Quality and Volatile Components of Dried Peppers Commonly Used in Hot Pot
-
摘要: 为探究火锅常用干辣椒及其籽、皮的品质及香气的差异,采用理化分析结合气相色谱-质谱联用的方法,对6个不同品种干辣椒及其皮、籽的品质及挥发性成分进行比较分析。结果表明,脂肪(14.50%~24.50%)和蛋白质(12.20%~17.10%)在辣椒籽中含量更高,而辣椒皮的水分(9.80%~16.50%)和总糖(7.87%~16.70%)含量更高;在色泽方面,‘子弹头’、‘艳椒’和‘新一代’的颜色较为鲜红,‘艳椒’的色价(15.12)最高;在辣度方面,‘印度椒’辣度(892度)最高,‘灯笼椒’辣度(43度)最低,辣椒皮的辣度高于辣椒籽。在6个品种干辣椒及其皮、籽中共检测到80种挥发性成分,不同品种干辣椒的挥发性成分具有一定差异,包括D-柠檬烯、4-甲基-1-戊醇、苯乙醛、乙酸、川芎嗪等;干辣椒皮与籽对其整体香气的贡献也不同,D-柠檬烯、芳樟醇、苯乙醛、丙酮、乙酸等在辣椒皮中相对含量较高,主要呈花果香、木香和辛辣气息,而辣椒籽中D-柠檬烯、2,3-丁二醇、4-甲基-1-戊醇、乙酸、二甲醚等的相对含量较高,主要贡献花果香味。研究可为复合使用不同品种干辣椒生产不同风味火锅底料提供理论参考。Abstract: The objective of this study was to investigate the quality and volatile compounds of dried chilli pepper and its peels and seeds inclusion in hot pot. The volatile compounds of six different varieties of dried chilli peppers and their seeds and peels were analyzed using gas chromatography-mass spectrometry (GC-MS). The results illustrated that the fat (14.50%~24.50%) and protein (12.20%~17.10%) content were higher in pepper seeds than peels, while moisture (9.80%~16.50%) and total sugar (7.87%~16.70%) content were higher in pepper peels. In terms of color, the color of 'Zidantou', 'Yanjiao' and 'Xinyidai' showed bright red, and the highest color value was found in 'Yanjiao' (15.12). 'Indian chilis' had the highest spiciness of 892 degrees, whereas 'Denglongjiao' had the lowest spiciness of 43 degrees. Additionally, the pepper peel showed significantly (P<0.05) higher spiciness than that of pepper seed. A set of 80 volatiles were identified in six varieties of dried chilli peppers and their peels and seeds. The volatile compounds of dried chilli peppers were quite different among different varieties, including D-limonene, 4-methyl-1-pentanol, phenylacetaldehyde, acetic acid, ligustrazine, etc. The contribution of peels and seeds to the overall aroma of pepper was different, the relative contents of D-limonene, linalool, phenylacetaldehyde, acetone and acetic acid were higher in peels, which mainly showed floral, woody and spicy flavor, and the relative contents of D-limonene, 2,3-butanediol, 4-methyl-1-pentanol, acetic acid and dimethyl ether in seeds were higher, which mainly contributed to flower and fruit flavor. The current findings could provide theoretical reference for the production of different flavor hotpot seasonings by using different varieties of dried chilli peppers.
-
Keywords:
- dried pepper /
- seed /
- peel /
- variety /
- quality /
- volatile components
-
辣椒(Capsicum spp.)原产于南美洲,是世界上栽培量最大的调味品作物,因其富含类胡萝卜素和辣椒素类物质,而赋予了辣椒类调味品鲜艳的红色和特殊的辛辣刺激风味[1]。火锅底料作为火锅口味和品质的基础,对火锅的整体风味具有重大的影响[2]。在川渝地区,由不同品种干辣椒复配制成的糍粑辣椒赋予了火锅汤底色泽红亮、麻辣鲜香等特点,是火锅汤底色泽、风味形成的重要配料[3]。干辣椒在火锅底料中的作用主要为增香、提辣、着色[4],在川渝地区火锅底料生产企业常用干辣椒品种主要为‘子弹头’、‘灯笼椒’、‘满天星’、‘印度椒’、‘艳椒’、‘新一代’等,它们在增色效果、香气浓郁程度、辣度等方面的不同,使生产者可根据产品色、香、味的需求复配使用制作不同特点的产品,以满足不同的消费需求。
类辣椒素(Capsaicinoids)是辣椒辣味的主要来源,主要包括辣椒素、二氢辣椒素、降二氢辣椒素、高辣椒素和高二氢辣椒素5种,前两种物质约占总辣椒素类物质总量的90%[5]。不同品种辣椒中的类辣椒素含量不同,导致其辣味存在差异[6-7],因此现有的辣椒辣度量化方法主要是通过测定辣椒素类物质含量来的实现的。辣椒作为一种调味品,其香气也是人们关注的重要方面,同时也是火锅底料特征香气形成的关键之一。已有学者对不同品种干辣椒的香气进行研究分析[1,8],气相色谱串联质谱(Gas chromatography-mass spectrometer,GC-MS)、电子鼻技术、气相色谱-嗅闻(Gas chromatography olfactometry,GC-O)等是其常用检测方法。目前,不同品种干辣椒品质及香气虽已有研究报道,但针对火锅常用干辣椒及其皮、籽的品质及香气的对比研究较少。因此,本文选择重庆火锅底料常用辣椒品种(‘子弹头’、‘灯笼椒’、‘满天星’、‘印度椒’、‘艳椒’、‘新一代’)为研究对象,采用高效液相色谱(High performance liquid chromatography, HPLC)、顶空固相微萃取结合GC-MS等方法,对辣椒整个果实及其皮、籽的营养成分、色差和色价、辣度以及挥发性成分进行对比分析,以期确定干辣椒的皮、籽对其整体辣度和香气的贡献以及6种干辣椒在着色、增辣、提香方面作用,为火锅底料用干辣椒品种的选择提供理论依据。
1. 材料与方法
1.1 材料与仪器
6个品种干辣椒(详见表1) 均为火锅生产企业提供热风干燥商品辣椒;甲醇、四氢呋喃、乙腈 均为色谱纯,美国默克公司;辣椒素、二氢辣椒素标准品(纯度≥98%) 美国Sigma公司;其余试剂 均为国产分析纯。
表 1 6种干辣椒产地及特点Table 1. Six kinds of dried peppers origin and characteristics辣椒品种 来源 特点 子弹头 重庆市大足区宝顶镇 表皮油亮,果面光滑,枣红色,
果皮肉厚,香味适中。灯笼椒 贵州省遵义市新蒲新区 稍有辣味,香气浓郁,
果实呈深红色。满天星 贵州遵义市红花岗区 个小,辣味干猛,香味醇厚,
色红,籽粒饱满。印度椒 印度安得拉邦贡土尔 椒形细长, 辣味浓重,色泽光亮深红。 艳椒 重庆市铜梁区安溪镇 中辣中香,色泽艳红,辣椒籽少。 新一代 河南省安阳市内黄县 味辣,果面光亮、果实鲜红。 JA303P分析天平 常州幸运电子设备有限公司;KDN-250自动凯氏定氮仪 闽测仪器设备有限公司;S1-M81电动粉碎机 九阳股份有限公司;CS-280分光色差仪 上海彩谱科技有限公司;UV-5200紫外分光光度计 上海元析仪器有限公司;50/30 μm DVB/CAR/PDMS萃取头 美国Supleco公司;60 m×0.25 mm,0.25 μm HP-5MS石英毛细管柱 惠普分析仪器有限公司;GC-MS-QP2020气相色谱-质谱联用仪 日本岛津公司。
1.2 实验方法
1.2.1 样品前处理
干辣椒去除梗蒂,用粉碎机整颗粉碎,过40目筛后收集全辣椒粉;将干辣椒的籽与皮剥离后分别放置,将皮、籽单独粉碎,然后过40目筛,分开收集辣椒皮粉,辣椒籽粉。将制得的全辣椒粉、辣椒皮粉和辣椒籽粉分别装入250 mL PE瓶中,置于4 ℃下储存备用。
1.2.2 营养指标
按照GB 5009.3-2016《食品安全国家标准 食品中水分的测定》中直接干燥法测定水分含量;按照GB 5009.5-2016《食品安全国家标准 食品中蛋白质的测定》中凯氏定氮法测定蛋白质含量;按照GB 5009.6-2016《食品安全国家标准 食品中脂肪的测定》中酸水解法测定脂肪含量;按照GB 5009.8-2016《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》中高效液相色谱法测定总糖含量[9-12]。
1.2.3 色差及色价
