甘油三酯 涡流混合将淀粉分散在水相中,添加油相,20000 r/min,
高速剪切1 min增强乳液稳定性 [45] 高粱淀粉 大豆油 用不同的油体积比和淀粉浓度制备乳液,16000 r/min
剪切油水混合物2 min良好的储存稳定性 [46] 纤维素 CNCs/姜黄素 红棕榈油 将姜黄素粉末溶解于油相中并在30 ℃下磁力搅拌12 h制备。
采用两步法,油水比为1:4的Pickering乳液良好的稳定性 [47] 壳聚糖 阿拉伯胶/
白芦藜醇橄榄油 离子凝胶法,将橄榄油缓慢加入纳米颗粒分散体,13500 r/min,
均化5~7 min增强乳液稳定性 [48] 海藻酸钠 棕榈油 将棕榈油精添加到壳聚糖颗粒分散液(pH6.9)中,5000 r/min,
均化5 min增强乳液稳定性 [49] 大麦醇溶蛋白 辛癸酸三酰甘油酯 抗溶剂沉淀法,pH5.0,10000 r/min,高速均化8 min 能够长期储存 [50] 阿拉伯胶 卵清蛋白 植物油 将紫苏籽油添加到复合物悬浮液中,复合物与油的质量比
达到1:4,17000 r/min,分散5 min。较强的稳定性和良好的分散性 [51] 壳聚糖 橄榄油 固定复合物浓度为1.5%(w/v),质量比为1:1,13500 r/min,
高速均化7 min良好的储存稳定性 [52] 果胶 卵清蛋白/
姜黄素橄榄油 复合物pH4.4,15000 r/min,1 min高速剪切制备 增强乳液稳定性 [53] 玉米醇溶蛋白 玉米油 抗溶剂沉淀法,pH4.0,将玉米油缓慢添加到复合物
悬浮液中,12000 r/min高速均质3 min增强乳液稳定性 [54] -
[1] PICKERING S U. CXCVI.—Emulsions[J]. Journal of the Chemical Society, Transactions,1907,91:2001−2021. doi: 10.1039/CT9079102001
[2] LI W, JIAO B, LI S, et al. Recent advances on pickering emulsions stabilized by diverse edible particles:Stability mechanism and applications[J]. Frontiers in Nutrition,2022,9:864943. doi: 10.3389/fnut.2022.864943
[3] LINKE C, DRUSCH S. Pickering emulsions in foods-opportunities and limitations[J]. Critical Reviews in Food Science and Nutrition,2018,58(12):1971−1985. doi: 10.1080/10408398.2017.1290578
[4] COSSU A, WANG M S, CHAUDHARI A, et al. Antifungal activity against Candida albicans of starch Pickering emulsion with thymol or amphotericin B in suspension and calcium alginate films[J]. International Journal of Pharmaceutics,2015,493(1):233−242.
[5] GAO Z, ZHAO J, HUANG Y, et al. Edible Pickering emulsion stabilized by protein fibrils. Part 1:Effects of pH and fibrils concentration[J]. LWT-Food Science and Technology,2017,76:1−8. doi: 10.1016/j.lwt.2016.10.038
[6] CHEN L, AO F, GE X, et al. Food-grade pickering emulsions:Preparation, stabilization and applications[J]. Molecules,2020,25(14):3202. doi: 10.3390/molecules25143202
[7] LAM S, VELIKOV K P, VELEV O D. Pickering stabilization of foams and emulsions with particles of biological origin[J]. Current Opinion in Colloid & Interface Science,2014,19(5):490−500.
[8] YANG Y, FANG Z, CHEN X, et al. An overview of pickering emulsions:Solid-particle materials, classification, morphology, and applications[J]. Front Pharmacol,2017,8:287. doi: 10.3389/fphar.2017.00287
[9] BINKS B P, LUMSDON S O. Stability of oil-in-water emulsions stabilised by silica particles[J]. Physical Chemistry Chemical Physics,1999,1(12):3007−3016. doi: 10.1039/a902209k
[10] WANG Y W, CHEN C W, HSIEH J H, et al. Preparation of Ag/TiO2 composite foams via Pickering emulsion for bactericide and photocatalysis[J]. Ceramics International,2017,43:S797−S801. doi: 10.1016/j.ceramint.2017.05.290
[11] FESSI N, NSIB M F, CHEVALIER Y, et al. Pickering emulsions of fluorinated TiO2:A new route for intensification of photocatalytic degradation of nitrobenzene[J]. Langmuir,2020,36(45):13545−13554. doi: 10.1021/acs.langmuir.0c02285
[12] 林正远. 光催化纳米二氧化钛材料及其应用[J]. 中国新通信,2019,21(1):226−227. [LIN Z Y. Photocatalytic nanometer titanium dioxide and its application[J]. China New Telecommunications,2019,21(1):226−227. doi: 10.3969/j.issn.1673-4866.2019.01.180 LIN Z Y . Photocatalytic nanometer titanium dioxide and its application[J]. China New Telecommunications,2019 ,21 (1 ):226 −227 . doi: 10.3969/j.issn.1673-4866.2019.01.180[13] GONG H, ZHOU Q, LIN F, et al. Preparation and application of uniform TiO2 electrospun nanofiber based on Pickering emulsion stabilized by TiO2/amphiphilic sodium alginate/polyoxyethylene[J]. Journal of Dispersion Science and Technology, 2022:1−12.
