• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

辣子鸡丁贮藏过程中的品质变化

王瑶, 王颖, 王萍, 徐敏, 车振明, 刘平

王瑶,王颖,王萍,等. 辣子鸡丁贮藏过程中的品质变化[J]. 食品工业科技,2022,43(18):346−358. doi: 10.13386/j.issn1002-0306.2021120227.
引用本文: 王瑶,王颖,王萍,等. 辣子鸡丁贮藏过程中的品质变化[J]. 食品工业科技,2022,43(18):346−358. doi: 10.13386/j.issn1002-0306.2021120227.
WANG Yao, WANG Ying, WANG Ping, et al. Quality Change of Spicy Diced Chicken during Storage[J]. Science and Technology of Food Industry, 2022, 43(18): 346−358. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120227.
Citation: WANG Yao, WANG Ying, WANG Ping, et al. Quality Change of Spicy Diced Chicken during Storage[J]. Science and Technology of Food Industry, 2022, 43(18): 346−358. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120227.

辣子鸡丁贮藏过程中的品质变化

基金项目: 四川省科技计划项目(2020YFN0151)。
详细信息
    作者简介:

    王瑶(1997−),女,硕士研究生,研究方向:食品科学,E-mail:wangyao89105@163.com

    通讯作者:

    刘平(1979−),女,博士,教授,研究方向:发酵调味品加工及食品风味,E-mail:dewflowerlp@163.com

  • 中图分类号: TS205.7

Quality Change of Spicy Diced Chicken during Storage

  • 摘要: 为探究不同贮藏温度对辣子鸡丁品质的影响,本研究分析了该菜肴在4 ℃冷藏和−18 ℃冻藏过程中感官评分、理化指标和菌落总数的变化规律,并采用电子鼻结合全二维气相色谱-质谱(full two-dimensional gas chromatography-mass spectrometry,GC×GC-MS)联用技术对贮藏过程中产品的挥发性风味物质进行分析。结果表明:随着贮藏时间的延长,硫代巴比妥酸(thiobarbituric acid,TBA)值和b*值呈上升趋势,水分含量、质构特性、L*值、a*值和pH显著下降(P<0.05)。4 ℃实验组的菌落总数随贮藏时间延长呈上升趋势,但均低于标准限值,而−18 ℃实验组未出现可见菌落。感官品质在贮藏过程中呈下降趋势,且贮藏温度越高,其感官品质下降速度越快,第30 d时4 ℃实验组的感官评分值下降至59.67分,此时已失去食用价值。采用线性判别分析(Linear Discriminant Analysis,LDA)对电子鼻结果进行处理,不同贮藏时间的样品间的区分度良好。辣子鸡丁在贮藏过程中共检测出183种挥发性风味物质,其中气味活性值分析共得16种主体风味物质,以醇类、醛类、酯类、酮类和杂环类物质为主。因此,辣子鸡丁冷藏时的货架期25 d为宜,而冻藏能够在较长时间内保持产品的品质稳定。
    Abstract: To explore the effect of different storage temperatures on the quality of spicy diced chicken, the changes in sensory scores, physical and chemical indicators, and the total number of colonies of the dishes during the refrigerated storage (4 ℃) and frozen storage (−18 ℃) were analyzed in this study. And the electronic nose combined with the full two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) technology was used to analyze the volatile flavor compounds of the product. The results showed that thiobarbituric acid (TBA) and the b* value increased gradually with the storage duration, while the content of moisture, texture properties, L* value, a* value, and pH decreased significantly (P<0.05). The total number of colonies in the 4 ℃ group showed an increasing trend, lower than the standard limit. In comparison, no colonies appeared in the −18 ℃ group. The sensory quality decreased during the storage, and the higher the storage temperature, the faster the sensory quality decreased. On the 30th day, the sensory score of the 4 ℃ group decreased to 59.67, at which time the edible value of the product had been lost. The linear discriminant analysis (LDA) results of the electronic nose showed that the samples with different storage times had good discrimination. A total of 183 volatile flavor substances were detected during the storage of spicy diced chicken, of which 16 main flavor substances were obtained from the analysis of odor activity value, mainly alcohols, aldehydes, esters, ketones, and heterocyclic substances. Therefore, the shelf life of spicy diced chicken under refrigerated storage is 25 days, while frozen storage can keep the quality of the product stable for a long time.
  • 川菜作为中国八大菜系之一,以取材广泛、菜式多样、善用麻辣调味著称,在国内外享有盛誉。近年来川菜产业发展势头迅猛,到2022年,四川省川菜综合产值将力争达到3500亿元,这表明川菜产业发展拥有广阔的前景。辣子鸡丁作为川菜中的经典菜肴,以鸡肉、干辣椒和干花椒为主要原料,经过炒制而成,是一款色、香、味俱全的美味佳肴,深受消费者喜爱。但其传统烹饪方式受厨师、原材料、加工工艺等因素影响较大,在滋味及口感方面存在极大差异,因此标准化生产是解决辣子鸡丁“百店百味”的有效方式,同时对经济效益的提升和产业链的长期发展有促进作用。而标准化生产中较为重要的一环是贮运流通方式的选择,以及对产品在贮藏过程中品质变化的有效把控[1-2]

    目前肉类菜肴产品最常见的贮藏方式包括4 ℃冷藏和冻藏−18 ℃两种方式[3],冷藏是低温保鲜中应用最广泛的技术,但由于对微生物繁殖的抑制作用有限,货架期较短,难以满足长途运输与大规模生产的需要,而冻藏可有效降低肉内的生物化学反应,阻碍微生物的生长代谢,减缓食品的劣变,延长货架期[4]。陈伟玲等[5]研究发现,真空包装的黄田扣肉在4 ℃贮藏条件下的保质期为30 d。胡力等[6]的研究表明贮藏温度和时间与真空包装鸡肉酱的品质变化密切相关。李鹏等[7]研究发现,与冷藏相比,冻藏能够较好地保持酱卤鸡肉的品质及货架期。以上研究均表明贮藏温度对肉类菜肴产品的品质有较大的影响。近年来,任思婕等[8]研究了不同气体比例气调包装对冷藏微波辣子鸡丁品质的影响,牟心泰[9]探究了不同品类辣椒对辣子鸡的色、香、味变化的影响,但真空包装的辣子鸡丁在不同贮藏温度下的品质变化规律尚未见报道。为此,本研究以辣子鸡丁菜肴为研究对象,经真空包装后分别贮存于冷藏(4 ℃)和冻藏(−18 ℃)环境中,监测其感官评分、菌落总数、各项理化指标及挥发性风味的变化情况,探索辣子鸡丁在贮藏过程中品质的变化,以期为辣子鸡丁的品质控制和贮藏提供理论依据。

    黄羽肉鸡冷鲜鸡腿肉、小米辣干椒、二荆条干椒、花椒、生姜、大葱、大蒜、食用菜籽油、白糖、味精、食盐、生抽、老抽、料酒 郫县红光镇沃尔玛超市;三氯乙酸、乙二胺四乙酸(EDTA)、硫代巴比妥酸(TBA)、三氯甲烷、平板计数琼脂培养基、氯化钠 均为分析纯,成都市迪维乐普科技有限公司;2-甲基-3-庚酮、C7~C30正构烷烃标准品 西格玛奥德里奇贸易有限公司。

    11301 ACH电炸锅 湖北艾格丽经贸有限公司;TW-BZJ-2-4真空包装机 上海沃迪智能装备股份有限公司;PHS-320智能多功能酸度计 成都世纪方舟科技有限公司;7200型可见分光光度计 尤尼柯(上海)仪器有限公司;TA-XT Plus型物性质构仪 英国Stable Micro System公司;WF32-16MM精密色差仪 深圳威福光电科技有限公司;便携式电子鼻(PEN 3.5系统) 德国Airsense公司;配备SSM1810固态热调制器(上海雪景电子科技有限公司)的全二维气相色谱-质谱仪(GC×GC-MS) 日本岛津公司;75 μm CAR/PDMS萃取头 美国Supelco公司。