色差[13]:干辣椒色差使用色差仪测量,每个品种随机选择3个干辣椒,测定每个干辣椒选择5个不同位置的颜色,求其平均值即为该干辣椒的色差测定结果。色差结果用L*、a*、b*表示,L*表示光泽的明亮程度,值越高则亮度越高;a*为红绿值,正值越大红色越深;b*为黄蓝值,正值越大黄色越深。总色度C的计算公式为:,表示颜色的饱和程度。色价:参照GB 1886.34-2015《食品安全国家标准 食品添加剂 辣椒红》中紫外分光光度法测定[14]。
1.2.4 辣度
按照GB/T 21266-2007《辣椒及辣椒制品中辣椒素类物质测定及辣度表示方法》的方法测定[15]。
1.2.5 挥发性成分测定
称取辣椒样品约2 g,置于15 mL顶空瓶中,加入2 mL水,顶空瓶盖内放置硅橡胶隔垫,快速拧紧瓶盖,放置恒温磁力加热搅拌器上,在80 ℃条件下平衡20 min。将已老化的萃取头插入顶空瓶中,80 ℃恒温水浴吸附20 min;进样、解析5 min。GC-MS条件:进样口温度250 ℃,解析5 min,载气为氦气,载气流量1.0 mL/min;不分流进样。升温程序:色谱柱初始温度40 ℃,保留1 min;以5 ℃/min升温至90 ℃,保持3 min;以8 ℃/min升温至130 ℃,保持5 min;以15 ℃/min升温至250 ℃,保持5 min。EI离子源,离子源温度230 ℃;电子能量70 eV:扫描范围(m/z):35~500。测定结果通过NIST 147数据库检索,采用峰面积归一化法计算相对含量[16]。
1.3 数据处理
使用Excel 2019进行数据统计。采用SPSS 26.0对数据进行单因素方差分析。采用Origin 2021进行图表绘制。
2. 结果与分析
2.1 不同品种干辣椒及其籽、皮的营养成分差异分析
6种干辣椒及其皮、籽的主要营养成分含量如表2所示。不同品种干辣椒全辣椒及其皮、籽的水分含量范围分别为9.08%~13.77%、9.80%~16.50%、7.96%~12.20%,除‘满天星’和‘新一代’的辣椒皮、‘满天星’和‘印度椒’的辣椒籽外,其余样品间的水分含量均有显著差异(P<0.05),全辣椒及其皮、籽的水分含量大小依次为:辣椒皮>全辣椒>辣椒籽。水分含量是干制品重要的评价指标,NY/T 3610-2020《干红辣椒质量分级》中规定干辣椒水分含量应不超过14%,这有利于干辣椒储存过程中的品质保持和霉变发生率控制[8],在所有的样品中,除了‘艳椒’的皮外(16.5%),其余样品均未超过14%,干辣椒皮水分含量和霉变发生的相关性有待进一步研究。不同品种干辣椒全辣椒及其皮、籽的蛋白质含量范围分别为11.84%~13.56%、10.10%~14.20%、12.20%~17.10%,仅‘新一代’的辣椒皮蛋白质含量高于籽,其余品种的结果均与其相反。不同品种干辣椒全辣椒及其皮、籽的脂肪含量范围分别为8.68%~19.44%、4.20%~19.10%、14.50%~24.50%。‘满天星’和‘印度椒’的辣椒皮和辣椒籽的脂肪含量较为接近,其余品种的脂肪主要存在于辣椒籽中。不同品种干辣椒全辣椒及其皮、籽的总糖含量范围分别为5.96%~12.11%、7.87%~16.70%、2.88%~4.37%,辣椒皮的总糖含量均高于其籽;‘艳椒’的总糖含量最高。不同品种干辣椒营养成分含量有差异可能与其品种和产地的不同有关,Nadeem等[17]指出不同品种辣椒籽组分差异与遗传特性、产地、栽培环境和加工条件等均存在关联性。
表 2 不同品种干辣椒及其皮、籽的主要营养成分含量的差异Table 2. Difference of main nutrient content in different varieties of dried peppers and their skins and seeds样品 取样
位置水分含量(%) 蛋白质(%DW) 脂肪含量(%DW) 总糖含量(%DW) A1 全辣椒 12.72±0.20b 12.40±0.10d 11.29±0.12d 9.06±0.07b B1 11.42±0.16c 13.10±0.13b 8.68±0.10e 6.10±0.10d C1 10.61±0.12e 12.06±0.09e 12.87±0.09b 8.15±0.11c D1 9.08±0.10f 12.61±0.06c 19.44±0.05a 5.96±0.17d E1 13.77±0.17a 11.84±0.11f 12.48±0.07c 12.11±0.10a F1 11.02±0.07d 13.56±0.07a 11.22±0.07d 9.17±0.07b A2 辣椒皮 14.00±0.23b 11.10±0.14c 7.10±0.05d 14.50±0.09c B2 13.30±0.20c 11.60±0.17b 4.20±0.06f 15.90±0.08b C2 12.80±0.16d 11.80±0.10b 12.40±0.05b 11.40±0.16d D2 9.80±0.11e 11.20±0.09c 19.10±0.09a 7.91±0.07e E2 16.50±0.17a 10.10±0.06d 7.50±0.08c 16.70±0.11a F2 12.90±0.20d 14.20±0.17a 5.90±0.10e 7.87±0.15e A3 辣椒籽 12.20±0.21a 14.90±0.14d 17.10±0.07d 3.37±0.08c B3 9.17±0.09d 15.90±0.08b 18.40±0.08c 2.93±0.08d C3 7.96±0.12e 13.40±0.09e 14.60±0.08e 3.63±0.17b D3 8.06±0.12e 15.10±0.11c 20.30±0.09b 2.88±0.09d E3 10.10±0.08b 17.10±0.09a 24.50±0.15a 4.37±0.10a F3 9.69±0.10c 12.20±0.12f 14.50±0.10e 3.38±0.04c 注:表头中大写字母A~F依次代表:‘子弹头’、‘灯笼椒’、‘满天星’、‘印度椒’、‘艳椒’、‘新一代’,数字1~3依次代表:全辣椒、辣椒皮、辣椒籽;表5、图2同;除水分含量外,测值以干基含量平均值x̅±SD表示(n=3);表中不同小写字母表示相同取样位置的同列样品间在0.05水平存在显著性差异。 2.2 不同品种干辣椒色差及色价分析
辣椒中含有丰富的辣椒红色素,包括辣椒红素、辣椒玉红素等,具有性状稳定、色泽鲜艳、着色性好等特点[18],对火锅汤底的色泽有重要影响。6种干辣椒的色差测定结果如表3所示,L*值在10.17~20.14之间,值最高的品种为‘新一代’,表明其表皮亮度较高;a*值在28.44~48.14之间,‘新一代’、‘子弹头’、‘印度椒’、‘艳椒’的红度值均较高,表明其果皮颜色更红;b*值在13.72~25.98之间,‘艳椒’的值最高;C值在30.27~53.80之间,‘新一代’的C值最大,表明其颜色最为鲜红,且与‘子弹头’和‘艳椒’没有显著差异(P>0.05),但显著高于‘灯笼椒’、‘印度椒’和‘满天星’(P<0.05)。色价是反映样品中色素含量高低和着色能力的重要指标。经测定6种干辣椒的色价介于8.07~15.12之间,‘艳椒’的色价显著高于其他品种(P<0.05),其次为‘满天星’和‘印度椒’。
表 3 不同品种干辣椒的色差及色价测定结果Table 3. Measurement results of color difference of different varieties of dried peppers品种 L* a* b* C 色价 子弹头 19.81±0.56a 41.18±3.31b 25.18±2.54a 48.27±4.05ab 11.37±0.56e 灯笼椒 10.17±2.49c 28.44±2.18c 10.24±1.56d 30.27±1.76c 8.07±0.25d 满天星 14.24±2.43bc 31.65±0.21c 16.73±3.82bc 35.90±1.76c 14.09±0.17b 印度椒 16.29±1.84ab 41.03±2.32b 21.89±3.11ab 46.53±3.32b 14.21±0.20b 艳椒 19.69±1.38a 40.08±2.49b 25.98±2.67a 47.77±3.48ab 15.12±0.12a 新一代 20.14±3.98a 48.14±5.65a 13.72±3.36cd 53.80±5.37a 12.11±0.23c 在实际生产中,色价是企业干辣椒原料验收的指标之一,它在一定程度上反映了辣椒红色素含量,即干辣椒的红度,常用紫外分光光度法测定。色差仪是以L*、a*、b*来构建物品颜色坐标,反映物品表面的整体颜色,但相比于色价,色差的测定方法更为简单、快捷。因此,为探究是否可用色差来代替色价反映干辣椒的辣椒红色素含量,对a*、b*、C值与色价进行了Pearson相关性分析,结果如表4所示。除C值与a*具有极显著相关性外(P<0.01),其余各指标间的相关性不显著;b*值与色价的相关系数为0.647,a*与色价的相关系数为0.382,黄蓝指数的相关性远高于红绿指数。因此,色差分析结果不能反映干辣椒色价的差异,其原因可能是色差测定的是红黄、蓝绿程度,表示物品的整体色泽,而色价则与辣椒红色素含量的高低密切相关,故不可用色差仪来快速衡量辣椒红色素的差异。
表 4 干辣椒的a*、b*、C与色价的相关性分析Table 4. Correlation analysis between a*, b*, C and color value of dried peppersa* b* C 色价 a* 相关系数 1 显著性 b* 相关系数 0.382 1 显著性 0.455 C 相关系数 0.986** 0.520 1 显著性 0.000 0.290 色价 相关系数 0.382 0.647 0.470 1 显著性 0.455 0.165 0.347 注:**表示在0.01级别(双尾),相关性显著。 2.3 不同品种干辣椒及其籽、皮的辣度差异分析
辣度是辣椒重要的品质特性之一,辣椒素类物质是辣椒中产生辛辣味的成分,其含量越高,其辛辣味感越强烈,HPLC是测定辣椒素类物质含量的常用检测方法[4,19]。6个品种干辣椒及其皮、籽的辣度测定结果如图1所示。对于同一辣椒品种,辣椒皮的辣度最高,辣椒籽的辣度最低。Marion等[20]对辣椒种子样品的油和脂肪酸进行了分析,辣椒种子的油呈金黄色,有微弱的辣椒气味,而果壁和胎盘的油呈深红色,有明显的辣椒气味,表明辣椒皮的辣度高于辣椒籽的辣度,这与实验结果相符。在6个辣椒品种中,‘印度椒’和‘满天星’的辣度显著高于其他品种(P<0.05),分别为892度和523度。‘印度椒’被认为是世界上最辣的辣椒品种之一,而‘满天星’干辣椒属于猛辣型,二者在实际生产中常作为麻辣火锅专用干辣椒。‘艳椒’和‘子弹头’的辣度值处于中间水平,为中高辣度辣椒品种;而‘新一代’和‘灯笼椒’的辣度较低。