[14] WANG J, DENG H, SUN Y, et al. Montmorillonite and alginate co-stabilized biocompatible Pickering emulsions with multiple-stimulus tunable rheology[J]. J Colloid Interface Sci,2020,562:529−539. doi: 10.1016/j.jcis.2019.11.081
[15] PEITO S, PEIXOTO D, FERREIRA-FARIA I, et al. Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications[J]. Int J Pharm,2022,615:121455. doi: 10.1016/j.ijpharm.2022.121455
[16] MACHADO J P E, DE FREITAS R A, WYPYCH F. Layered clay minerals, synthetic layered double hydroxides and hydroxide salts applied as Pickering emulsifiers[J]. Applied Clay Science,2019,169:10−20. doi: 10.1016/j.clay.2018.12.007
[17] CHEN Q, YANG Z, TAI X, et al. Study on influencing factors of Pickering emulsion stabilized by modified montmorillonite and fatty alcohol polyoxyethylene ether[J]. Journal of Dispersion Science and Technology, 2021:1−9.
[18] DE VOLDER M F, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes:Present and future commercial applications[J]. Science,2013,339(6119):535−539. doi: 10.1126/science.1222453
[19] CHEN W, LIU X, LIU Y, et al. Novel synthesis of self-assembled CNT microcapsules by O/W Pickering emulsions-science direct[J]. Materials Letters,2010,64(23):2589−2592. doi: 10.1016/j.matlet.2010.08.052
[20] CHEN W, LIU X, LIU Y, et al. Preparation of O/W Pickering emulsion with oxygen plasma treated carbon nanotubes as surfactants[J]. Journal of Industrial & Engineering Chemistry,2011,17(3):455−460.
[21] NGO Q P, HE M, CONCELLON A, et al. Reconfigurable Pickering emulsions with functionalized carbon nanotubes[J]. Langmuir,2021,37(27):8204−8211. doi: 10.1021/acs.langmuir.1c00904
[22] ZHOU F Z, HUANG X N, WU Z L, et al. Fabrication of zein/pectin hybrid particle-stabilized Pickering high internal phase emulsions with robust and ordered interface architecture[J]. Journal of Agricultural and Food Chemistry,2018,66(42):11113−11123. doi: 10.1021/acs.jafc.8b03714
[23] GAO J, LIANG H, LI S, et al. Development of zein/soluble soybean polysaccharide nanoparticle-stabilized Pickering emulsions[J]. Journal of Food Science,2021,86(5):1907−1916. doi: 10.1111/1750-3841.15730
[24] LI Y, XU G, LI W, et al. The role of ultrasound in the preparation of zein nanoparticles/flaxseed gum complexes for the stabilization of Pickering emulsion[J]. Foods,2021,10(9):1990. doi: 10.3390/foods10091990
[25] WEI Y, LIU Z, GUO A, et al. Zein colloidal particles and cellulose nanocrystals synergistic stabilization of Pickering emulsions for delivery of β-carotene[J]. Journal of Agricultural and Food Chemistry,2021,69(41):12278−12294. doi: 10.1021/acs.jafc.0c07800
[26] MA L, ZOU L, MCCLEMENTS D J, et al. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers:Gliadin nanoparticles/gum Arabic[J]. Food Hydrocolloids,2020,100:105381. doi: 10.1016/j.foodhyd.2019.105381
[27] BI C H, CHI S Y, ZHOU T, et al. Characterization of a novel high internal phase Pickering emulsions stabilized by soy protein self-assembled gel particles[J]. Frontiers in Nutrition,2021,8:795396. doi: 10.3389/fnut.2021.795396
[28] JU M, ZHU G, HUANG G, et al. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles[J]. Food Hydrocolloids,2020,99:105329. doi: 10.1016/j.foodhyd.2019.105329
[29] ZHANG X, WU Y, LI Y, et al. Effects of the interaction between bacterial cellulose and soy protein isolate on the oil-water interface on the digestion of the Pickering emulsions[J]. Food Hydrocolloids,2022,126:107480. doi: 10.1016/j.foodhyd.2021.107480
[30] JIANG F, PAN Y, PENG D, et al. Tunable self-assemblies of whey protein isolate fibrils for Pickering emulsions structure regulation[J]. Food Hydrocolloids,2022,124:107264. doi: 10.1016/j.foodhyd.2021.107264
[31] ZHOU S, HAN L, LU K, et al. Whey protein isolate-phytosterols nanoparticles:Preparation, characterization, and stabilized food-grade Pickering emulsions[J]. Food Chemistry,2022,384:132486. doi: 10.1016/j.foodchem.2022.132486