    工艺流程:原料预处理→腌制→油炸→加辅料炒制→真空包装→灭菌。

    操作要点:

    a.原料预处理:将冷鲜鸡腿肉剔骨并去除可见脂肪、筋膜后,切成大小均匀(2.0 cm×2.0 cm×2.0 cm)的鸡丁。

    b.腌制:将切好的鸡丁和调味料(按肉重比加入0.6%白糖、1%料酒、0.6%味精、0.6%食盐、4%生抽和2%老抽)混合均匀后腌制30 min。

    c.油炸:在锅中加入40%的食用油(按肉重计),将腌制后的鸡丁于160 ℃油温下炸制4 min,至表面金黄后捞出。

    d.炒制:加入小米辣干椒15%、二荆条干椒10%、花椒5%、生姜3%、大葱10%、大蒜10%爆香,倒入油炸后的鸡丁炒制翻炒入味。

    e.包装灭菌:炒制好的辣子鸡丁温度降至室温后按照每袋200 g的规格装入真空袋密封,于121 ℃杀菌15 min。

    将杀菌完成的样品分别在4、−18 ℃条件下避光贮藏,每隔5 d取一次样,以感官品质、水分含量、pH、TBA值、菌落总数等为指标,研究辣子鸡丁在贮藏期内品质的变化情况[10]

    将真空包装的辣子鸡丁自然解冻后微波加热2 min,置于白瓷盘中,由经过培训的10名感官评价人员(5男5女)在白炽灯下分别对鸡丁的外观、气味、质地和滋味进行感官评定,满分为100分,当感官评分低于64分时,鸡丁有轻微破损,表面略湿且有轻微异味,则视为感官品质不可接受。参考GB 2726-2016《食品安全国家标准 熟肉制品》和任思婕的方法[11-12],辣子鸡丁感官评定标准如表1所示。

    表  1  辣子鸡丁感官评价标准
    Table  1.  Sensory evaluation criteria for spicy diced chicken
    评价指标评价标准分值(分)
    外观(18分)色泽明亮且分布均匀,肉块完整度高13~18
    色泽明亮且分布均匀,肉块有轻微破损7~12
    色泽暗淡且分布不均匀,肉块破损较大1~6
    气味(18分)香辣味和肉香味浓郁,无异味13~18
    香辣味和肉香味一般,有轻微异味7~12
    无任何香味,且异味明显1~6
    质地(32分)鸡丁紧密不松散,软硬适中,表面干爽不黏腻21~32
    鸡丁不松散,软硬适中,表面略湿但不黏腻9~20
    鸡丁松散程度较大,肉质过软,表面较湿较黏腻1~8
    滋味(32分)香辣可口,咸淡适中,无异味21~32
    香辣味较淡,咸淡适中,有轻微异味9~20
    香辣味很淡,较咸或较淡,有异味1~8
    下载: 导出CSV 
    | 显示表格

    参照GB 5009.3-2016《食品安全国家标准 食品中水分的测定》测定[13]

    参照GB 5009.237-2016《食品安全国家标准 食品pH值的测定》测定[14]

    参照İncil等[15]的方法,准确称取研磨均匀的辣子鸡丁肉样10 g,加入7.5%的三氯乙酸(含0.1% EDTA) 50 mL,振摇30 min,滤纸过滤。取5 mL滤液加入5 mL 0.02 mol/L TBA溶液,90 ℃水浴保温40 min,取出后冷却至室温。加入5 mL三氯甲烷,摇匀,静置分层后取出上清液分别于532和600 nm处测吸光度值,并按以下公式计算TBA值:

    TBA(mg/100g)=A532A600R×110×M×100

    式中:A532表示样品在532 nm处的吸光度;A600表示样品在600 nm处的吸光度;M表示丙二醛的相对分子质量72.06;R表示毫摩尔吸光系数155。

    按照GB 4789.2-2016《食品安全国家标准 食品微生物学检验 菌落总数测定》测定[16]

    将鸡丁切成1 cm×1 cm×0.5 cm规格后采用P/36R探头测定其硬度、弹性和咀嚼性。参考赵晶等[17]的方法并有所修改,TPA模式参数为:测量前速度1 mm/s,测试中速度5 mm/s,测试后速度5 mm/s,应变力40%,停留间隔时间10 s,触发力5 g,数据采集率200 pps。

    参照蒋兆景等[18]的方法并有所修改,选取形状、大小相同的鸡丁,在避光条件下用便携式色差仪对其亮度值L*、红度值a*和黄度值b*进行测定。

    参照廖林等[19]的方法并有所修改,准确称取3 g样品放入20 mL顶空瓶中,加入1 μL浓度为0.816 mg/mL的2-甲基-3-庚酮溶液作为内标物,旋紧瓶盖后混合均匀,80 ℃水浴平衡10 min后插入75 μm CAR/PDMS萃取头,萃取45 min后在GC进样口解吸5 min。GC条件:一维柱:DB-Wax 30 m×0.25 mm×0.25 μm;二维柱:DB-17 MS毛细色谱柱(1.2 m×0.18 mm×0.18 um);调制柱:HV系列调制柱(C5~C30)。载气为高纯氦(纯度≥99.999%);柱前压为64.9 kPa;进样口温度250 ℃;不分流进样;流速1.0 mL/min;程序升温:起始温度40 ℃,保持2 min,然后以6 ℃/min升温到240 ℃。MS条件:EI电离源,离子源电压为70 eV,离子源温度为230 ℃,接口温度为250 ℃,质量扫描范围m/z 41~330。定性与定量分析:采用Canvas全二维色谱数据处理软件,将总离子流图中的每个峰与NIST 20数据库中已知物质的质谱数据进行检索定性,根据内标法计算各挥发性风味物质的含量,最终单位为ng/g。查阅挥发性风味物质在油中的阈值,根据每种香气成分的含量与阈值的比值计算其气味活性值(Order Activity Value,OAV),以此评价该香气成分对样品整体风味的贡献程度[20],计算公式如下:

    OAV=CiTi×103

    式中:Ci为挥发性风味物质的浓度,ng/kg;Ti为相应挥发性风味物质在油中的感官阈值,mg/kg。当OAV≥1时,表明该风味组分对总体风味物质具有主体作用,对整体的风味起到较大的贡献。

    参考孙灵霞等[21]的方法并有所修改,称取5.00 g样品于顶空进样瓶中,35 ℃水浴平衡30 min后进行电子鼻分析。电子鼻检测条件:采样间隔1 s,冲洗时间100 s,零点漂移时间10 s,预采样时间5 s,测量时间90 s,传感器气室流量300 mL/min,初始注入流量300 mL/min,G/G0最大值5。每组实验重复6次。电子鼻检测结果由仪器自带的Win Muster软件进行LDA。

    每个实验重复3次,所有结果均以平均值±标准差的形式表示。采用SPSS 21软件进行统计分析和方差分析,P<0.05时为显著性差异;采用Origin 2022绘图。

    感官评价是确定食品品质和货架期的重要手段。由图1可知,辣子鸡丁的感官评分值在贮藏过程中呈下降趋势,但4 ℃实验组感官评分值的下降速率略高于−18 ℃实验组。第0 d,辣子鸡丁的整体感官评分值为83.5分。在整个贮藏过程中,−18 ℃实验组的感官评分值下降较为缓慢,第30 d的感官评分值为73.33。而4 ℃实验组在贮藏至第25 d时出现了较淡的异味,感官评分值降至69.33(P<0.05),至第30 d时,4 ℃实验组出现了较为明显的异味,在感官上已不被消费者接受,此时的整体感官评分值为59.67(P<0.05)。辣子鸡丁感官属性的变化可能是贮藏期间由微生物引起的脂肪氧化、水分损失等原因所致[22]。研究结果表明,贮藏温度越低,辣子鸡丁感官品质的变化就越小,这与钟萍等[23]的研究结果一致。

    图  1  辣子鸡丁贮藏过程中感官评分值的变化
    Figure  1.  Changes in sensory score of spicy diced chicken during storage

    水分与许多化学反应密切相关,其含量对食品的质量和货架期的影响极大[24]。辣子鸡丁在不同贮藏温度下的水分变化如图2所示。两个实验组的水分含量在贮藏过程中逐渐降低(P<0.05)。鸡丁第0 d的水分含量为45.33%,第30 d时4和−18 ℃实验组的水分含量分别降至39.75%和42.00%,与初始水平相比,差异显著(P<0.05)。−18 ℃实验组水分含量的下降与贮藏过程中的一系列氧化反应有关,但4 ℃实验组的水分含量在整个贮藏过程中损失较大,降低了5.58%,除了上述原因,还有可能是因为较高的贮藏温度促进了鸡丁中连接肌原纤维和细胞膜的蛋白质的降解,这些蛋白质收缩,最终导致整个肌细胞收缩,从而形成汁液流失通道,增加了水分流失[8,24-25]