2.4 不同品种干辣椒及其皮、籽的挥发性成分分析
2.4.1 不同品种干辣椒及其皮、籽的挥发性成分组成
在6个品种干辣椒的全辣椒及其皮、籽中共鉴定出80种挥发性成分,可划分为7个类别,包括烃类26种、醇类17种、酯类6种、醛类16种、酮类5种、酸类3种以及其他类7种,如表5所示。不同品种干辣椒的挥发性成分组成和相对含量存在差异,同种干辣椒的皮和籽中的挥发性成分组成也不同,如图2所示。
表 5 不同品种干辣椒及其皮、籽的挥发性成分组成Table 5. Composition of volatile components in different varieties of dried peppers and their peels and seeds中文名称 相对含量(%) A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 烃类 18.35 19.21 21.55 17.35 27.31 44.81 18.42 28.33 3.12 31.58 29.98 33.96 25.70 34.11 10.26 44.97 21.37 26.70 邻二甲苯 − − − − − − − − − − − − − 1.13 − − − − 间二甲苯 − − − − − − − − − − 0.79 − 2.20 − − − 1.41 1.05 邻伞花烃 − − − 3.04 − 2.76 − − − − − − − 0.63 − 4.36 1.69 − 对伞花烃 − − 3.20 − 5.03 − − − − 2.84 − − − − − − − 1.43 间伞花烃 2.60 − − − − − − 1.89 − − − − − − − − − − 2,5-二甲基庚烷 0.43 − − − − − 0.38 0.35 − − 0.74 0.98 1.09 − − − − − 1,1-二甲基-3-
己基环戊烷− 1.50 − − − − 0.94 1.60 0.43 1.85 6.50 2.50 0.73 1.59 − 0.73 − 0.82 十一烷 − − − − − − − − − − − − − − − 2.22 1.76 1.34 十四烷 − 0.66 − − − − − 0.67 0.36 0.68 1.77 0.96 0.99 1.48 − 0.53 − 0.55 十五烷 − − − − − − 0.82 1.47 − − 1.75 0.84 0.74 1.34 − − − − 十七烷 0.89 − 0.82 − − − 1.99 3.13 1.31 2.84 10.03 4.19 1.77 3.47 4.37 − − − 十八烷 1.11 − 1.23 − − − 3.05 − − 4.76 − 4.48 5.85 10.67 − 2.92 − − 十九烷 − − − − − − − 0.73 − − 1.52 0.53 − − − − − − α-蒎烯 − 0.77 − − 0.39 1.35 − − − − − − 0.29 0.48 − 0.74 0.68 0.52 β-蒎烯 − − − − 0.47 1.25 − − − 0.33 − − − − − − − − β-长叶蒎烯 7.70 11.35 1.97 − − − 1.89 2.11 − − − − 0.43 − − 8.31 − 6.93 β-月桂烯 1.27 0.66 2.79 2.31 4.68 7.21 1.97 3.50 − 3.05 1.40 3.60 2.08 2.58 − 3.08 2.31 1.76 α-水芹烯 − − − 0.98 1.41 2.68 0.44 0.67 − 1.29 0.19 1.12 − 0.28 − 1.05 − 0.55 β-水芹烯 0.42 0.61 3.23 2.99 3.56 6.22 1.31 2.28 − 2.09 0.69 1.95 0.85 0.94 − 1.27 − − 萜品油烯 − − − − − − − − − − − − − − − 0.20 − − D-柠檬烯 2.97 2.83 8.06 7.76 10.97 22.31 5.02 8.56 1.02 10.87 3.95 11.16 8.25 9.41 5.89 17.16 13.54 10.63 α-松油烯 − − − − − − 0.23 − − − − − − − − 0.34 − − γ-松油烯 − − 0.26 − 0.80 1.03 0.38 0.46 − 0.96 0.30 0.69 − − − 0.52 − 0.29 雪松烯 0.96 0.83 − − − − − 0.61 − − 0.36 − − − − 1.54 − 0.83 4-蒈烯 − − − − − − − 0.29 − − − 0.36 − 0.11 − − − − β-罗勒烯 − − − 0.27 − − − − − − − 0.61 0.43 − − − − − 醇类 16.87 16.27 23.07 14.97 24.61 11.74 16.67 9.42 16.59 31.79 6.75 15.62 9.42 7.53 38.70 14.59 6.61 9.89 戊醇 0.60 0.35 0.85 − − 0.67 0.44 0.28 − 0.97 0.64 0.92 0.47 0.43 − 1.00 − 0.80 己醇 0.83 − 1.51 1.12 − 2.07 1.08 0.45 1.44 1.54 0.66 2.17 1.57 0.88 4.90 1.66 1.40 1.33 2-乙基己醇 − − − − − − 1.31 1.87 − − − − − − − − − − 3-甲基-1-丁醇 − − 2.49 − − 2.06 − − 1.82 1.64 − 1.15 − − 3.05 − − − 2-甲基-1-丁醇 − − 1.07 − − 1.70 − − 0.50 0.48 − 0.49 − − − − − − 3-甲基-2-丁醇 − − − − − − − − 0.63 − − 0.46 − − − − − − 2,3-丁二醇 5.10 6.68 7.29 9.01 4.65 − 5.65 1.14 2.20 − − − 2.46 2.34 24.58 − − − 1-戊烯-3-醇 − 0.49 − − − − − − − − − − − 0.27 − 2.08 − 2.08 4-甲基-1-戊醇 5.72 2.07 7.73 1.16 0.77 1.46 4.63 1.87 9.63 15.30 2.91 8.02 1.42 1.15 6.18 6.11 3.40 4.16 4-甲基-3-戊烯-1-醇 − − − − − − − − − 1.56 − 0.40 − − − − − − 青叶醇 − − 0.36 − − − 0.29 − 0.37 0.58 − 0.45 − − − − 0.38 − 4-己烯-1-醇 − − − − − − − − − − − − − − − 0.50 − 0.28 芳樟醇 4.10 6.67 1.77 3.68 18.57 3.77 2.93 2.21 − 9.73 2.54 1.56 3.50 1.28 − 1.56 1.44 1.24 4-萜烯醇 0.53 − − − 0.61 − 0.33 0.48 − − − − − − − 0.22 − − 1-辛烯-3-醇 − − − − − − − − − − − − − 0.75 − 0.94 − − 反式-橙花叔醇 − − − − − − − 1.12 − − − − − 0.44 − − − − 3-苯基丁-2-醇 − − − − − − − − − − − − − − − 0.52 − − 酯类 0.57 1.77 2.77 − 1.19 4.46 2.25 1.04 9.28 0.78 0.79 0.65 0.62 0.32 − 6.09 0.75 0.42 乙酸甲酯 − − 1.82 − − 1.70 1.02 − 1.93 − − − − − − − − − 乙酸乙酯 − − 0.38 − − 2.76 − − 7.35 0.52 − 0.39 − − − − − − 异丁酸己酯 − − 0.57 − − − 0.55 − − − 0.65 − − − − 4.94 − − 己酸己酯 − − − − − − − − − − − − − − − 0.47 − − 乙酸芳樟酯 0.57 1.77 − − 1.19 − 0.67 1.04 − 0.26 0.14 0.26 0.62 0.32 − 0.51 0.60 0.42 3-甲基丁酸己酯 − − − − − − − − − − − − − − − 0.18 0.15 − 醛类 18.30 16.49 12.71 31.49 22.27 10.59 16.40 22.68 14.23 9.89 17.48 5.32 32.46 29.72 16.79 11.06 21.99 22.08 乙醛 − − − − − − − 1.18 − − 1.07 − 1.05 1.23 − 0.60 0.66 1.83 戊醛 1.19 0.62 0.59 1.28 0.89 0.63 0.80 0.89 0.39 0.76 0.84 0.31 − 0.56 − 1.00 1.30 1.42 己醛 − − 2.22 2.60 3.26 3.39 2.14 1.19 1.27 2.15 2.31 2.23 2.00 1.67 − 3.04 3.69 3.51 庚醛 − − − − − − 0.09 0.09 − − 0.13 − 0.16 0.19 3.20 0.21 0.37 0.28 苯甲醛 0.99 − − 1.46 0.75 − 0.80 0.93 0.96 0.80 1.16 0.57 1.93 2.03 − 0.53 1.81 1.17 苯乙醛 5.07 3.47 2.53 9.29 6.04 − 4.29 8.20 5.06 3.41 6.36 − 12.36 12.30 9.19 − 3.80 2.82 糠醛 2.38 2.17 − 2.31 3.58 − 0.94 2.14 0.55 0.48 − − 3.35 3.79 − 0.62 4.26 2.79 3-甲基-2-丁烯醛 0.30 − 0.80 − − − − − − − − − − − − − − − 反式-2-戊烯醛 − − − − − − 0.28 0.40 − − − − 0.29 0.30 − 0.40 0.19 0.16 2-己烯醛 − − − − − − 0.09 − − − − − 