[32] FENG X, DAI H, MA L, et al. Food-grade gelatin nanoparticles:preparation, characterization, and preliminary application for stabilizing Pickering emulsions[J]. Foods,2019,8(10):479. doi: 10.3390/foods8100479
[33] DU Z, LI Q, LI J, et al. Self-assembled egg yolk peptide micellar nanoparticles as a versatile emulsifier for food-grade oil-in-water Pickering nanoemulsions[J]. Journal of Agricultural and Food Chemistry,2019,67(42):11728−11740. doi: 10.1021/acs.jafc.9b04595
[34] YU Z Y, JIANG S W, ZHENG Z, et al. Preparation and properties of OSA-modified taro starches and their application for stabilizing Pickering emulsions[J]. International Journal of Biological Macromolecules,2019,137:277−285. doi: 10.1016/j.ijbiomac.2019.06.230
[35] ZHENG W, REN L, HAO W, et al. Encapsulation of indole-3-carbinol in Pickering emulsions stabilized by OSA-modified high amylose corn starch:Preparation, characterization and storage stability properties[J]. Food Chemistry,2022,386:132846. doi: 10.1016/j.foodchem.2022.132846
[36] ESTRADA-FERNÁNDEZ A G, DORANTES-BAUTISTA G, ROMÁN-GUERRERO A, et al. Modification of Oxalis tuberosa starch with OSA, characterization and application in food-grade Pickering emulsions[J]. Journal of Food Science and Technology,2021,58(8):2896−2905. doi: 10.1007/s13197-020-04790-y
[37] LI S, ZHANG B, TAN C P, et al. Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels:Preparation, microstructure and gelling mechanism[J]. Food Hydrocolloids,2019,91:40−47. doi: 10.1016/j.foodhyd.2019.01.001
[38] GARCíA A, GANDINI A, LABIDI J, et al. Industrial and crop wastes:A new source for nanocellulose biorefinery[J]. Industrial Crops and Products,2016,93:26−38. doi: 10.1016/j.indcrop.2016.06.004
[39] 陈安祥, 宗毓东, 王金霞, 等. 纤维素稳定皮克林乳液的研究及在食品领域中的应用[J/OL]. 食品科学:1−13[2023-04-09]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220613.1104.083.html. [CHEN A X, ZONG Y D, WANG J X, et al. Research on cellulose stabilized Pickering emulsion and its application in food field[J/OL]. Food Science:1−13 [2023-04-09]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220613.1104.083.html. CHEN A X, ZONG Y D, WANG J X, et al. Research on cellulose stabilized Pickering emulsion and its application in food field[J/OL]. Food Science: 1−13 [2023-04-09]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220613.1104.083.html.
[40] 汤洋, 高成成, 张岩, 等. 多糖基颗粒稳定的Pickering乳液凝胶研究进展[J]. 食品科学,2022,43(3):341−351. [TANG Y, GAO C C, ZHANG Y, et al. A review of literature on Pickering emulsion gels stabilized by polysaccharide-based particles[J]. Food Science,2022,43(3):341−351. doi: 10.7506/spkx1002-6630-20201030-316 TANG Y, GAO C C, ZHANG Y, et al . A review of literature on Pickering emulsion gels stabilized by polysaccharide-based particles[J]. Food Science,2022 ,43 (3 ):341 −351 . doi: 10.7506/spkx1002-6630-20201030-316[41] CHEN Q H, ZHENG J, XU Y T, et al. Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals[J]. Food Hydrocolloids,2018,75:125−130. doi: 10.1016/j.foodhyd.2017.09.005
[42] PARHI R. Drug delivery applications of chitin and chitosan:A review[J]. Environmental Chemistry Letters,2020,18(3):577−594. doi: 10.1007/s10311-020-00963-5
[43] SHARKAWY A, BARREIRO M F, RODRIGUES A E. Chitosan-based Pickering emulsions and their applications:A review[J]. Carbohydrate Polymers,2020,250:116885. doi: 10.1016/j.carbpol.2020.116885
[44] MWANGI W W, HO K W, TEY B T, et al. Effects of environmental factors on the physical stability of Pickering-emulsions stabilized by chitosan particles[J]. Food Hydrocolloids,2016,60:543−550. doi: 10.1016/j.foodhyd.2016.04.023
[45] MATOS M, MAREFATI A, BARRERO P, et al. Resveratrol loaded Pickering emulsions stabilized by OSA modified rice starch granules[J]. Food Research International,2021,139:109837. doi: 10.1016/j.foodres.2020.109837
[46] ZHANG J, RAN C, JIANG X, et al. Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch[J]. LWT-Food Science and Technology,2021(8):112320.