    图  2  辣子鸡丁贮藏过程中水分含量的变化
    Figure  2.  Changes in moisture content of spicy diced chicken during storage

    pH是反应肉制品品质的重要指标之一[26]。由图3可知,在整个贮藏过程中,两个实验组的pH均呈现下降趋势(P<0.05)。这是由于在贮藏过程中,真空包装中的剩余氧气逐渐耗尽,为乳酸菌将糖原转化为乳酸提供了机会,此外,肉内脂肪的氧化也可能导致pH的下降[27]。但与−18 ℃实验组相比,4 ℃实验组的pH下降速率较快,从贮藏初期的6.41大幅下降至6.19,这可能是因为较高的贮藏温度对乳酸的形成以及脂肪氧化有促进作用[28-29]

    图  3  辣子鸡丁贮藏过程中pH的变化
    Figure  3.  Changes in pH value of spicy diced chicken during storage

    TBA值反映的是肉制品中不饱和脂肪酸和脂肪二次氧化产物的多少,是评价肉制品氧化程度的常见指标[30]。辣子鸡丁在贮藏期间TBA值的变化情况如图4所示。两个实验组的TBA值都随着贮藏时间的延长而升高(P<0.05)。鸡丁的初始TBA值为0.665 mg/100 g。第30 d时,4、−18 ℃实验组的TBA值分别增加至1.457和1.165 mg/100 g。这是因为随着贮藏时间的延长,鸡丁的脂肪氧化程度不断加深,但4 ℃实验组在贮藏末期的TBA值比−18 ℃实验组高了25.06%。这些结果与Wang等[31]的结论是一致的。由此可见,冷冻贮藏能更有效地抑制脂肪的自动氧化,从而减缓鸡丁的变质速率。

    图  4  辣子鸡丁贮藏过程中TBA值的变化
    Figure  4.  Changes in TBA value of spicy diced chicken during storage

    菌落总数是用来指示食品受微生物污染情况最直观的指标之一,根据GB 2726-2016 《食品安全国家标准 熟肉制品》规定,熟肉制品菌落总数的最高安全限量值为5.00 lg CFU/g[11]。辣子鸡丁在贮藏期间菌落总数的变化如表2所示。−18 ℃实验组在贮藏过程中未发现可见菌落,而4 ℃实验组在第15 d开始出现可见菌落,第30 d的菌落总数为1.26 lg CFU/g,但未超过标准限值。这可能是由于冷冻环境抑制了与微生物物质代谢有关的酶活性,从而抑制了微生物的生长繁殖速率[32-33]

    表  2  辣子鸡丁贮藏过程中菌落总数的变化
    Table  2.  Changes in total microbial count of spicy diced chicken during storage
    贮藏时间(d)菌落总数(lg CFU/g)
    4 ℃−18 ℃
    000
    500
    1000
    150.84±0.03d0
    200.92±0.02c0
    251.16±0.03b0
    301.26±0.05a0
    注:同列小写字母不同,表示差异显著(P<0.05);表3~表4同。
    下载: 导出CSV 
    | 显示表格

    食品的质构是与食品的组织结构及状态有关的物理性质,包含硬度、弹性、咀嚼性等[34]。由表3可以看出,两个实验组的硬度、弹性、咀嚼性均随贮藏时间的延长呈现不同程度的下降趋势(P<0.05),但−18 ℃实验组的质构特性下降速率明显低于4 ℃实验组。与第0 d相比,4、−18 ℃实验组第30 d的硬度值分别下降了12.08%、10.64%,这是因为蛋白质等营养成分被分解,从而导致产品质构松垮;弹性分别下降了34.50%、30.11%,它与水分在贮藏过程中的损失有关;而咀嚼性分别下降了15.07%、8.87%,这可能与微生物及内源蛋白酶对肌原纤维蛋白的降解作用、脂肪氧化反应以及水分含量的下降有关[35-36]

    表  3  辣子鸡丁贮藏过程中质构特性的变化
    Table  3.  Changes in texture characteristics of spicy diced chicken during storage
    贮藏时间(d)4 ℃ −18 ℃
    硬度(g)弹性咀嚼性(g)硬度(g)弹性咀嚼性(g)
    02940.38±6.13a0.75±0.01a1338.51±8.59a 2940.38±6.13a0.75±0.01a1338.51±8.59a
    52873.00±11.53b0.73±0.01a1328.33±1.88a2895.56±6.45b0.74±0.01a1330.52±2.14ab
    102763.87±4.94c0.68±0.02b1305.00±3.94b2815.18±10.01c0.70±0.01b1325.93±2.96ab
    152682.83±6.95d0.62±0.02c1291.39±3.02b2770.06±5.20d0.66±0.02c1313.63±3.70b
    202639.57±6.39e0.59±0.01c1271.25±3.25c2692.69±6.33e0.63±0.01d1292.39±2.14c
    252627.26±9.02e0.53±0.01d1212.04±17.80d2658.92±10.95f0.61±0.01d1277.20±6.05c
    302585.24±8.18f0.49±0.01e1136.78±12.03e2627.46±7.12g0.53±0.02e1219.82±18.24d
    下载: 导出CSV 
    | 显示表格

    色泽在肉制品的外观和接受度中起着重要作用,是影响消费者购买欲望最直观因素之一 [37]表4显示了不同贮藏温度和时间对鸡丁颜色(L*、a*、b*值)的影响。随着贮藏时间的延长,两个实验组的L*值和a*值逐渐降低,而b*值增加(P<0.05)。4 ℃实验组在贮藏期间色泽的稳定性较差,其L*值和a*值下降幅度最大,L*值从48.51降到34.95,a*值从14.19降到11.70,而b*值从33.76增加到53.36(P<0.05)。相关研究表明,L*值的降低与蛋白质变性、脂质氧化反应有关;a*值的降低是由于脂质氧化过程中产生的自由基会改变血红素基团的化学性质并引发肌红蛋白氧化,从而使产生产品失色;而b*值的升高则与鸡丁内部水分的析出、脂质氧化以及美拉德反应有关[38-39]

    表  4  辣子鸡丁贮藏过程中色泽的变化
    Table  4.  Changes in color of spicy diced chicken during storage
    贮藏时间(d)4 ℃ −18 ℃
    L*a*b*L*a*b*
    048.51±0.68a14.19±0.19a33.76±0.46g 48.51±0.68a14.19±0.19a33.76±0.46g
    544.77±0.23b13.82±0.04ab35.57±0.09f45.87±0.25b13.87±0.04b35.27±0.16f
    1040.90±0.46c13.77±0.06abc37.03±0.03e43.51±0.38c13.82±0.03b36.46±0.32e
    1539.00±0.71d13.60±0.36bc40.38±0.15d40.38±0.45d13.78±0.02bc40.17±0.05d
    2035.61±0.25e13.31±0.35cd45.38±0.15c38.32±0.23e13.69±0.22bc43.17±0.05c
    2535.15±0.05f12.98±0.10d49.86±0.51b37.32±0.23f13.48±0.18c45.53±0.24b
    3034.95±0.06f11.70±0.12e53.36±0.44a36.64±0.05f12.86±0.10d47.77±0.33a
    下载: 导出CSV 
    | 显示表格

    在不同贮藏温度下,辣子鸡丁挥发性风味物质在贮藏过程中的变化情况如图5表5所示。两个实验组挥发性风味物质的种类在贮藏过程中呈现先升后降的趋势。辣子鸡丁在第0 d共检测到103种挥发性风味物质,其中醇类19种、醛类12种、酯类10种、酮类11种、烷烃类3种、烯烃类21种、醚类7种、杂环类14种、其他类6种。第15 d时,4、−18 ℃实验组的挥发性风味物质均为115种。第30 d时,两个实验组的挥发性风味物质种类分别为88和93种。辣子鸡丁挥发性风味物质贮藏结束时的含量明显高于贮藏初期,与第0 d相比,4、−18 ℃实验组在第30 d时的挥发性风味物质含量分别提高了36.90%和16.59%。这可能是因为鸡丁中的大分子物质在贮藏过程中氧化水解生成大量风味前体物质,且大多数风味物质都是脂溶性的,会在贮藏过程中不断挥发出来,从而导致挥发性物质含量的增加[33]