0.47 0.34 − 0.67 0.51 0.50 3-甲硫基丙醛 − − − − − − − − − − 1.12 0.30 0.81 0.84 − − − − 3-甲基丁醛 3.90 4.19 1.23 6.96 3.29 3.29 3.06 2.76 2.98 1.01 1.38 0.86 4.88 2.91 2.53 0.86 2.85 2.82 2-甲基丙醛 1.28 1.57 0.76 1.53 1.15 0.82 0.81 1.27 0.71 − − − 1.59 1.31 − 1.06 − 1.78 甲基丙烯醛 − − − 0.56 − − 0.44 0.57 0.45 − − − − − − − − − 2-甲基丁醛 2.69 3.23 4.59 5.50 3.32 2.46 1.94 2.19 1.86 0.77 1.45 0.81 3.56 2.11 1.88 1.44 2.54 2.41 β-环柠檬醛 0.49 1.24 − − − − 0.72 0.87 − 0.52 1.66 0.24 − 0.12 − 0.65 − 0.60 酮类 10.39 7.73 3.75 10.11 7.35 − 9.41 11.39 8.49 1.68 7.03 1.52 8.14 5.85 − 5.66 21.13 12.99 丙酮 7.20 2.90 0.86 4.22 1.60 − 2.16 4.66 1.14 1.16 3.36 0.68 3.48 2.26 − 3.02 17.56 12.99 2,3-丁二酮 2.70 2.85 2.89 5.90 4.36 − 6.45 4.30 7.35 − 1.65 0.45 2.43 1.13 − 2.34 3.57 − 3-羟基-2-丁酮 0.50 1.07 − − − − − 0.58 − − − − 0.58 0.53 − 0.30 − − 1-戊烯-3-酮 − 0.92 − − 1.39 − 0.81 1.86 − − 2.02 − 1.65 1.93 − − − − 2-甲基-3-戊酮 − − − − − − − − − 0.53 − 0.39 − − − − − − 酸类 15.65 19.55 27.07 18.29 6.13 1.93 10.91 5.22 9.87 13.66 11.97 34.92 9.30 6.91 15.70 4.29 3.82 3.78 乙酸 15.65 19.55 27.07 13.12 6.13 1.93 9.46 4.16 7.01 11.33 10.68 30.75 8.73 6.91 12.15 4.29 3.82 3.78 2-甲基丁酸 − − − 1.85 − − 0.88 0.51 1.76 2.32 0.75 4.17 0.58 − 3.55 − − − 3-甲基丁酸 − − − 3.32 − − 0.57 0.55 1.10 − 0.54 − − − − − − − 其他类 6.02 3.01 3.05 4.52 10.12 10.80 20.69 12.97 28.89 2.27 5.50 2.86 5.14 5.20 15.89 5.08 7.89 8.26 二甲醚 1.47 1.45 3.05 2.88 2.16 9.07 1.08 − 1.17 1.82 − 1.86 − − 15.89 − − − 二甲基硫 − − − 1.64 − − − 0.58 − 0.44 3.05 1.00 1.63 1.49 − 2.03 3.08 2.57 二烯丙基二硫 − − − − 2.51 1.73 1.52 2.28 − − − − − − − − − − 2-甲基呋喃 − − − − − − − 0.40 − − 0.79 − 0.26 0.19 − 0.38 − 0.59 2-乙酰基呋喃 − − − − − − 4.82 2.87 6.50 − − − 1.42 1.87 − − − − 川芎嗪 − − − − 3.53 − 10.36 4.43 21.21 − − − − 0.70 − − − − N-甲基吡咯 4.55 1.56 − − 1.92 − 2.91 2.41 − − 1.66 − 1.82 0.95 − 2.68 4.81 5.10 注:“−”表示未检测出该物质。 烃类为种类和相对含量均较多的香气物质类别,相对含量介于3.12%~44.97%之间,大部分烯烃化合物的检测频率较高,它们的香气阈值通常较低,并具有特殊香气,对整体香气的贡献较大[21-22]。D-柠檬烯、γ-松油烯具有柑橘、柠檬等水果甜香气味,β-月桂烯有天竺葵、胡椒等辛香味,α-水芹烯有胡椒气味,β-水芹烯呈柑桔香、药草香、青草香[23-26]。饱和烷烃化合物香气阈值较高,对香气的贡献较小。在少部分样品中还检测到呈青香和药香的邻伞花烃、柑橘香的对伞花烃等芳烃类物质[27-28]。样品中醇类化合物的相对含量范围为6.61%~38.70%,戊醇、己醇、芳樟醇等成分在大部分样品中均检测到,它们可赋予干辣椒脂香、果香、辛辣、木香等气味[1]。酯类通常具有令人愉悦的气味,通常呈果香[29]。在6种干辣椒及其皮、籽中的相对含量介于0~9.28%之间。乙酸芳樟酯是被检测频次最多的酯类,主要呈花香、甜香、柑桔香[30]。醛类的阈值通常较低,一般呈脂香、青香和果香。大部分醛类化合物的检测频次都较高,戊醛、己醛、庚醛有青草香、脂肪香[31],苯甲醛有苦杏仁味,苯乙醛有浓郁的玉簪花香气[32],3-甲基丁醛、2-甲基丁醛呈果香等气息。酮类通常具有清香、奶香和果香等气味,来自于美拉德反应或醛类氧化反应[33]。丙酮和2,3-丁二酮是相对含量最高,丙酮具有辛辣甜味,2,3-丁二酮具有强烈的奶香、甜香、乳脂香等气味。6种干辣椒及其皮、籽中还检测到一些酸类和含硫化合物、呋喃、吡咯等其他类化合物。乙酸具有较强的刺激性气味,2-乙酰基呋喃具有脂香气味[34]。6种干辣椒中共有的挥发性成分有17种,它们可能构成了干辣椒特有的香气。其中辣椒皮中含量较高的香气成分有β-月桂烯、β-水芹烯、芳樟醇、丙酮等,这些构成了干辣椒选购中评价辣椒品质优劣重要香气组分,使干辣椒的花香、甜辣、青草香等不同风味给人直观感受。
2.4.2 不同品种干辣椒香气特征分析
‘子弹头’中共检测出45种挥发性成分,全辣椒、辣椒皮和辣椒籽分别为31、28和30种,它们共有的挥发性成分为17种,主要为烯烃、醇、醛等香气阈值较低的物质,其相对含量之和分别为69.03%、71.05%、77.26%,均占总挥发性成分相对含量的69%以上。‘子弹头’中主要香气成分为β-长叶蒎烯、2,3-丁二醇、4-甲基-1-戊醇、芳樟醇、苯乙醛、3-甲基丁醛、2-甲基丁醛、丙酮、乙酸等,它们主要呈果香、青香、芳香味等气息[8,24]。
在‘灯笼椒’的3个不同样品(全辣椒、辣椒皮和辣椒籽)中检测出41种挥发性成分,其挥发性成分组成及相对含量有差异,全辣椒与皮、籽的共有成分种数分别为19种和15种,表明皮、籽对其整体香气的贡献不同。3个样品的共有成分为13种,包括月桂烯、水芹烯、D-柠檬烯、芳樟醇、己醛、3-甲基丁醛、乙酸等,且这些物质的相对含量也较高,是‘灯笼椒’的主要香气成分。此外,D-柠檬烯和芳樟醇相对含量之和在6种干辣椒最高,它们主要呈果香、花香、辛香气味[24],而‘灯笼椒’常作为火锅底料的增香辣椒品种,芳樟醇含量的高低可作为评价‘灯笼椒’香味的一个重要指标。
‘满天星’中共检测出挥发性成分61种,全辣椒与辣椒皮的共有成分为40种,全辣椒与辣椒籽的共有成分为25种,‘满天星’整体香气可能主要来自于辣椒皮。‘满天星’的主要挥发性成分为D-柠檬烯、2,3-丁二醇、4-甲基-1-戊醇、苯乙醛、3-甲基丁醛、2,3-丁二酮、乙酸、川芎嗪等。‘满天星’与‘灯笼椒’相同的挥发性成分较多,但‘满天星’中2-乙酰基呋喃、川芎嗪等物质的相对含量也较高,2-乙酰基呋喃具有脂香气味[34],川芎嗪具有牛奶、巧克力香气[35]。
‘印度椒’3个样品的挥发性成分数量分别为35种(全辣椒)、38种(辣椒皮)、39种(辣椒籽),全辣椒与辣椒籽共有挥发性成分相较于辣椒皮更多。‘印度椒’中的主要的挥发性成分为十八烷、D-柠檬烯、4-甲基-1-戊醇、芳樟醇、乙酸,它们的总相对含量达到了50%以上。
‘艳椒’的3个样品中共检测到53种挥发性成分,全辣椒及其皮、籽分别为41、46、13种,其中全辣椒分别与其皮、籽共有的成分为36种和11种,则‘艳椒’的整体香气可能主要来自于辣椒皮。烃类和醛类在‘艳椒’中的相对含量较高,是其主要的香气成分类别,其醛类物质与‘满天星’中的物质大多相同,但相对含量高于‘满天星’。‘艳椒’主要的挥发性成分为十八烷、D-柠檬烯、苯乙醛、3-甲基丁醛、乙酸。
‘新一代’全辣椒及其皮、籽中检测到的挥发性物质分别为47、28、37种。烃类在‘新一代’中的相对含量最高,主要为芳烃和烯烃化合物。‘新一代’主要挥发性成分为邻伞花烃、β-长叶蒎烯、D-柠檬烯、4-甲基-1-戊醇、异丁酸己酯等,主要呈果香、木香等气息[36]。‘新一代’中丙酮及D-柠檬烯含量最高,即‘新一代’的香辣气味更为突出,兼具果香味及花香味,风味较协调,这也是它成为火锅底料使用量最大的干辣椒品种的原因之一。
综合上述结果,不同品种辣椒的风味成分组成和含量不同,D-柠檬烯、4-甲基-1-戊醇、苯乙醛、乙酸、川芎嗪等是相对含量差异较大的挥发性成分。皮、籽对干辣椒整体风味的贡献也不同,D-柠檬烯、芳樟醇、苯乙醛、丙酮、乙酸等在辣椒皮中相对含量较高,主要呈花果香、木香、辛辣气息[1,8];而辣椒籽中D-柠檬烯、2,3-丁二醇、4-甲基-1-戊醇、乙酸、二甲醚等的相对含量较高,主要呈花果香气味[32]。在实际生产中可互相搭配用于不同香型火锅底料的制作,如‘子弹头’可用于提高花香、果香、辛香;‘灯笼椒’与‘子弹头’相似,但还带有坚果香气;‘新一代’可用于提高香辣气味,并兼具果香和花香等。再根据干辣椒在辣度和色泽方面不同的特性,复配制作不同感官特性的产品,如可通过调节‘印度椒’的使用量,搭配其他低辣度、香气浓郁程度不同的干辣椒品种,生产具有相似香型但辣度不同的火锅底料产品。
3. 结论
本文对6个不同品种干辣椒及其皮、籽的品质与挥发性成分进行了分析,结果表明,不同样品间的水分、脂肪、蛋白质、脂肪及总糖的含量存在差异,水分(9.80%~16.50%)和总糖(7.87%~16.70%)在辣椒皮中的含量更高,脂肪(14.50%~24.50%)和蛋白质(12.20%~17.10%)在辣椒籽中含量更高。在色泽方面,‘子弹头’(48.27)、‘艳椒’(47.77)和‘新一代’(53.80)的C值较高,‘艳椒’(15.12)的色价最高,色差与色价之间无显著相关性;综合来看,‘艳椒’的颜色更为鲜红,更适用于产品增色。‘印度椒’(892度)、‘满天星’(523度)辣度较高,适用于增辣。在6个品种干辣椒及其皮、籽中共检测到80种挥发性成分,不同品种干辣椒的主体香气存在差异;同种干辣椒的3个样品(全辣椒、辣椒皮、辣椒籽)挥发性成分的组成与相对含量也不完全相同,因此干辣椒的皮和籽对其整体香气的贡献也可能存在一定差异。在实际生产中,可根据干辣椒以上特性的差异,混合使用生产不同色泽、辣度和香型的火锅底料产品。此外,干辣椒的皮和籽在营养成分及风味上具有一定差异性,二者的最佳加工条件可能有很大差别,故在实际生产中对二者分别加工以最大程度提高火锅底料品质需要进一步研究。