[47] AW Y Z, LIM H P, LOW L E, et al. Cellulose nanocrystal (CNC)-stabilized Pickering emulsion for improved curcumin storage stability[J]. LWT,2022,159:113249. doi: 10.1016/j.lwt.2022.113249
[48] SHARKAWY A, CASIMIRO F M, BARREIRO M F, et al. Enhancing trans-resveratrol topical delivery and photostability through entrapment in chitosan/gum Arabic Pickering emulsions[J]. International Journal of Biological Macromolecules,2020,147:150−159. doi: 10.1016/j.ijbiomac.2020.01.057
[49] LIM H P, HO K W, SURJIT SINGH C K, et al. Pickering emulsion hydrogel as a promising food delivery system:Synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery[J]. Food Hydrocolloids,2020,103:105659. doi: 10.1016/j.foodhyd.2020.105659
[50] LI F, LI X, HUANG K, et al. Preparation and characterization of Pickering emulsion stabilized by hordein-chitosan complex particles[J]. Journal of Food Engineering,2021,292:110275. doi: 10.1016/j.jfoodeng.2020.110275
[51] LI K Y, ZHOU Y, HUANG G Q, et al. Preparation of powdered oil by spray drying the Pickering emulsion stabilized by ovalbumin-gum Arabic polyelectrolyte complex[J]. Food Chemistry,2022,391:133223. doi: 10.1016/j.foodchem.2022.133223
[52] SHARKAWY A, BARREIRO M F, RODRIGUES A E. Preparation of chitosan/gum Arabic nanoparticles and their use as novel stabilizers in oil/water Pickering emulsions[J]. Carbohydrate Polymers,2019,224:115190. doi: 10.1016/j.carbpol.2019.115190
[53] WANG L, ZHANG H, LI H, et al. Fabrication and digestive characteristics of high internal phase Pickering emulsions stabilized by ovalbumin-pectin complexes for improving the stability and bioaccessibility of curcumin[J]. Food Chemistry,2022,389:133055. doi: 10.1016/j.foodchem.2022.133055
[54] ZHANG W, GU X, LIU X, et al. Fabrication of Pickering emulsion based on particles combining pectin and zein:Effects of pectin methylation[J]. Carbohydrate Polymers,2021,256:117515. doi: 10.1016/j.carbpol.2020.117515
[55] 蓝漫钰, 欧仕益, 刘付. 多酚基颗粒稳定Pickering乳液的研究进展[J]. 中国食品学报,2021,21(11):290−300. [LAN M Y, OU S Y, LIU F. Research advances on Pickering emulsions stabilized by polyphenol-based particles[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(11):290−300. doi: 10.16429/j.1009-7848.2021.11.032 LAN M Y, OU S Y, LIU F . Research advances on Pickering emulsions stabilized by polyphenol-based particles[J]. Journal of Chinese Institute of Food Science and Technology,2021 ,21 (11 ):290 −300 . doi: 10.16429/j.1009-7848.2021.11.032[56] ZHAO X L, BAO Y H, GUO Y, et al. Effect of phenolic compounds and hydroxyl content on the physicochemical properties of pine nut oil Pickering emulsions[J]. Journal of the Science of Food and Agriculture,2022,102(13):5814−5825. doi: 10.1002/jsfa.11931
[57] NOON J, MILLS T B, NORTON I T. The use of antioxidant rutin hydrate Pickering particles to combat lipid oxidation in O/W emulsions[J]. Journal of Food Engineering,2020,274:109830. doi: 10.1016/j.jfoodeng.2019.109830
[58] 李海明, 杨盛, 韦何雯, 等. 食品级Pickering乳液的研究进展[J]. 食品科学,2015,36(19):265−270. [LI H M, YANG S, WEI H W, et al. Food grade pickering emulsion:A review[J]. Food Science,2015,36(19):265−270. doi: 10.7506/spkx1002-6630-201519048 LI H M, YANG S, WEI H W, et al . Food grade pickering emulsion: A review[J]. Food Science,2015 ,36 (19 ):265 −270 . doi: 10.7506/spkx1002-6630-201519048[59] SCHRÖDER A, SPRAKEL J, SCHROËN K, et al. Coalescence stability of Pickering emulsions produced with lipid particles:A microfluidic study[J]. Journal of Food Engineering,2018,234:63−72. doi: 10.1016/j.jfoodeng.2018.04.007