    图  5  辣子鸡丁贮藏过程中挥发性风味物质的变化
    注:(A)挥发性风味物质种类数的变化;(B)挥发性风味物质含量的变化。
    Figure  5.  Changes of volatile flavor compounds of spicy diced chicken during storage
    表  5  贮藏过程中辣子鸡丁风味物质含量变化
    Table  5.  Changes of flavor substances in spicy diced chicken during storage
    化合物名称RI挥发性风味物质含量(ng/g)阈值[40](mg/kg)
    0 d4 ℃/15 d−18 ℃/15 d4 ℃/30 d−18 ℃/30 d
    醇类
    乙醇86712.68NDNDNDND30
    异丁醇10292.92NDNDNDND1
    丙烯醇1044300.31NDNDNDNDNF
    1-戊烯-3-醇10957.32NDNDNDND0.4
    异戊醇114112.66NDNDND3.990.1
    桉叶油醇1156309.38215.75132.63ND235.820.015
    1-戊醇118426.93NDNDND5.930.47
    4-乙基-1,4-二-2-环己烯-1-醇1230NDND3.3827.7014.61NF
    顺-2-戊烯醇12464.71NDNDND4.210.25
    正己醇128219.281.461.926.117.51102-511
    葛缕醇1367NDND4.54NDNDNF
    1-辛烯-3-醇1372NDNDND26.1437.440.001
    顺-Α,Α-5-三甲基-5-乙烯基四氢化呋喃-2-甲醇137221.8110.3611.56NDNDNF
    正庚醇1378ND4.175.23NDNDNF
    芳樟醇1468369.00432.33332.51910.50668.710.037
    2,3-丁二醇14804.78NDNDNDNDNF
    (-)-4-萜品醇1518ND254.83206.33489.55325.82NF
    3,7-二甲基辛-1,5,7-三烯-3-醇1521ND10.208.3612.3312.23NF
    4-萜烯醇1521248.27NDNDNDNDNF
    环辛醇1524NDND6.62ND14.36NF
    反式-2-辛烯醇1524ND4.60NDNDNDNF
    二甲基硅烷二醇154711.09ND15.3316.0513.74NF
    糠醇155433.2859.6849.64117.79100.80NF
    α-松油醇160595.32100.1988.74223.40140.14NF
    5-甲基-2-呋喃甲醇1612ND12.3511.1016.9111.64NF
    2,6-二甲基辛-1,5,7-三烯-3-醇1645ND3.332.975.703.84NF
    香茅醇1668NDND3.18NDNDNF
    橙花醇16986.4537.0752.7175.0637.64NF
    苯甲醇1750ND3.523.74NDNDNF
    苯乙醇17888.3314.4616.1129.6025.520.122
    2-(4-亚甲基环己基)丙-2-烯-1-醇1798ND3.062.50NDNDNF
    紫罗醇1810ND2.00NDNDNDNF
    十二醇1861ND7.156.0712.5311.13NF
    紫苏醇1872ND2.01NDNDNDNF
    1,5-己二烯-3-醇18723.04NDNDNDNDNF
    4-异丙基苯甲醇1964ND1.76NDNDNDNF
    榄香醇1964ND4.214.29NDNDNF
    醛类
    异戊醛855538.51NDND219.94330.410.08
    正己醛1023455.2651.5175.27134.32179.040.073
    顺-2-甲基-2-丁醛102962.5026.2831.2472.3452.860.4
    5-己烯醛1069NDND1.4333.02NDNF
    庚醛1125ND22.8833.3954.8160.660.5
    正辛醛1227103.4438.8763.4197.1192.800.32
    壬醛132697.8587.96131.61131.9397.740.15
    反-2-辛烯醛135510.0911.108.6714.208.370.004
    3-甲硫基丙醛13665.50ND13.10NDND0.0002
    糠醛1369115.2672.0280.06131.41116.81NF
    苯甲醛1426124.88107.96107.88161.88121.760.06
    癸醛1429ND8.099.63NDND0.65
    反式-2-壬醛1456ND10.179.0811.57ND0.15
    2-(4-甲基-3-环己烯-1-基)丙醛15318.3711.847.6611.737.51NF
    苯乙醛154031.8946.0465.9876.6471.470.025
    反式-2-癸烯醛1560ND21.3914.9421.467.833.22
    2-噻吩甲醛1582ND1.40NDNDNDNF
    (Z)-3,7-二甲基-2,6-辛二烯醛1589ND7.9814.7710.70NDNF
    2-异丙烯基-5-甲基己-4-烯醛159511.67NDND20.3916.10NF
    5-甲基-2-噻吩甲醛1619ND6.58NDND8.99NF
    4-异丙基环己烯甲醛1629ND11.092.46NDNDNF
    柠檬醛1639NDND58.16NDNDNF
    4-异丙基苯甲醛1675ND6.382.746.48NDNF
    L-紫苏醛1685ND4.92NDNDNDNF
    α-亚乙基-苯乙醛1806ND3.412.80NDNDNF
    十四烷醛2039ND23.37NDND5.19100
    十六醛2039NDND32.27NDNF
    酯类
    乙酸异丁酯957255.0244.9142.74122.13147.24NF
    甲酸烯丙酯1044ND147.94143.41NDNDNF
    异戊酸芳樟酯1114NDND947.712067.94NDNF
    己酸乙酯1179546.08NDNDNDND0.04
    乙酸甲酯1215ND20.8823.1943.2857.652
    乙酸庚酯1311NDND1.48NDNDNF
    乙二醇单甲酸酯1354NDNDND309.64294.69NF
    甲酸庚酯137818.06NDNDNDNDNF
    乙酸辛酯140818.063.382.90NDNDNF
    乙酸芳樟酯1484452.73533.40505.831035.42861.12NF
    γ-丁内酯1518NDND1.73ND9.13NF
    4-羟基丁酸乙酰酯152124.28NDNDNDNDNF
    乙酸香茅酯1583ND2.71NDNDNDNF
    乙酸松油酯161293.13129.89113.38204.55151.11NF
    橙花乙酸酯163941.16104.5389.33175.73133.95NF
    苯乙酸甲酯1652ND7.855.6312.407.85NF
    乙酸香叶酯166936.62140.02115.10189.90141.57NF
    乙酸苯乙酯17098.5345.6432.0948.0718.620.137
    棕榈酸甲酯2124ND22.6519.63ND7.11NF
    二氢猕猴桃内酯2194NDND3.39NDNDNF
    油酸甲酯2335ND3.292.63NDNDNF
    酮类
    2,3-戊二酮99562.563.98ND12.6437.890.0003
    4-甲基-2-己酮11192.56NDNDNDNDNF
    3-羟基-2-丁酮12074.19NDNDNDNDNF
    6-甲基-5-庚烯-2-酮126851.8912.8937.6336.7838.551
    5-甲基-2(3H)-呋喃酮13433.54NDNDNDNDNF
    2-癸酮1423ND2.01NDNDND10
    (E)-6-甲基-3,5-庚二烯-2-酮15059.6511.399.4721.948.46NF
    2-十一酮1525NDND2.73NDND3.4
    2-甲基-5-(1-甲基乙烯基)环己酮1525ND3.53NDNDNDNF
    苯乙酮155012.5317.63ND18.7613.675.629
    4-异丙基环己-2-烯-1-酮15798.968.846.0720.1011.81NF
    胡椒酮1636ND36.13ND78.2539.19NF
    右旋香芹酮1639ND22.97NDNDNDNF
    3-甲基苯乙酮16694.09NDNDNDNDNF
    3-甲基-1,2-环戊二酮17124.292.421.997.436.092.8
    2-十三烷酮1727ND3.16NDNDND500
    香叶基丙酮1758ND3.883.30NDNDNF
    呋喃酮1894ND2.482.47ND6.670.0016
    2,3-二氢-3,5二羟基-6-甲基-4(H)-吡喃-4-酮21066.7611.198.7029.4414.41NF
    烷烃类
    癸烷981ND4.33NDNDND4000
    3-甲基十一烷1151ND11.2812.43NDNDNF
    十二烷1183ND57.5349.10NDND13000
    1-氯-5-甲基己烷12135.64NDND14.57NDNF
    环十二烷1214ND3.86NDNDNDNF
    硝基甲烷12659.18NDNDNDNDNF
    3-甲基十三烷1347ND6.874.66NDNDNF
    十四烷1379ND19.7014.24NDND13000
    1-硝基己烷14176.36NDNDNDNDNF
    正十五烷1479ND6.036.33NDND13000
    正十六烷1577ND5.824.92NDND13000
    2-硝基丁烷1865NDNDNDND10.00NF
    烯烃类
    2,6-二甲基-2-反式-6-辛二烯1060116.27NDNDNDNDNF
    左旋-β-蒎烯1069245.07141.5797.15761.56346.35NF
    3-乙基-2-甲基-1,3-庚二烯109011.99NDNDNDNDNF
    2-甲基-6-亚甲基-1,7-辛二烯1105NDNDND13.25NDNF
    水芹烯111129.0740.2190.27NDNDNF
    月桂烯11141055.73988.86ND48.122331.21NF
    松油烯1128511.30314.87303.92675.13650.85NF
    茨烯113925.68NDNDNDNDNF
    (R)-1-甲基-5-(1-甲基乙烯基)环己烯1145NDND1299.44NDNDNF
    2,7-二甲基-1,3,7-辛三烯115740.25NDNDNDNDNF
    β-水芹烯1159NDNDND572.91NDNF
    2-蒈烯116514.14NDNDND11.00NF
    α-蒎烯117611.71181.34174.13850.31280.020.274
    γ-松油烯1191389.10251.01254.28582.12574.70NF
    罗勒烯1196ND327.98302.20ND415.55NF
    3-蒈烯1196424.49NDNDND26.25NF
    萜品油烯1227304.41137.82138.64333.87301.53NF
    4-乙基-3-亚乙基环己烯126042.64NDNDNDNDNF
    别罗勒烯1308252.75231.20115.85288.68196.02NF
    五甲基环戊二烯1328NDND80.68268.57151.08NF
    1,2-二甲基-1-环庚烯13405.31NDNDNDNDNF
    紫苏烯13467.3715.1614.1922.5316.30NF
    2,4-二甲基苯乙烯1361ND63.1450.66NDNDNF
    (3E)-3-乙基己-1,3-二烯1408ND15.046.5510.56NDNF
    1-乙基-5-甲基-环戊烯14115.91NDND9.415.78NF
    1,4-二甲基-4-乙酰基-1-环己烯14415.72NDNDNDNDNF
    β-榄香烯1529ND3.143.11NDNDNF
    β-石竹烯15386.1513.799.7815.7513.69NF
    γ-榄香烯1574NDNDND12.33NDNF
    α-律草烯16039.5317.3612.9718.0412.86NF
    Δ-杜松烯1683ND18.0614.80NDNDNF
    Α-姜黄烯1693ND2.33NDNDNDNF
    去氢白菖烯1744ND7.51NDNDNDNF
    醚类
    二烯丙基硫醚1087352.25NDNDNDNDNF
    烯丙基甲基二硫醚1210102.4524.8038.9596.58117.38NF
    二甲基三硫醚129917.43NDNDNDND0.0025
    糠基甲基硫醚13991.28NDNDNDNDNF
    二烯丙基二硫醚139993.5870.3193.95NDND10
    甲基烯丙基三硫醚149910.22ND7.7419.3513.95NF
    4-烯丙基苯甲醚171954.84NDNDNDNDNF
    杂环类
    2,5-二甲基吡嗪1252100.2237.3242.24110.9090.532.6
    2,6-二甲基吡嗪125766.2643.5846.8380.1181.001.021
    2-乙基-5-甲基吡嗪132023.827.469.0818.3216.500.32
    2,3,5-三甲基吡嗪133120.729.8812.1516.5819.460.29
    3-乙基-2,5-甲基吡嗪1370NDNDND77.18ND0.166
    2-甲基-6-乙烯基吡嗪1405ND11.509.4514.047.88NF
    2-正戊基呋喃1171ND52.2491.59122.73151.580.1
    2-乙酰基呋喃141190.5857.1954.10118.3486.88NF
    5-甲基呋喃147467.18ND56.61104.3578.71NF
    2,3-二氢苯并呋喃2214NDND2.00NDNDNF
    吡啶111330.887.919.35ND12.26NF
    嘧啶113930.214.495.52ND16.89NF
    2-甲基嘧啶1193108.4929.6336.5564.3586.83NF
    1-甲基吡咯1065ND27.3728.1129.4873.61NF
    吡咯1410NDNDNDND4.85NF
    2-乙酰基吡咯183567.9262.2569.29124.7389.92NF
    2-甲酰基吡咯18835.42ND6.919.637.54NF
    3-(4-甲基-3-戊烯基)噻吩15536.134.262.7215.8710.53NF
    3-甲基-2-醛基噻吩16194.89ND7.6510.16NDNF
    2-乙酰基-2-噻唑啉16494.80ND6.467.517.310.0018
    其他类
    4-叔丁基苯硫酚1646NDNDND18.15NDNF
    对乙烯基愈创木酚20465.9619.5315.7014.538.550.2
    3-甲基巴豆腈119336.772.22NDND27.77NF
    乙酸酐121537.52NDNDNDNDNF
    5-己腈126540.472.772.1914.6429.86NF
    5-甲硫基戊腈18063.703.052.96NDNDNF
    苯代丙腈19027.7213.4712.8019.0914.12NF
    注:ND代表未检出;NF代表未查阅到物质在油中相应的阈值。
    下载: 导出CSV 
    | 显示表格