-
表 1 6种干辣椒产地及特点
Table 1 Six kinds of dried peppers origin and characteristics
辣椒品种 来源 特点 子弹头 重庆市大足区宝顶镇 表皮油亮,果面光滑,枣红色,
果皮肉厚,香味适中。灯笼椒 贵州省遵义市新蒲新区 稍有辣味,香气浓郁,
果实呈深红色。满天星 贵州遵义市红花岗区 个小,辣味干猛,香味醇厚,
色红,籽粒饱满。印度椒 印度安得拉邦贡土尔 椒形细长, 辣味浓重,色泽光亮深红。 艳椒 重庆市铜梁区安溪镇 中辣中香,色泽艳红,辣椒籽少。 新一代 河南省安阳市内黄县 味辣,果面光亮、果实鲜红。 表 2 不同品种干辣椒及其皮、籽的主要营养成分含量的差异
Table 2 Difference of main nutrient content in different varieties of dried peppers and their skins and seeds
样品 取样
位置水分含量(%) 蛋白质(%DW) 脂肪含量(%DW) 总糖含量(%DW) A1 全辣椒 12.72±0.20b 12.40±0.10d 11.29±0.12d 9.06±0.07b B1 11.42±0.16c 13.10±0.13b 8.68±0.10e 6.10±0.10d C1 10.61±0.12e 12.06±0.09e 12.87±0.09b 8.15±0.11c D1 9.08±0.10f 12.61±0.06c 19.44±0.05a 5.96±0.17d E1 13.77±0.17a 11.84±0.11f 12.48±0.07c 12.11±0.10a F1 11.02±0.07d 13.56±0.07a 11.22±0.07d 9.17±0.07b A2 辣椒皮 14.00±0.23b 11.10±0.14c 7.10±0.05d 14.50±0.09c B2 13.30±0.20c 11.60±0.17b 4.20±0.06f 15.90±0.08b C2 12.80±0.16d 11.80±0.10b 12.40±0.05b 11.40±0.16d D2 9.80±0.11e 11.20±0.09c 19.10±0.09a 7.91±0.07e E2 16.50±0.17a 10.10±0.06d 7.50±0.08c 16.70±0.11a F2 12.90±0.20d 14.20±0.17a 5.90±0.10e 7.87±0.15e A3 辣椒籽 12.20±0.21a 14.90±0.14d 17.10±0.07d 3.37±0.08c B3 9.17±0.09d 15.90±0.08b 18.40±0.08c 2.93±0.08d C3 7.96±0.12e 13.40±0.09e 14.60±0.08e 3.63±0.17b D3 8.06±0.12e 15.10±0.11c 20.30±0.09b 2.88±0.09d E3 10.10±0.08b 17.10±0.09a 24.50±0.15a 4.37±0.10a F3 9.69±0.10c 12.20±0.12f 14.50±0.10e 3.38±0.04c 注:表头中大写字母A~F依次代表:‘子弹头’、‘灯笼椒’、‘满天星’、‘印度椒’、‘艳椒’、‘新一代’,数字1~3依次代表:全辣椒、辣椒皮、辣椒籽;表5、图2同;除水分含量外,测值以干基含量平均值x̅±SD表示(n=3);表中不同小写字母表示相同取样位置的同列样品间在0.05水平存在显著性差异。 表 3 不同品种干辣椒的色差及色价测定结果
Table 3 Measurement results of color difference of different varieties of dried peppers
品种 L* a* b* C 色价 子弹头 19.81±0.56a 41.18±3.31b 25.18±2.54a 48.27±4.05ab 11.37±0.56e 灯笼椒 10.17±2.49c 28.44±2.18c 10.24±1.56d 30.27±1.76c 8.07±0.25d 满天星 14.24±2.43bc 31.65±0.21c 16.73±3.82bc 35.90±1.76c 14.09±0.17b 印度椒 16.29±1.84ab 41.03±2.32b 21.89±3.11ab 46.53±3.32b 14.21±0.20b 艳椒 19.69±1.38a 40.08±2.49b 25.98±2.67a 47.77±3.48ab 15.12±0.12a 新一代 20.14±3.98a 48.14±5.65a 13.72±3.36cd 53.80±5.37a 12.11±0.23c 表 4 干辣椒的a*、b*、C与色价的相关性分析
Table 4 Correlation analysis between a*, b*, C and color value of dried peppers
a* b* C 色价 a* 相关系数 1 显著性 b* 相关系数 0.382 1 显著性 0.455 C 相关系数 0.986** 0.520 1 显著性 0.000 0.290 色价 相关系数 0.382 0.647 0.470 1 显著性 0.455 0.165 0.347 注:**表示在0.01级别(双尾),相关性显著。 表 5 不同品种干辣椒及其皮、籽的挥发性成分组成
Table 5 Composition of volatile components in different varieties of dried peppers and their peels and seeds
中文名称 相对含量(%) A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 烃类 18.35 19.21 21.55 17.35 27.31 44.81 18.42 28.33 3.12 31.58 29.98 33.96 25.70 34.11 10.26 44.97 21.37 26.70 邻二甲苯 − − − − − − − − − − − − − 1.13 − − − − 间二甲苯 − − − − − − − − − − 0.79 − 2.20 − − − 1.41 1.05 邻伞花烃 − − − 3.04 − 2.76 − − − − − − − 0.63 − 4.36 1.69 − 对伞花烃 − − 3.20 − 5.03 − − − − 2.84 − − − − − − − 1.43 间伞花烃 2.60 − − − − − − 1.89 − − − − − − − − − − 2,5-二甲基庚烷 0.43 − − − − − 0.38 0.35 − − 0.74 0.98 1.09 − − − − − 1,1-二甲基-3-
己基环戊烷− 1.50 − − − − 0.94 1.60 0.43 1.85 6.50 2.50 0.73 1.59 − 0.73 − 0.82 十一烷 − − − − − − − − − − − − − − − 2.22 1.76 1.34 十四烷 − 0.66 − − − − − 0.67 0.36 0.68 1.77 0.96 0.99 1.48 − 0.53 − 0.55 十五烷 − − − − − − 0.82 1.47 − − 1.75 0.84 0.74 1.34 − − − − 十七烷 0.89 − 0.82 − − − 1.99 3.13 1.31 2.84 10.03 4.19 1.77 3.47 4.37 − − − 十八烷 1.11 − 1.23 − − − 3.05 − − 4.76 − 4.48 5.85 10.67 − 2.92 − − 十九烷 − − − − − − − 0.73 − − 1.52 0.53 − − − − − − α-蒎烯 − 0.77 − − 0.39 1.35 − − − − − − 0.29 0.48 − 0.74 0.68 0.52 β-蒎烯 − − − − 0.47 1.25 − − − 0.33 − − − − − − − − β-长叶蒎烯 7.70 11.35 1.97 − − − 1.89 2.11 − − − − 0.43 − − 8.31 − 6.93 β-月桂烯 1.27 0.66 2.79 2.31 4.68 7.21 1.97 3.50 − 3.05 1.40 3.60 2.08 2.58 − 3.08 2.31 1.76 α-水芹烯 − − − 0.98 1.41 2.68 0.44 0.67 − 1.29 0.19 1.12 − 0.28 − 1.05 − 0.55 β-水芹烯 0.42 0.61 3.23 2.99 3.56 6.22 1.31 2.28 − 2.09 0.69 1.95 0.85 0.94 − 1.27 − − 萜品油烯 − − − − − − − − − − − − − − − 0.20 − − D-柠檬烯 2.97 2.83 8.06 7.76 10.97 22.31 5.02 8.56 1.02 10.87 3.95 11.16 8.25 9.41 5.89 17.16 13.54 10.63 α-松油烯 − − − − − − 0.23 − − − − − − − − 0.34 − − γ-松油烯 − − 0.26 − 0.80 1.03 0.38 0.46 − 0.96 0.30 0.69 − − − 0.52 − 0.29 雪松烯 0.96 0.83 − − − − − 0.61 − − 0.36 − − − − 1.54 − 0.83 4-蒈烯 − − − − − − − 0.29 − − − 0.36 − 0.11 − − − − β-罗勒烯 − − − 0.27 − − − − − − − 0.61 0.43 − − − − − 醇类 16.87 16.27 23.07 14.97 24.61 11.74 16.67 9.42 16.59 31.79 6.75 15.62 9.42 7.53 38.70 14.59 