[60] LIM H, JO M, BAN C, et al. Interfacial and colloidal characterization of oil-in-water emulsions stabilized by interface-tunable solid lipid nanoparticles[J]. Food Chemistry,2020,306:125619. doi: 10.1016/j.foodchem.2019.125619
[61] SCHRÖDER A, SPRAKEL J, BOERKAMP W, et al. Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles?[J]. Food Research International,2019,120:352−363. doi: 10.1016/j.foodres.2019.03.004
[62] WANG C, JIANG H, LI Y. Water-in-oil Pickering emulsions stabilized by phytosterol/chitosan complex particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,657:130489. doi: 10.1016/j.colsurfa.2022.130489
[63] PRASAD M, JAYARAMAN S, ELADL M A, et al. A comprehensive review on therapeutic perspectives of phytosterols in insulin resistance:A mechanistic approach[J]. Molecules,2022,27(5):1595. doi: 10.3390/molecules27051595
[64] LAN M, ZHENG J, HUANG C, et al. Water-in-oil Pickering emulsions stabilized by microcrystalline phytosterols in oil:Fabrication mechanism and application as a salt release system[J]. Journal of Agricultural and Food Chemistry,2022,70(17):5408−5416. doi: 10.1021/acs.jafc.1c05115
[65] LOUDET J C, ALSAYED A M, ZHANG J, et al. Capillary interactions between anisotropic colloidal particles[J]. Physical Review Letters,2005,94(1):018301. doi: 10.1103/PhysRevLett.94.018301
[66] LEHLE H, NORUZIFAR E, OETTEL M. Ellipsoidal particles at fluid interfaces[J]. The European Physical Journal E,2008,26(1):151−160.
[67] PÄÄKKÖ M, ANKERFORS M, KOSONEN H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J]. Biomacromolecules,2007,8(6):1934−1941. doi: 10.1021/bm061215p
[68] SUN Z, YAN X, XIAO Y, et al. Pickering emulsions stabilized by colloidal surfactants:Role of solid particles[J]. Particuology,2022,64:153−163. doi: 10.1016/j.partic.2021.06.004
[69] COOK A B, SCHLICH M, MANGHNANI P N, et al. Size effects of discoidal PLGA nanoconstructs in Pickering emulsion stabilization[J]. Journal of Polymer Science,2022,60(9):1480−1491. doi: 10.1002/pol.20210748
[70] WEN C, YUAN Q, LIANG H, et al. Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals[J]. Carbohydrate Polymers,2014,112:695−700. doi: 10.1016/j.carbpol.2014.06.051
[71] HEDJAZI S, RAZAVI S H. A comparison of canthaxanthine Pickering emulsions, stabilized with cellulose nanocrystals of different origins[J]. Int J Biol Macromol,2018,106:489−497. doi: 10.1016/j.ijbiomac.2017.08.030
[72] BINKS B P, CLINT J H. Solid wettability from surface energy components:Relevance to Pickering emulsions[J]. Langmuir,2002,18(4):1270−1273. doi: 10.1021/la011420k
[73] LI S, JIAO B, MENG S, et al. Edible mayonnaise-like Pickering emulsion stabilized by pea protein isolate microgels:Effect of food ingredients in commercial mayonnaise recipe[J]. Food Chemistry,2022,376:131866. doi: 10.1016/j.foodchem.2021.131866
[74] DYAB A K F. Destabilisation of Pickering emulsions using pH[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,402:2−12.