    醇类物质的含量在贮藏过程中呈现明显的上升趋势。在检测到的37种醇类中,芳樟醇、α-松油醇以及糠醇等不饱和醇类对辣子鸡丁的气味影响较大,它们的含量均随贮藏时间的延长呈上升趋势。醛类物质中的异戊醛、正己醛、壬醛、糠醛、苯甲醛等含量较高,能够给鸡丁带来花果香以及特殊的杏仁气味,4 ℃实验组在贮藏第30 d的苯甲醛含量比第0 d增加了29.63%,这可能是辣子鸡丁感官评分下降的原因之一。酯类物质的含量在整个贮藏过程呈上升趋势,以乙酸异丁酯、乙酸芳樟酯、乙酸松油酯、橙花乙酸酯、乙酸香叶酯等能赋予鸡丁甜果香和花香味的物质为主,其中4 ℃实验组乙酸芳樟酯的含量在第30 d时急剧上升。而酮类物质含量的升高主要与不饱和脂肪酸氧化或美拉德反应等有关。烷烃和烯烃类物质在整体风味物质中所占比例较大,但由于一般阈值比较大,对挥发性风味物质贡献较少,并不影响样品的风味特征[39,41]。杂环类物质主要是一些吡嗪、呋喃类物质,大多会产生一些不愉快的气味,其含量在贮藏过程中呈现上升趋势,与第0 d相比,4 ℃实验组第30 d的含量升高了47.28%,这与其感官品质的劣变密切相关。以上这些挥发性风味物质的主要来源包括脂质降解、美拉德反应以及原辅料等[41]。脂肪氧化降解后会生成大量脂肪族化合物,包括醛类、醇类、酮类、酯类等,这些物质在产品的风味方面起着非常重要的作用。美拉德反应的产物包括吡嗪类化合物、含氧杂环化合物(如呋喃类)和Strecker醛等,而烯烃类物质和醚类物质分别来自原料中的花椒、辣椒以及大葱和大蒜[42-43]

    研究结果表明,两个实验组的挥发性风味物质含量在贮藏过程中的整体变化趋势一致,但冷冻贮藏能减缓鸡丁脂质氧化等反应的速率,从而降低对整体挥发性风味物质的影响。但挥发性成分种类和相对含量的高低不能准确描述其对风味的贡献度大小,还需要结合OAV值对辣子鸡丁的特征香气成分作进一步判断。

    为研究挥发性成分对风味的贡献度,进一步结合各挥发性成分阈值,进行OAV分析。OAV≥1的挥发性风味物质对总体风味物质起到主体作用,对食品的风味起到较大的贡献,往往OAV值越大,就对总风味物质的贡献越大。由表6可知,在辣子鸡丁贮藏过程中鉴定出对风味物质起主体作用的物质共有16种,其中醇类3种,醛类6 种,酯类1种,酮类2种,烯烃类1种,醚类1种,杂环类2种。