6.61 9.89 戊醇 0.60 0.35 0.85 − − 0.67 0.44 0.28 − 0.97 0.64 0.92 0.47 0.43 − 1.00 − 0.80 己醇 0.83 − 1.51 1.12 − 2.07 1.08 0.45 1.44 1.54 0.66 2.17 1.57 0.88 4.90 1.66 1.40 1.33 2-乙基己醇 − − − − − − 1.31 1.87 − − − − − − − − − − 3-甲基-1-丁醇 − − 2.49 − − 2.06 − − 1.82 1.64 − 1.15 − − 3.05 − − − 2-甲基-1-丁醇 − − 1.07 − − 1.70 − − 0.50 0.48 − 0.49 − − − − − − 3-甲基-2-丁醇 − − − − − − − − 0.63 − − 0.46 − − − − − − 2,3-丁二醇 5.10 6.68 7.29 9.01 4.65 − 5.65 1.14 2.20 − − − 2.46 2.34 24.58 − − − 1-戊烯-3-醇 − 0.49 − − − − − − − − − − − 0.27 − 2.08 − 2.08 4-甲基-1-戊醇 5.72 2.07 7.73 1.16 0.77 1.46 4.63 1.87 9.63 15.30 2.91 8.02 1.42 1.15 6.18 6.11 3.40 4.16 4-甲基-3-戊烯-1-醇 − − − − − − − − − 1.56 − 0.40 − − − − − − 青叶醇 − − 0.36 − − − 0.29 − 0.37 0.58 − 0.45 − − − − 0.38 − 4-己烯-1-醇 − − − − − − − − − − − − − − − 0.50 − 0.28 芳樟醇 4.10 6.67 1.77 3.68 18.57 3.77 2.93 2.21 − 9.73 2.54 1.56 3.50 1.28 − 1.56 1.44 1.24 4-萜烯醇 0.53 − − − 0.61 − 0.33 0.48 − − − − − − − 0.22 − − 1-辛烯-3-醇 − − − − − − − − − − − − − 0.75 − 0.94 − − 反式-橙花叔醇 − − − − − − − 1.12 − − − − − 0.44 − − − − 3-苯基丁-2-醇 − − − − − − − − − − − − − − − 0.52 − − 酯类 0.57 1.77 2.77 − 1.19 4.46 2.25 1.04 9.28 0.78 0.79 0.65 0.62 0.32 − 6.09 0.75 0.42 乙酸甲酯 − − 1.82 − − 1.70 1.02 − 1.93 − − − − − − − − − 乙酸乙酯 − − 0.38 − − 2.76 − − 7.35 0.52 − 0.39 − − − − − − 异丁酸己酯 − − 0.57 − − − 0.55 − − − 0.65 − − − − 4.94 − − 己酸己酯 − − − − − − − − − − − − − − − 0.47 − − 乙酸芳樟酯 0.57 1.77 − − 1.19 − 0.67 1.04 − 0.26 0.14 0.26 0.62 0.32 − 0.51 0.60 0.42 3-甲基丁酸己酯 − − − − − − − − − − − − − − − 0.18 0.15 − 醛类 18.30 16.49 12.71 31.49 22.27 10.59 16.40 22.68 14.23 9.89 17.48 5.32 32.46 29.72 16.79 11.06 21.99 22.08 乙醛 − − − − − − − 1.18 − − 1.07 − 1.05 1.23 − 0.60 0.66 1.83 戊醛 1.19 0.62 0.59 1.28 0.89 0.63 0.80 0.89 0.39 0.76 0.84 0.31 − 0.56 − 1.00 1.30 1.42 己醛 − − 2.22 2.60 3.26 3.39 2.14 1.19 1.27 2.15 2.31 2.23 2.00 1.67 − 3.04 3.69 3.51 庚醛 − − − − − − 0.09 0.09 − − 0.13 − 0.16 0.19 3.20 0.21 0.37 0.28 苯甲醛 0.99 − − 1.46 0.75 − 0.80 0.93 0.96 0.80 1.16 0.57 1.93 2.03 − 0.53 1.81 1.17 苯乙醛 5.07 3.47 2.53 9.29 6.04 − 4.29 8.20 5.06 3.41 6.36 − 12.36 12.30 9.19 − 3.80 2.82 糠醛 2.38 2.17 − 2.31 3.58 − 0.94 2.14 0.55 0.48 − − 3.35 3.79 − 0.62 4.26 2.79 3-甲基-2-丁烯醛 0.30 − 0.80 − − − − − − − − − − − − − − − 反式-2-戊烯醛 − − − − − − 0.28 0.40 − − − − 0.29 0.30 − 0.40 0.19 0.16 2-己烯醛 − − − − − − 0.09 − − − − − 0.47 0.34 − 0.67 0.51 0.50 3-甲硫基丙醛 − − − − − − − − − − 1.12 0.30 0.81 0.84 − − − − 3-甲基丁醛 3.90 4.19 1.23 6.96 3.29 3.29 3.06 2.76 2.98 1.01 1.38 0.86 4.88 2.91 2.53 0.86 2.85 2.82 2-甲基丙醛 1.28 1.57 0.76 1.53 1.15 0.82 0.81 1.27 0.71 − − − 1.59 1.31 − 1.06 − 1.78 甲基丙烯醛 − − − 0.56 − − 0.44 0.57 0.45 − − − − − − − − − 2-甲基丁醛 2.69 3.23 4.59 5.50 3.32 2.46 1.94 2.19 1.86 0.77 1.45 0.81 3.56 2.11 1.88 1.44 2.54 2.41 β-环柠檬醛 0.49 1.24 − − − − 0.72 0.87 − 0.52 1.66 0.24 − 0.12 − 0.65 − 0.60 酮类 10.39 7.73 3.75 10.11 7.35 − 9.41 11.39 8.49 1.68 7.03 1.52 8.14 5.85 − 5.66 21.13 12.99 丙酮 7.20 2.90 0.86 4.22 1.60 − 2.16 4.66 1.14 1.16 3.36 0.68 3.48 2.26 − 3.02 17.56 12.99 2,3-丁二酮 2.70 2.85 2.89 5.90 4.36 − 6.45 4.30 7.35 − 1.65 0.45 2.43 1.13 − 2.34 3.57 − 3-羟基-2-丁酮 0.50 1.07 − − − − − 0.58 − − − − 0.58 0.53 − 0.30 − − 1-戊烯-3-酮 − 0.92 − − 1.39 − 0.81 1.86 − − 2.02 − 1.65 1.93 − − − − 2-甲基-3-戊酮 − − − − − − − − − 0.53 − 0.39 − − − − − − 酸类 15.65 19.55 27.07 18.29 6.13 1.93 10.91 5.22 9.87 13.66 11.97 34.92 9.30 6.91 15.70 4.29 3.82 3.78 乙酸 15.65 19.55 27.07 13.12 6.13 1.93 9.46 4.16 7.01 11.33 10.68 30.75 8.73 6.91 12.15 4.29 3.82 3.78 2-甲基丁酸 − − − 1.85 − − 0.88 0.51 1.76 2.32 0.75 4.17 0.58 − 3.55 − − − 3-甲基丁酸 − − − 3.32 − − 0.57 0.55 1.10 − 0.54 − − − − − − − 其他类 6.02 3.01 3.05 4.52 10.12 10.80 20.69 12.97 28.89 2.27 5.50 2.86 5.14 5.20 15.89 5.08 7.89 8.26 二甲醚 1.47 1.45 3.05 2.88 2.16 9.07 1.08 − 1.17 1.82 − 1.86 − − 15.89 − − − 二甲基硫 − − − 1.64 − − − 0.58 − 0.44 3.05 1.00 1.63 1.49 − 2.03 3.08 2.57 二烯丙基二硫 − − − − 2.51 1.73 1.52 2.28 − − − − − − − − − − 2-甲基呋喃 − − − − − − − 0.40 − − 0.79 − 0.26 0.19 − 0.38 − 0.59 2-乙酰基呋喃 − − − − − − 4.82 2.87 6.50 − − − 1.42 1.87 − − − − 川芎嗪 − − − − 3.53 − 10.36 4.43 21.21 − − − − 0.70 − − − − N-甲基吡咯 4.55 1.56 − − 1.92 − 2.91 2.41 − − 1.66 − 1.82 0.95 − 2.68 4.81 5.10 注:“−”表示未检测出该物质。 -
[1] 范智义, 张敏, 邓维琴, 等. 不同产地辣椒挥发性成分的对比研究[J]. 食品与发酵科技,2022,58(3):113−118. [FAN Z Y, ZHANG M, DENG W Q, et al. Comparison of volatile compounds in red chilis with different origins[J]. Food and Fermentation Science & Technology,2022,58(3):113−118. FAN Z Y, ZHANG M, DENG W Q, et al. Comparison of volatile compounds in red chilis with different origins[J]. Food and Fermentation Science & Technology, 2022, 58(3): 113−118.