[75] TSUJI S, KAWAGUCHI H. Thermosensitive Pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles[J]. Langmuir,2008,24(7):3300−3305. doi: 10.1021/la701780g
[76] ZHANG Y, CHEN K, CAO L, et al. Stabilization of Pickering emulsions by hairy nanoparticles bearing polyanions[J]. Polymers,2019,11(5):816. doi: 10.3390/polym11050816
[77] LIU F, TANG C H. Phytosterol colloidal particles as Pickering stabilizers for emulsions[J]. Journal of Agricultural and Food Chemistry,2014,62(22):5133−5141. doi: 10.1021/jf404930c
[78] HE X, JIA K, YU L, et al. Robust pH-switchable Pickering emulsions stabilized solely by organic rosin-based particles with adjustable wettability[J]. Journal of Molecular Liquids,2022,353:118751. doi: 10.1016/j.molliq.2022.118751
[79] SOBHAN A, MUTHUKUMARAPPAN K, WEI L. Biosensors and biopolymer-based nanocomposites for smart food packaging:Challenges and opportunities[J]. Food Packaging and Shelf Life,2021,30:100745. doi: 10.1016/j.fpsl.2021.100745
[80] WANG J, SUN X, ZHANG H, et al. Dual-functional intelligent gelatin based packaging film for maintaining and monitoring the shrimp freshness[J]. Food Hydrocolloids,2022,124:107258. doi: 10.1016/j.foodhyd.2021.107258
[81] LIU J, LI K, CHEN Y, et al. Active and smart biomass film containing cinnamon oil and curcumin for meat preservation and freshness indicator[J]. Food Hydrocolloids,2022,133:107979. doi: 10.1016/j.foodhyd.2022.107979
[82] LIU D, DANG S, ZHANG L, et al. Corn starch/polyvinyl alcohol based films incorporated with curcumin-loaded Pickering emulsion for application in intelligent packaging[J]. International Journal of Biological Macromolecules,2021,188:974−982. doi: 10.1016/j.ijbiomac.2021.08.080
[83] ATARIAN M, RAJAEI A, TABATABAEI M, et al. Formulation of Pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability[J]. Carbohydrate Polymers,2019,210:47−55. doi: 10.1016/j.carbpol.2019.01.008
[84] MCCLEMENTS D J, DECKER E. Interfacial antioxidants:A review of natural and synthetic emulsifiers and coemulsifiers that can inhibit lipid oxidation[J]. Journal of Agricultural and Food Chemistry,2018,66(1):20−35. doi: 10.1021/acs.jafc.7b05066
[85] WANG J, ZHANG L, TAN C, et al. Pickering emulsions by regulating the molecular interactions between gelatin and catechin for improving the interfacial and antioxidant properties[J]. Food Hydrocolloids,2022,126:107425. doi: 10.1016/j.foodhyd.2021.107425
[86] WANG Z, MA Y, CHEN H, et al. Rice bran-modified wheat gluten nanoparticles effectively stabilized pickering emulsion:An interfacial antioxidant inhibiting lipid oxidation[J]. Food Chemistry,2022,387:132874. doi: 10.1016/j.foodchem.2022.132874
[87] HUANG X N, ZHOU F Z, YANG T, et al. Fabrication and characterization of Pickering high internal phase emulsions (HIPEs) stabilized by chitosan-caseinophosphopeptides nanocomplexes as oral delivery vehicles[J]. Food Hydrocolloids,2019,93:34−45. doi: 10.1016/j.foodhyd.2019.02.005
[88] HAN J, CHEN F, GAO C, et al. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles[J]. International Journal of Biological Macromolecules,2020,157:202−211. doi: 10.1016/j.ijbiomac.2020.04.177
[89] WEI Y, ZHOU D, MACKIE A, et al. Stability, interfacial structure, and gastrointestinal digestion of β-carotene-loaded Pickering emulsions co-stabilized by particles, a biopolymer, and a surfactant[J]. Journal of Agricultural and Food Chemistry,2021,69(5):1619−1636. doi: 10.1021/acs.jafc.0c06409
[90] LV P, WANG D, CHEN Y, et al. Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan:Fabrication, characterization and encapsulation[J]. Food Hydrocolloids,2020,108:105992. doi: 10.1016/j.foodhyd.2020.105992