    表  6  辣子鸡丁的主体风味物质(OAV≥1)
    Table  6.  Main flavor substance of spicy diced chicken (OAV≥1)
    种类化合物名称OAV香气描述
    0d4 ℃/15 d−18 ℃/15 d4 ℃/30 d−18 ℃/30 d
    醇类桉叶油醇20.6314.388.840.0015.72樟脑气息和清凉的草药味
    1-辛烯-3-醇0.000.000.0026.1437.44蘑菇、薰衣草、玫瑰和干草香气
    芳樟醇9.9711.688.9924.6118.07甜嫩新鲜的铃兰香气
    醛类异戊醛6.730.000.002.754.13苹果香气
    正己醛6.240.711.031.842.45生油脂和青草气及苹果香味
    反-2-辛烯醛2.522.782.173.552.09脂肪和鸡肉香味
    3-甲硫基丙醛27.490.0065.480.000.00土豆香气、洋葱味、肉香味
    苯甲醛2.081.801.802.702.03特殊的杏仁气味
    苯乙醛1.281.842.643.072.86类似风信子的香气
    酯类己酸乙酯13.650.000.000.000.00曲香、菠萝香型的香气
    酮类2,3-戊二酮208.5513.280.0042.14126.30奶油、焦糖香气,坚果底香
    呋喃酮0.001.551.540.004.17焦糖香气和水果香味
    烯烃类α-蒎烯0.040.660.643.101.02松节油味
    醚类二甲基三硫醚6.970.000.000.000.00类似新鲜洋葱香气
    杂环类2-正戊基呋喃0.000.520.921.231.52植物芳香味
    2-乙酰基-2-噻唑啉2.670.003.594.174.06坚果香味
    下载: 导出CSV 
    | 显示表格

    在贮藏初期有12种起主体作用(OAV≥1)的风味物质,其中2,3-戊二酮对辣子鸡丁的风味有较大贡献,带来了令人愉悦的焦糖香气和坚果底香。其次是3-甲硫基丙醛(27.49)、桉叶油醇(20.63)、己酸乙酯(13.65)、芳樟醇(9.97)、异戊醛(6.73)、正己醛(6.24)、反-2-辛烯醛(2.52)、苯甲醛(2.08)、苯乙醛(1.28)、二甲基三硫醚(6.97)和2-乙酰基-2-噻唑啉(2.67),这些物质对辣子鸡丁中肉香味、草药香、焦糖香味以及花香等香气轮廓的形成起到决定性作用。第15 d时,4和−18 ℃实验组的特征风味物质(OAV≥1)数量分别为7和9种,其中桉叶油醇(14.38)、芳樟醇(11.68)和2,3-戊二酮(13.28)对4 ℃实验组的风味贡献较大,它们对辣子鸡丁中花香、坚果香等香气轮廓的形成起重要作用。而3-甲硫基丙醛(65.48)则是−18 ℃实验组OAV最大的风味物质,它赋予了产品浓郁的肉香味。第30 d时,4 ℃实验组中起主体作用的风味物质包括1-辛烯-3-醇(26.14)、芳樟醇(24.61)和2,3-戊二酮(42.14),它们是辣子鸡丁中花草香和坚果香等香气轮廓的重要组成部分,−18 ℃实验组OAV最大的是桉叶油醇(15.72)、1-辛烯-3-醇(37.44)、芳樟醇(18.07)和2,3-戊二酮(126.30)。

    在整个贮藏过程中均有桉叶油醇(8.84~20.63)、芳樟醇(8.99~24.61)、正己醛(0.71~6.24)、反-2-辛烯醛(2.09~3.55)、苯甲醛(1.80~2.70)、苯乙醛(1.28~3.07)、2,3-戊二酮(13.28~208.55)、α-蒎烯(0.04~3.10)以及2-乙酰基-2-噻唑啉(2.67~4.17),这9种物质对辣子鸡丁的整体风味具有重要贡献作用,其中醛类物质(4种)主要来源于脂肪酸的氧化降解和Strecker降解,具有较强的挥发性和较低的风味阈值,是辣子鸡丁中重要的风味物质。

    电子鼻检测辣子鸡丁在不同贮藏温度的挥发性气体响应值如图6所示。与第0 d的响应值相比,4、−18 ℃实验组挥发性气体的雷达图外形均在贮藏过程中发生了变化,其中传感器W5S(对氮氧化合物敏感)、W1S(对甲烷敏感)、W1W(对硫化物和萜烯类敏感)和W2W(对有机硫化物和芳香族化合物敏感)的响应值变化较为明显。而GC×GC-MS检测出的挥发性风味物质以醇类、醛类、酯类、酮类、烯烃类、杂环类为主,这些物质的含量均随时间变化呈上升趋势,这与电子鼻相应传感器响应值的变化趋势一致。

    图  6  贮藏过程中辣子鸡丁挥发性成分的雷达图
    Figure  6.  Radar chart of volatile components of spicy diced chicken during storage

    LDA作为一种有监督的、用于机器学习和模式识别的统计方法,通过最大化类别间的方差,并最小化类别内的方差来优化群体间的区分度[44]。由图7可知,LDA的总贡献率为84.63%,且不同贮藏时间的鸡丁挥发性物质的响应值均与第0 d存在一定距离,说明LDA在一定程度上可以区分不同贮藏时间、不同贮藏方式的辣子鸡丁。第15 d时两个实验组的风味开始出现差异,从第25 d开始,它们在贮藏末期的整体风味存在较为明显的差异,这与感官评价的结果相吻合。辣子鸡丁的风味整体差异主要决于贮藏时间,一方面是由于LDA本身会最大化组间方差,从而导致不同贮藏时间的产品风味差异较大,另一方面是由于鸡丁在冷冻贮藏过程中可能滋生了一些耐低温微生物,加剧了脂肪氧化的程度,使得挥发性风味物质也发生较大变化[45]

    图  7  贮藏过程中辣子鸡丁挥发性成分的线性判别分析
    Figure  7.  Linear discriminant analysis of volatile components of spicy diced chicken during storage

    本实验研究了辣子鸡丁在冷藏和冻藏过程中的品质变化。结果表明,随着贮藏时间的延长,辣子鸡丁的水分含量和pH均呈现下降趋势,TBA值呈上升趋势。虽然菌落总数在贮藏期内均未超过国标检测限制,但第30 d时,冷藏条件下的感官评分已经降至59.67分,不能被消费者接受,其质构特性及色泽也发生明显的劣变。此外,冷藏条件下的辣子鸡丁挥发性风物质的变化也更加明显,特别是一些脂肪氧化的产物以及会带来不愉快气味的物质的含量随着贮藏时间的延长不断增加。综合各项指标,真空包装的辣子鸡丁采用冷藏方式的贮藏时间不宜超过25 d,而冻藏能有效地保持辣子鸡丁的品质,减缓风味劣变,达到延长其货架期的目的。本研究可为辣子鸡丁的商品化冷链保藏提供适宜货架期参考。

  • 图  1   辣子鸡丁贮藏过程中感官评分值的变化

    Figure  1.   Changes in sensory score of spicy diced chicken during storage

    图  2   辣子鸡丁贮藏过程中水分含量的变化

    Figure  2.   Changes in moisture content of spicy diced chicken during storage

    图  3   辣子鸡丁贮藏过程中pH的变化

    Figure  3.   Changes in pH value of spicy diced chicken during storage

    图  4   辣子鸡丁贮藏过程中TBA值的变化

    Figure  4.   Changes in TBA value of spicy diced chicken during storage

    图  5   辣子鸡丁贮藏过程中挥发性风味物质的变化

    注:(A)挥发性风味物质种类数的变化;(B)挥发性风味物质含量的变化。

    Figure  5.   Changes of volatile flavor compounds of spicy diced chicken during storage

    图  6   贮藏过程中辣子鸡丁挥发性成分的雷达图

    Figure  6.   Radar chart of volatile components of spicy diced chicken during storage

    图  7   贮藏过程中辣子鸡丁挥发性成分的线性判别分析

    Figure  7.   Linear discriminant analysis of volatile components of spicy diced chicken during storage