[2] 吕南, 王宇, 马丽娅, 等. 清油火锅底料在不同贮藏温度及时间的香气成分变化[J]. 中国调味品,2021,46(7):85−90. [LÜ N, WANG Y, MA L Y, et al. The changes of aroma components of clear-oil hot pot seasoning at various storage temperatures and time[J]. China Condiment,2021,46(7):85−90. LÜ N, WANG Y, MA L Y, et al. The changes of aroma components of clear-oil hot pot seasoning at various storage temperatures and time[J]. China Condiment, 2021, 46(7): 85−90.
[3] QIN C, YU C S, SHEN Y O, et al. Whole-genome sequencing of cultivated and wild peppers provides insights intoCapsicum domestication and specialization[J]. Agricultural Sciences,2014,111(14):5135−5140.
[4] 马钤, 郭川川, 李镓. 火锅底料香气提升研究进展[J]. 食品工业,2022,43(7):173−180. [MA Q, GUO C C, LI J. Research progress on aroma enhancement of hot pot substrate[J]. The Food Industry,2022,43(7):173−180. MA Q, GUO C C, LI J. Research progress on aroma enhancement of hot pot substrate[J]. The Food Industry, 2022, 43(7): 173−180.
[5] 黄辉, 廖燕芝. 液相色谱串联质谱法测定食用油脂中天然辣椒素、二氢辣椒素和合成辣椒素的不确定度评定[J]. 食品与机械,2022,38(7):80−84,114. [HUANG H, LIAO Y Z. Uncertainty evaluation for the determination of natural capsaicin, dihydrocapsaicin and synthetic capsaicin in edible oils and fats by LC-MS/MS[J]. Food & Machinery,2022,38(7):80−84,114. HUANG H, LIAO Y Z. Uncertainty evaluation for the determination of natural capsaicin, dihydrocapsaicin and synthetic capsaicin in edible oils and fats by LC-MS/MS[J]. Food & Machinery, 2022, 38(7): 80−84, 114.
[6] QUNRAN X, WEILING G, XIN T, et al. Capsaicin—the spicy ingredient of chili peppers: A review of the gastrointestinal effects and mechanisms[J]. Trends in Food Science & Technology,2021,116:755−765.
[7] SRINIVASAN K. Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: A review[J]. Critical Reviews in Food Science and Nutrition,2016,56(9):1488−1500. doi: 10.1080/10408398.2013.772090
[8] 王兴波, 饶雷, 王永涛, 等. 9个品种干辣椒的品质分析及评价[J]. 食品工业科技,2022,43(18):300−310. [WANG X B, RAO L, WANG Y T, et al. Quality analysis and evaluation of nine varieties of dried peppers[J]. Science and Technology of Food Industry,2022,43(18):300−310. [WANG X B, RAO L, WANG Y T, et al. Quality analysis and evaluation of nine varieties of dried peppers[J]. Science and Technology of Food Industry, 2022, 43(18): 300−310.
[9] 中华人民共和国国家卫生健康委员会. GB 5009.3-2016 食品中水分的测定[S]. 北京: 中国标准出版社, 2016 National Health Commission of the People's Republic of China. GB 5009.3-2016 Determination of moisture in food[S]. Beijing: Standards Press of China, 2016.
[10] 中华人民共和国国家卫生健康委员会. GB 5009.5-2016 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016 National Health Commission of the People's Republic of China. GB 5009.5-2016 Determination of protein in food[S]. Beijing: Standards Press of China, 2016.
[11] 中华人民共和国国家卫生健康委员会. GB 5009.6-2016 食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016 National Health Commission of the People's Republic of China. GB 5009.6-2016 Determination of fat in food[S]. Beijing: Standards Press of China, 2016.
[12] 国家标准化管理委员会. GB/T 5009.8-2016 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定 高效液相色谱法[S]. 北京: 中国标准出版社, 2016 Standardization Administration. GB/T 5009.8-2016 Determination of fructose, glucose, sucrose, maltose and lactose in food by high performance liquid chromatography[S]. Beijing: Standards Press of China, 2016.
[13] 蓬桂华, 王永平, 李文馨, 等. 25个干辣椒品种色、香、味品质差异评价[J]. 食品工业科技,2021,42(8):242−248. [PENG G H, WANG Y P, LI W X, et al. Differences and comprehensive of color, aroma and taste quality of 25 dry pepper varieties[J]. Science and Technology of Food Industry,2021,42(8):242−248. PENG G H, WANG Y P, LI W X, et al. Differences and comprehensive of color, aroma and taste quality of 25 dry pepper varieties[J]. Science and Technology of Food Industry, 2021, 42(8): 242−248.
[14] 中华人民共和国国家卫生健康委员会. GB 1886.34-2015食品添加剂 辣椒红[S]. 北京: 中国标准出版社, 2015 National Health Commission of the People's Republic of China. GB 1886.34-2015 Food additive capsanthin[S]. Beijing: Standards Press of China, 2015.
[15] 国家标准化管理委员会. GB/T 21266-2007 辣椒及辣椒制品中辣椒素类物质测定及辣度表示方法[S]. 北京: 中国标准出版社, 2007 Standardization Administration. GB/T 21266-2007 Determination of capsaicin in pepper and pepper products and expression method of spicy degree[S]. Beijing: Standards Press of China, 2007.
[16] 年国芳, 郭超男, 徐建宗, 等. 新疆制干辣椒品质综合评价及加工适宜性分析[J]. 食品工业科技,2023,44(4):317−325. [NIAN G F, GUO C N, XU J Z, et al. Comprehensive quality evaluation and processing suitability analysis of Xinjiang dried pepper[J]. Science and Technology of Food Industry,2023,44(4):317−325. doi: 10.13386/j.issn1002-0306.2022040116 NIAN G F, GUO C N, XU J Z, et al. Comprehensive quality evaluation and processing suitability analysis of Xinjiang dried pepper[J]. Science and Technology of Food Industry, 2023, 44(4): 317-325 doi: 10.13386/j.issn1002-0306.2022040116
[17] NADEEM M, ANJUM F M, KHAN M R, et al. Antioxidant potential of bell pepper (Capsicum annum L. ): A review[J]. Food Sciences,2011,21(1/2/3/4):45−51.
[18] 邢泽农, 苏娟, 东莎莎, 等. 辣椒红色素的提取与应用[J]. 中国果菜,2021,41(3):26−29. [XING Z N, SU J, DONG S S, et al. Extraction anf application of capsanthin[J]. China Fruit & Vegetable,2021,41(3):26−29. XING Z N, SU J, DONG S S, et al. Extraction anf application of capsanthin[J]. China Fruit & Vegetable, 2021, 41(3): 26−29.
[19] COLLINS M D, WASMUND L M, BOSLAND P W. Improved method for quantifying capsaicinoids in Capsicum using high-performance liquid chromatography[J]. HortScience,1995,30:137−139. doi: 10.21273/HORTSCI.30.1.137
[20] MARION J E, DEMPSEY A H. Dempsey. Fatty acids of pimiento pepper seed oil[J]. Journal of the American Oil Chemists' Society, 1964, 41(8).
[21] SAMIA B B, AMANPOUR A, CHTOUROU F, et al. Gas chromatography-mass spectrometry-olfactometry to control the aroma fingerprint of extra virgin olive oil from three tunisian cultivars at three harvest times[J]. Journal of Agricultural and Food Chemistry,2018,66(11):2851−2861. doi: 10.1021/acs.jafc.7b06090
[22] ZHENG Y, SUN B G, ZHAO M M, et al. Characterization of the key odorants in chinese zhima aroma-type baijiu by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies[J]. Journal of Agricultural and Food Chemistry,2016,64(26):5367−5374. doi: 10.1021/acs.jafc.6b01390
[23] 胡梓妍, 刘伟, 何双, 等. 基于HS-SPME-GC-MS法分析3种金橘的香气挥发性成分[J]. 食品科学,2021,42(16):176−184. [HU Z Y, LIU W, HE S, et al. Analysis of volatile components in three varieties of kumquat by headspace solid phase microextraction-gas chromatography-mass spectrometry[J]. Food Science,2021,42(16):176−184. doi: 10.7506/spkx1002-6630-20200821-290 HU Z Y, LIU W, HE S, et al. Analysis of volatile components in three varieties of kumquat by headspace solid phase microextraction-gas chromatography-mass spectrometry[J]. Food Science, 2021, 42(16): 176−184. doi: 10.7506/spkx1002-6630-20200821-290
[24] 胡智慧, 白佳伟, 杨文熙, 等. 新鲜草果中关键香气成分的分析[J]. 食品科学,2020,41(16):173−178. [HU Z H, BAI J W, YANG W X, et al. Identification of the key odorants in fresh Amomum tsaoko fruit[J]. Food Science,2020,41(16):173−178. HU Z H, BAI J W, YANG W X, et al. Identification of the key odorants in fresh Amomum tsaoko fruit[J]. Food Science, 2020, 41(16): 173−178.