[91] ZHANG Q, FAN L, LU Q, et al. Preparation and application of molecularly imprinted polymer solid-phase microextraction fiber for the selective analysis of auxins in tobacco[J]. Journal of Separation Science,2019,42(16):2687−2695. doi: 10.1002/jssc.201900265
[92] LI X, MA X, HUANG R, et al. Synthesis of a molecularly imprinted polymer on mSiO2@Fe3O4 for the selective adsorption of atrazine[J]. Journal of Separation Science,2018,41(13):2837−2845. doi: 10.1002/jssc.201800146
[93] YIN R, CHEN L, MA L. Extraction of matrine from soil with matrix solid-phase dispersion by molecularly imprinted polymers derived from lignin-based Pickering emulsions[J]. Journal of Separation Science,2019,42(23):3563−3570. doi: 10.1002/jssc.201900803
[94] LI T, LI X, LIU H, et al. Preparation and characterization of molecularly imprinted polymers based on beta-cyclodextrin-stabilized Pickering emulsion polymerization for selective recognition of erythromycin from river water and milk[J]. Journal of Separation Science,2020,43(18):3683−3690. doi: 10.1002/jssc.201901255
[95] ZHANG X, SUN X, WANG M, et al. Dummy molecularly imprinted microspheres prepared by Pickering emulsion polymerization for matrix solid-phase dispersion extraction of three azole fungicides from fish samples[J]. Journal of Chromatography A,2020,1620:461013. doi: 10.1016/j.chroma.2020.461013
[96] 陈波, 司马文月, 王岩, 等. Pickering乳液聚合法制备分子印迹聚合物用于苹果中丁香菌酯的检测[J/OL]. 吉林农业大学学报:1−12 [2023-04-09]. http://kns.cnki.net/kcms/detail/22.1100.s.20221012.1738.005.html. [CHEN B, SIMA W Y, WANG Y, et al. Detection of coumoxystrobin in apples using molecularly imprinted polymers prepared by Pickering emulsion polymerization[J/OL]. Journal of Jilin Agricultural University:1−12 [2023-04-09]. http://kns.cnki.net/kcms/detail/22.1100.s.20221012.1738.005.html. CHEN B, SIMA W Y, WANG Y, et al. Detection of coumoxystrobin in apples using molecularly imprinted polymers prepared by Pickering emulsion polymerization[J/OL]. Journal of Jilin Agricultural University: 1−12 [2023-04-09]. http://kns.cnki.net/kcms/detail/22.1100.s.20221012.1738.005.html.
[97] CHANG F, VIS C M, CIPTONUGROHO W, et al. Recent developments in catalysis with Pickering emulsions[J]. Green Chemistry,2021,23(7):2575−2594. doi: 10.1039/D0GC03604H
[98] GONSALVI L. Homogeneous catalysis and mechanisms in water and biphasic media[J]. Catalysts,2018,8(11):543. doi: 10.3390/catal8110543
[99] HUANG X M, LUO Z J, GUO J, et al. Enzyme-adsorbed chitosan nanogel particles as edible Pickering interfacial biocatalysts and lipase-responsive phase inversion of emulsions[J]. Journal of Agricultural and Food Chemistry,2020,68(33):8890−8899. doi: 10.1021/acs.jafc.0c00116
[100] YU X H, ZHOU F Z, XI Y K, et al. Ethyl cellulose-chitosan complex particles stabilized W/O Pickering emulsion as a recyclable bio-catalytic microreactor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,639:128375. doi: 10.1016/j.colsurfa.2022.128375
[101] XI Y, LIU B, WANG S, et al. CO2-responsive Pickering emulsions stabilized by soft protein particles for interfacial biocatalysis[J]. Chemical Science,2022,13(10):2884−2890. doi: 10.1039/D1SC06146A
[102] TIBBITS S. 4D Printing:Multi-material shape change[J]. Architectural Design,2014,84(1):116−121. doi: 10.1002/ad.1710
[103] RAMESH S, KIRAN REDDY S, USHA C, et al. Advancements in the research of 4D printing-A review[J]. IOP Conference Series:Materials Science and Engineering,2018,376(1):012123.