    表  1   辣子鸡丁感官评价标准

    Table  1   Sensory evaluation criteria for spicy diced chicken

    评价指标评价标准分值(分)
    外观(18分)色泽明亮且分布均匀,肉块完整度高13~18
    色泽明亮且分布均匀,肉块有轻微破损7~12
    色泽暗淡且分布不均匀,肉块破损较大1~6
    气味(18分)香辣味和肉香味浓郁,无异味13~18
    香辣味和肉香味一般,有轻微异味7~12
    无任何香味,且异味明显1~6
    质地(32分)鸡丁紧密不松散,软硬适中,表面干爽不黏腻21~32
    鸡丁不松散,软硬适中,表面略湿但不黏腻9~20
    鸡丁松散程度较大,肉质过软,表面较湿较黏腻1~8
    滋味(32分)香辣可口,咸淡适中,无异味21~32
    香辣味较淡,咸淡适中,有轻微异味9~20
    香辣味很淡,较咸或较淡,有异味1~8
    下载: 导出CSV

    表  2   辣子鸡丁贮藏过程中菌落总数的变化

    Table  2   Changes in total microbial count of spicy diced chicken during storage

    贮藏时间(d)菌落总数(lg CFU/g)
    4 ℃−18 ℃
    000
    500
    1000
    150.84±0.03d0
    200.92±0.02c0
    251.16±0.03b0
    301.26±0.05a0
    注:同列小写字母不同,表示差异显著(P<0.05);表3~表4同。
    下载: 导出CSV

    表  3   辣子鸡丁贮藏过程中质构特性的变化

    Table  3   Changes in texture characteristics of spicy diced chicken during storage

    贮藏时间(d)4 ℃ −18 ℃
    硬度(g)弹性咀嚼性(g)硬度(g)弹性咀嚼性(g)
    02940.38±6.13a0.75±0.01a1338.51±8.59a 2940.38±6.13a0.75±0.01a1338.51±8.59a
    52873.00±11.53b0.73±0.01a1328.33±1.88a2895.56±6.45b0.74±0.01a1330.52±2.14ab
    102763.87±4.94c0.68±0.02b1305.00±3.94b2815.18±10.01c0.70±0.01b1325.93±2.96ab
    152682.83±6.95d0.62±0.02c1291.39±3.02b2770.06±5.20d0.66±0.02c1313.63±3.70b
    202639.57±6.39e0.59±0.01c1271.25±3.25c2692.69±6.33e0.63±0.01d1292.39±2.14c
    252627.26±9.02e0.53±0.01d1212.04±17.80d2658.92±10.95f0.61±0.01d1277.20±6.05c
    302585.24±8.18f0.49±0.01e1136.78±12.03e2627.46±7.12g0.53±0.02e1219.82±18.24d
    下载: 导出CSV

    表  4   辣子鸡丁贮藏过程中色泽的变化

    Table  4   Changes in color of spicy diced chicken during storage

    贮藏时间(d)4 ℃ −18 ℃
    L*a*b*L*a*b*
    048.51±0.68a14.19±0.19a33.76±0.46g 48.51±0.68a14.19±0.19a33.76±0.46g
    544.77±0.23b13.82±0.04ab35.57±0.09f45.87±0.25b13.87±0.04b35.27±0.16f
    1040.90±0.46c13.77±0.06abc37.03±0.03e43.51±0.38c13.82±0.03b36.46±0.32e
    1539.00±0.71d13.60±0.36bc40.38±0.15d40.38±0.45d13.78±0.02bc40.17±0.05d
    2035.61±0.25e13.31±0.35cd45.38±0.15c38.32±0.23e13.69±0.22bc43.17±0.05c
    2535.15±0.05f12.98±0.10d49.86±0.51b37.32±0.23f13.48±0.18c45.53±0.24b
    3034.95±0.06f11.70±0.12e53.36±0.44a36.64±0.05f12.86±0.10d47.77±0.33a
    下载: 导出CSV