[25] 陈婷婷, 周志钦. 5个宽皮柑桔品种果肉特征香气物质的确定[J]. 中国南方果树,2018,47(3):23−29. [CHEN T T, ZHOU Z Q. Determination of characteristic aroma substances in pulp of 5 mandarin cultivars[J]. South China Fruits,2018,47(3):23−29. CHEN T T, ZHOU Z Q. Determination of characteristic aroma substances in pulp of 5 mandarin cultivars[J]. South China Fruits, 2018, 47(3): 23−29.
[26] YUSEN W, WENWEN Z, WENJUAN Y, et al. Study on the volatile composition of table grapes of three aroma types[J]. LWT-Food Science and Technology,2019,115:108450. doi: 10.1016/j.lwt.2019.108450
[27] 蔡炳彪, 张凤梅, 吴亿勤, 等. 基于GC-MS和GC-O法分析两种芫荽籽精油特征性香气成分[J]. 香料香精化妆品,2021(1):15−18,21. [CAI B B, ZHANG F M, WU Y Q, et al. Analysis of characteristic aroma components in two kinds of coriander seed essential oils based on GC-MS and GC-O[J]. Flavour Fragrance Cosmetics,2021(1):15−18,21. doi: 10.3969/j.issn.1000-4475.2021.01.003 CAI B B, ZHANG F M, WU Y Q, et al. Analysis of characteristic aroma components in two kinds of coriander seed essential oils based on GC-MS and GC-O[J]. Flavour Fragrance Cosmetics, 2021(1): 15−18, 21. doi: 10.3969/j.issn.1000-4475.2021.01.003
[28] 李贵节, 张群琳, 何雅静, 等. 三种晚熟甜橙冷磨精油挥发性及主体香气成分的比较分析[J]. 食品与发酵工业,2020,46(5):284−291. [[LI G J, ZHANG Q L, HE Y J, et al. Comparative analysis of volatile and principal aroma components of cold-pressed oil from three varieties of late-maturing sweet oranges[J]. Food and Fermentation Industries,2020,46(5):284−291. [LI G J, ZHANG Q L, HE Y J, et al. Comparative analysis of volatile and principal aroma components of cold-pressed oil from three varieties of late-maturing sweet oranges[J]. Food and Fermentation Industries, 2020, 46(5): 284−291.
[29] AZIZ K, AHMET F A, ALI A H. Changes in volatile compounds, sugars and organic acids of different spices of peppers (Capsicum annuum L.) during storage[J]. Food Chemistry,2020,311:125910. doi: 10.1016/j.foodchem.2019.125910
[30] 李妙清, 庄楷杏, 李娜, 等. 甜橙树四种不同器官提取的香气成分分析[J]. 饮料工业,2018,21(5):21−25. [LI M Q, ZHUANG K X, LI N, et al. Analysis of aroma components in orange oil extracted from four different parts[J]. Beverage Industry,2018,21(5):21−25. doi: 10.3969/j.issn.1007-7871.2018.05.007 LI M Q, ZHUANG K X, LI N, et al. Analysis of aroma components in orange oil extracted from four different parts[J]. Beverage Industry, 2018, 21(5): 21−25. doi: 10.3969/j.issn.1007-7871.2018.05.007
[31] 张婉珍, 李敏波, 刘启辉, 等. 品种和后成熟对NFC苹果浊汁挥发性香气成分的影响[J]. 食品工业科技,2022,43(13):291−302. [ZHANG W Z, LI M B, LIU Q H, et al. Effect of variety and ripening stage on volatile compounds of NFC cloudy apple juice[J]. Science and Technology of Food Industry,2022,43(13):291−302. ZHANG W Z, LI M B, LIU Q H, et al. Effect of variety and ripening stage on volatile compounds of NFC cloudy apple juice[J]. Science and Technology of Food Industry, 2022, 43(13): 291−302.
[32] 董殊廷, 聂加贤, 徐怀德, 等. 辣椒皮与籽在辣椒油香气中的贡献研究[J]. 中国调味品,2022,47(4):26−31. [[DONG S Y, NIE J X, XU H D, et al. Research on the contribution of Capsicum peels and seeds to the aroma of chili oil[J]. China Condiment,2022,47(4):26−31. [DONG S Y, NIE J X, XU H D, et al. Research on the contribution of Capsicum peels and seeds to the aroma of chili oil[J]. China Condiment, 2022, 47(4): 26−31.
[33] KALUA C M, ALLEN M S, BEDGOOD D R, et al. Olive oil volatile compounds, flavour development and quality: A critical review[J]. Food Chemistry,2005,100:273−286.
[34] 陈小爱, 蔡惠钿, 刘静宜, 等. 基于电子鼻、GC-MS和GC-IMS技术分析老香黄发酵期间的挥发性成分变化[J]. 食品工业科技,2021,42(12):70−80. [CHEN X A, CAI H T, LIU J, et al. Analysis of volatile components in Laoxianghuang during fermentation by electronic nose, GC-MS and GC-IMS[J]. Science and Technology of Food Industry,2021,42(12):70−80. CHEN X A, CAI H T, LIU J, et al. Analysis of volatile components in Laoxianghuang during fermentation by electronic nose, GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2021, 42(12): 70-80.
[35] 黄群, 麻成金, 余佶, 等. 湘西原香醋香气成分的GC-MS分析[J]. 食品科学,2009,30(24):260−261. [HUANG Q, MA C J, YU J, et al. Investigation of volatile aroma components of Xiangxi natural savory vinegar by GC-MS[J]. Food Science,2009,30(24):260−261. HUANG Q, MA C J, YU J, et al. Investigation of volatile aroma components of Xiangxi natural savory vinegar by GC-MS[J]. Food Science, 2009, 30(24): 260-261.
[36] 刘江, 朱大军, 李洪亮, 等. SPME/GC-MS分析火锅中常见6种香辛料挥发性成分物质[J]. 中国调味品,2022,47(5):178−182. [LIU J, ZHU D J, LI H L, et al. SPME/GC-MS analysis on volatile components of six common spices in hot pot[J]. China Condiment,2022,47(5):178−182. LIU J, ZHU D J, LI H L, et al. SPME/GC-MS analysis on volatile components of six common spices in hot pot[J]. China Condiment, 2022, 47(5): 178-182.
-
期刊类型引用(12)
1. 徐源,杨立军,李冰洁,郭磊磊,王琳,李尽哲. 超声辅助双水相提取紫苏叶总黄酮工艺优化及其抗氧化活性分析. 粮食与油脂. 2025(02): 158-162 . 百度学术
2. 郝熙,李伟,张海鹏,李昕彤,张铭,吴松遥,陈林林. 酶辅助超声优化提取紫苏籽多酚及其抗氧化和酶抑制活性. 中国调味品. 2025(02): 112-120 . 百度学术
3. 闫小杰,白乌日力嘎,张园园,刘秀丽,史培,其力格尔其其格,乌云达来,王莉梅. 紫苏叶醇提物提取工艺及其抗氧化、抗菌活性研究. 中国食品添加剂. 2025(03): 9-18 . 百度学术
4. 陈春明,詹锐旭,郑莉雯,温梁健,谢书垚,刘华. 山竹皮氧杂蒽酮超声辅助植物油提取工艺优化及其抗氧化和抑菌能力研究. 中国食品添加剂. 2024(02): 104-111 . 百度学术
5. 赵元寿,胡慧敏,赵振羽,赵卫东,尚艳. 食品中多酚类化合物提取方法的研究进展. 中国食品工业. 2024(04): 141-143 . 百度学术
6. 孟庆霖,褚齐,宋健,董红畅,李贺,林珈羽,赵南晰. 紫苏叶总黄酮对APAP诱导的急性肝损伤的保护作用. 食品工业科技. 2024(14): 344-351 . 本站查看
7. 邱卫华,于晓慧. 响应面法优化紫苏叶中花色苷与多酚的同步高效提取工艺. 现代食品. 2024(21): 155-162 . 百度学术
8. 郭誉嵘,王丹,李河,武瑞杰,崔小芳,许瑞清,李会珍,张志军. 紫苏叶提取物对美拉德体系晚期糖基化终末产物生成的抑制作用研究. 食品安全质量检测学报. 2023(16): 143-151 . 百度学术
9. 王贝,葛娅娅. 响应面法优化紫苏叶总黄酮提取工艺. 中国饲料. 2023(18): 28-32 . 百度学术
10. 吴颖,王双旦,唐文,刘晴,王佳其,张蓓婷. 金盏菊乙酸乙酯萃取相的酚酮类物质含量及其抗氧化、抑菌和酪氨酸酶抑制活性. 食品工业科技. 2023(19): 347-355 . 本站查看
11. 王哲,赵彩博,肖娟. 超声波辅助盐酸水解提取琼枝麒麟菜卡拉胶工艺优化. 海南大学学报(自然科学版). 2023(04): 376-386 . 百度学术
12. 张良琦,李文姣,肖美凤. 紫苏不同部位活性成分比较及其药理作用研究进展. 中国中药杂志. 2023(24): 6551-6571 . 百度学术
其他类型引用(3)