[104] FENG C, ZHANG M, BHANDARI B. Materials properties of printable edible inks and printing parameters optimization during 3D printing:A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(19):3074−3081. doi: 10.1080/10408398.2018.1481823
[105] ESCALANTE-ABURTO A, TRUJILLO-DE SANTIAGO G, ÁLVAREZ M M, et al. Advances and prospective applications of 3D food printing for health improvement and personalized nutrition[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):5722−5741. doi: 10.1111/1541-4337.12849
[106] CEN S, LI Z, GUO Z, et al. 4D printing of a citrus pectin/ β-CD Pickering emulsion:A study on temperature induced color transformation[J]. Additive Manufacturing,2022,56:102925. doi: 10.1016/j.addma.2022.102925
[107] JIANG Q, BINKS B P, MENG Z. Double scaffold networks regulate edible Pickering emulsion gel for designing thermally actuated 4D printing[J]. Food Hydrocolloids,2022,133:107969. doi: 10.1016/j.foodhyd.2022.107969
[108] LI X, FAN L, LI R, et al. 3D/4D printing of β-cyclodextrin-based high internal phase emulsions[J]. Journal of Food Engineering,2023,348:111455. doi: 10.1016/j.jfoodeng.2023.111455
-
期刊类型引用(19)
1. 许津阁,郑卓琦,侯鹏颉,马高兴,熊彦娣,马壮,刘萌,赵靓,廖小军. 不同产地酱用卡宴辣椒原料品质评价. 食品工业科技. 2025(01): 317-332 . 本站查看
2. 任朝辉,何建文,田怀志,田浩,廖卫琴. 基于主成分和聚类分析不同辣椒资源农艺和品质性状的综合评价. 中国瓜菜. 2025(02): 50-58 . 百度学术
3. 杨晶,沙迪昕,张月,麦迪乃·尤努斯,沙黑兰·尼亚孜,杨海燕,黄文书. 不同贮藏条件下干辣椒颜色劣变的主要途径. 食品研究与开发. 2024(04): 58-67 . 百度学术
4. 龙会英,张德. 干热区紫花苜蓿的生产性能和营养价值评价. 草业科学. 2024(01): 117-125 . 百度学术
5. 李莹,张娇,杨树辉,朱月,陈滕,汪祖华. 不同温度和气体微环境对遵义干辣椒贮藏品质的影响. 食品研究与开发. 2024(11): 80-88 . 百度学术
6. 裴艳婷,魏龙雪,李娜娜,白静,朱金英. 不同辣椒种质资源品质性状分析. 安徽农业科学. 2024(11): 27-31 . 百度学术
7. 马唯钦,赵牧其尔,孙鹏波,刘逸超,李子琪,贾玉山,格根图,王志军. 10个饲用燕麦品种在沿黄盐碱地区生产性能评价. 饲料研究. 2024(22): 139-144 . 百度学术
8. 廖卫琴,何建文,苟晓松,任朝辉,田浩. 不同辣椒种质资源果实中脂肪酸组成分析. 辣椒杂志. 2024(04): 13-18 . 百度学术
9. 年国芳,郭超男,徐建宗,周建中. 新疆制干辣椒品质综合评价及加工适宜性分析. 食品工业科技. 2023(04): 317-325 . 本站查看
10. 林巧,辛竹琳,孔令博,王晓梅,杨小薇,何微. 我国辣椒产业发展现状及育种应对措施. 中国农业大学学报. 2023(05): 82-95 . 百度学术
11. 詹磊,徐卓越,蓝国玮,钟庆玲,刘倩桐,陈佩. 基于主成分分析构建混合多糖凝胶品质综合评价模型. 现代食品科技. 2023(04): 214-223 . 百度学术
12. 杨创创,何建文,张正海,于海龙,冯锡刚,吴华茂,曹亚从,王立浩. 绥阳子弹头干椒风味品质分析. 辣椒杂志. 2023(01): 1-5+13 . 百度学术
13. 张新悦,连畅,宋文胜,郭涛,杜心宇,徐嘉悦,张新贵,孙志健,廖小军,赵靓. 新疆地区辣椒自然干制的关键节点品质分析. 食品工业科技. 2023(12): 90-101 . 本站查看
14. 屠大伟,翁盈秋,李青青,冯露萍,刘文俊. 火锅常用干辣椒品质及挥发性成分研究. 食品工业科技. 2023(16): 358-366 . 本站查看
15. 向家勇,杨莎,梁成亮,陈文超,李雪峰,欧立军,戴雄泽,马艳青,邹学校,张竹青. 鲜食青椒果实的品质性状分析与评价. 湖南农业大学学报(自然科学版). 2023(04): 436-441 . 百度学术
16. 杨芳,袁海彬,贾洪锋,邓凤琳,王珍妮. 基于气相色谱-离子迁移谱结合多元统计方法分析辣椒品种对辣椒油理化性质和风味物质的影响. 食品与发酵工业. 2023(19): 319-328 . 百度学术
17. 林素钦,马文婧,何新超,付桂明,钟剑,彭红,万茵. 不同油温对辣椒油风味和辣度的影响. 河南工业大学学报(自然科学版). 2023(05): 25-32 . 百度学术
18. 周鹏,杨娅,付文婷,王楠艺,彭世清,何建文. 贵州25个辣椒主栽品种品质分析与评价. 食品安全质量检测学报. 2023(21): 292-298 . 百度学术
19. 吴梓仟,周劲松,刘特元,蒋立文,刘洋,尹世鲜,荣智兴,陈欢. 基于HS-SPME-GC-MS分析不同卤制条件下卤制液香气差异. 食品工业科技. 2023(24): 311-318 . 本站查看
其他类型引用(7)