    表  5   贮藏过程中辣子鸡丁风味物质含量变化

    Table  5   Changes of flavor substances in spicy diced chicken during storage

    化合物名称RI挥发性风味物质含量(ng/g)阈值[40](mg/kg)
    0 d4 ℃/15 d−18 ℃/15 d4 ℃/30 d−18 ℃/30 d
    醇类
    乙醇86712.68NDNDNDND30
    异丁醇10292.92NDNDNDND1
    丙烯醇1044300.31NDNDNDNDNF
    1-戊烯-3-醇10957.32NDNDNDND0.4
    异戊醇114112.66NDNDND3.990.1
    桉叶油醇1156309.38215.75132.63ND235.820.015
    1-戊醇118426.93NDNDND5.930.47
    4-乙基-1,4-二-2-环己烯-1-醇1230NDND3.3827.7014.61NF
    顺-2-戊烯醇12464.71NDNDND4.210.25
    正己醇128219.281.461.926.117.51102-511
    葛缕醇1367NDND4.54NDNDNF
    1-辛烯-3-醇1372NDNDND26.1437.440.001
    顺-Α,Α-5-三甲基-5-乙烯基四氢化呋喃-2-甲醇137221.8110.3611.56NDNDNF
    正庚醇1378ND4.175.23NDNDNF
    芳樟醇1468369.00432.33332.51910.50668.710.037
    2,3-丁二醇14804.78NDNDNDNDNF
    (-)-4-萜品醇1518ND254.83206.33489.55325.82NF
    3,7-二甲基辛-1,5,7-三烯-3-醇1521ND10.208.3612.3312.23NF
    4-萜烯醇1521248.27NDNDNDNDNF
    环辛醇1524NDND6.62ND14.36NF
    反式-2-辛烯醇1524ND4.60NDNDNDNF
    二甲基硅烷二醇154711.09ND15.3316.0513.74NF
    糠醇155433.2859.6849.64117.79100.80NF
    α-松油醇160595.32100.1988.74223.40140.14NF
    5-甲基-2-呋喃甲醇1612ND12.3511.1016.9111.64NF
    2,6-二甲基辛-1,5,7-三烯-3-醇1645ND3.332.975.703.84NF
    香茅醇1668NDND3.18NDNDNF
    橙花醇16986.4537.0752.7175.0637.64NF
    苯甲醇1750ND3.523.74NDNDNF
    苯乙醇17888.3314.4616.1129.6025.520.122
    2-(4-亚甲基环己基)丙-2-烯-1-醇1798ND3.062.50NDNDNF
    紫罗醇1810ND2.00NDNDNDNF
    十二醇1861ND7.156.0712.5311.13NF
    紫苏醇1872ND2.01NDNDNDNF
    1,5-己二烯-3-醇18723.04NDNDNDNDNF
    4-异丙基苯甲醇1964ND1.76NDNDNDNF
    榄香醇1964ND4.214.29NDNDNF
    醛类
    异戊醛855538.51NDND219.94330.410.08
    正己醛1023455.2651.5175.27134.32179.040.073
    顺-2-甲基-2-丁醛102962.5026.2831.2472.3452.860.4
    5-己烯醛1069NDND1.4333.02NDNF
    庚醛1125ND22.8833.3954.8160.660.5
    正辛醛1227103.4438.8763.4197.1192.800.32
    壬醛132697.8587.96131.61131.9397.740.15
    反-2-辛烯醛135510.0911.108.6714.208.370.004
    3-甲硫基丙醛13665.50ND13.10NDND0.0002
    糠醛1369115.2672.0280.06131.41116.81NF
    苯甲醛1426124.88107.96107.88161.88121.760.06
    癸醛1429ND8.099.63NDND0.65
    反式-2-壬醛1456ND10.179.0811.57ND0.15
    2-(4-甲基-3-环己烯-1-基)丙醛15318.3711.847.6611.737.51NF
    苯乙醛154031.8946.0465.9876.6471.470.025
    反式-2-癸烯醛1560ND21.3914.9421.467.833.22
    2-噻吩甲醛1582ND1.40NDNDNDNF
    (Z)-3,7-二甲基-2,6-辛二烯醛1589ND7.9814.7710.70NDNF
    2-异丙烯基-5-甲基己-4-烯醛159511.67NDND20.3916.10NF
    5-甲基-2-噻吩甲醛1619ND6.58NDND8.99NF
    4-异丙基环己烯甲醛1629ND11.092.46NDNDNF
    柠檬醛1639NDND58.16NDNDNF
    4-异丙基苯甲醛1675ND6.382.746.48NDNF
    L-紫苏醛1685ND4.92NDNDNDNF
    α-亚乙基-苯乙醛1806ND3.412.80NDNDNF
    十四烷醛2039ND23.37NDND5.19100
    十六醛2039NDND32.27NDNF
    酯类
    乙酸异丁酯957255.0244.9142.74122.13147.24NF
    甲酸烯丙酯1044ND147.94143.41NDNDNF
    异戊酸芳樟酯1114NDND947.712067.94NDNF
    己酸乙酯1179546.08NDNDNDND0.04
    乙酸甲酯1215ND20.8823.1943.2857.652
    乙酸庚酯1311NDND1.48NDNDNF
    乙二醇单甲酸酯1354NDNDND309.64294.69NF
    甲酸庚酯137818.06NDNDNDNDNF
    乙酸辛酯140818.063.382.90NDNDNF
    乙酸芳樟酯1484452.73533.40505.831035.42861.12NF
    γ-丁内酯1518NDND1.73ND9.13NF
    4-羟基丁酸乙酰酯152124.28NDNDNDNDNF
    乙酸香茅酯1583ND2.71NDNDNDNF
    乙酸松油酯161293.13129.89113.38204.55151.11NF
    橙花乙酸酯163941.16104.5389.33175.73133.95NF
    苯乙酸甲酯1652ND7.855.6312.407.85NF
    乙酸香叶酯166936.62140.02115.10189.90141.57NF
    乙酸苯乙酯17098.5345.6432.0948.0718.620.137
    棕榈酸甲酯2124ND22.6519.63ND7.11NF
    二氢猕猴桃内酯2194NDND3.39NDNDNF
    油酸甲酯2335ND3.292.63NDNDNF
    酮类
    2,3-戊二酮99562.563.98ND12.6437.890.0003
    4-甲基-2-己酮11192.56NDNDNDNDNF
    3-羟基-2-丁酮12074.19NDNDNDNDNF
    6-甲基-5-庚烯-2-酮126851.8912.8937.6336.7838.551
    5-甲基-2(3H)-呋喃酮13433.54NDNDNDNDNF
    2-癸酮1423ND2.01NDNDND10
    (E)-6-甲基-3,5-庚二烯-2-酮15059.6511.399.4721.948.46NF
    2-十一酮1525NDND2.73NDND3.4
    2-甲基-5-(1-甲基乙烯基)环己酮1525ND3.53NDNDNDNF
    苯乙酮155012.5317.63ND18.7613.675.629
    4-异丙基环己-2-烯-1-酮15798.968.846.0720.1011.81NF
    胡椒酮1636ND36.13ND78.2539.19NF
    右旋香芹酮1639ND22.97NDNDNDNF
    3-甲基苯乙酮16694.09NDNDNDNDNF
    3-甲基-1,2-环戊二酮17124.292.421.997.436.092.8
    2-十三烷酮1727ND3.16NDNDND500
    香叶基丙酮1758ND3.883.30NDNDNF
    呋喃酮1894ND2.482.47ND6.670.0016
    2,3-二氢-3,5二羟基-6-甲基-4(H)-吡喃-4-酮21066.7611.198.7029.4414.41NF
    烷烃类
    癸烷981ND4.33NDNDND4000
    3-甲基十一烷1151ND11.2812.43NDNDNF
    十二烷1183ND57.5349.10NDND13000
    1-氯-5-甲基己烷12135.64NDND14.57NDNF
    环十二烷1214ND3.86NDNDNDNF
    硝基甲烷12659.18NDNDNDNDNF
    3-甲基十三烷1347ND6.874.66NDNDNF
    十四烷1379ND19.7014.24NDND13000
    1-硝基己烷14176.36NDNDNDNDNF
    正十五烷1479ND6.036.33NDND13000
    正十六烷1577ND5.824.92NDND13000
    2-硝基丁烷1865NDNDNDND10.00NF
    烯烃类
    2,6-二甲基-2-反式-6-辛二烯1060116.27NDNDNDNDNF
    左旋-β-蒎烯1069245.07141.5797.15761.56346.35NF
    3-乙基-2-甲基-1,3-庚二烯109011.99NDNDNDNDNF
    2-甲基-6-亚甲基-1,7-辛二烯1105NDNDND13.25NDNF
    水芹烯111129.0740.2190.27NDNDNF
    月桂烯11141055.73988.86ND48.122331.21NF
    松油烯1128511.30314.87303.92675.13650.85NF
    茨烯113925.68NDNDNDNDNF
    (R)-1-甲基-5-(1-甲基乙烯基)环己烯1145NDND1299.44NDNDNF
    2,7-二甲基-1,3,7-辛三烯115740.25NDNDNDNDNF
    β-水芹烯1159NDNDND572.91NDNF
    2-蒈烯116514.14NDNDND11.00NF
    α-蒎烯117611.71181.34174.13850.31280.020.274
    γ-松油烯1191389.10251.01254.28582.12574.70NF
    罗勒烯1196ND327.98302.20ND415.55NF
    3-蒈烯1196424.49NDNDND26.25NF
    萜品油烯1227304.41137.82138.64333.87301.53NF
    4-乙基-3-亚乙基环己烯126042.64NDNDNDNDNF
    别罗勒烯1308252.75231.20115.85288.68196.02NF
    五甲基环戊二烯1328NDND80.68268.57151.08NF
    1,2-二甲基-1-环庚烯13405.31NDNDNDNDNF
    紫苏烯13467.3715.1614.1922.5316.30NF
    2,4-二甲基苯乙烯1361ND63.1450.66NDNDNF
    (3E)-3-乙基己-1,3-二烯1408ND15.046.5510.56NDNF
    1-乙基-5-甲基-环戊烯14115.91NDND9.415.78NF
    1,4-二甲基-4-乙酰基-1-环己烯14415.72NDNDNDNDNF
    β-榄香烯1529ND3.143.11NDNDNF
    β-石竹烯15386.1513.799.7815.7513.69NF
    γ-榄香烯1574NDNDND12.33NDNF
    α-律草烯16039.5317.3612.9718.0412.86NF
    Δ-杜松烯1683ND18.0614.80NDNDNF
    Α-姜黄烯1693ND2.33NDNDNDNF
    去氢白菖烯1744ND7.51NDNDNDNF
    醚类
    二烯丙基硫醚1087352.25NDNDNDNDNF
    烯丙基甲基二硫醚1210102.4524.8038.9596.58117.38NF
    二甲基三硫醚129917.43NDNDNDND0.0025
    糠基甲基硫醚13991.28NDNDNDNDNF
    二烯丙基二硫醚139993.5870.3193.95NDND10
    甲基烯丙基三硫醚149910.22ND7.7419.3513.95NF
    4-烯丙基苯甲醚171954.84NDNDNDNDNF
    杂环类
    2,5-二甲基吡嗪1252100.2237.3242.24110.9090.532.6
    2,6-二甲基吡嗪125766.2643.5846.8380.1181.001.021
    2-乙基-5-甲基吡嗪132023.827.469.0818.3216.500.32
    2,3,5-三甲基吡嗪133120.729.8812.1516.5819.460.29
    3-乙基-2,5-甲基吡嗪1370NDNDND77.18ND0.166
    2-甲基-6-乙烯基吡嗪1405ND11.509.4514.047.88NF
    2-正戊基呋喃1171ND52.2491.59122.73151.580.1
    2-乙酰基呋喃141190.5857.1954.10118.3486.88NF
    5-甲基呋喃147467.18ND56.61104.3578.71NF
    2,3-二氢苯并呋喃2214NDND2.00NDNDNF
    吡啶111330.887.919.35ND12.26NF
    嘧啶113930.214.495.52ND16.89NF
    2-甲基嘧啶1193108.4929.6336.5564.3586.83NF
    1-甲基吡咯1065ND27.3728.1129.4873.61NF
    吡咯1410NDNDNDND4.85NF
    2-乙酰基吡咯183567.9262.2569.29124.7389.92NF
    2-甲酰基吡咯18835.42ND6.919.637.54NF
    3-(4-甲基-3-戊烯基)噻吩15536.134.262.7215.8710.53NF
    3-甲基-2-醛基噻吩16194.89ND7.6510.16NDNF
    2-乙酰基-2-噻唑啉16494.80ND6.467.517.310.0018
    其他类
    4-叔丁基苯硫酚1646NDNDND18.15NDNF
    对乙烯基愈创木酚20465.9619.5315.7014.538.550.2
    3-甲基巴豆腈119336.772.22NDND27.77NF
    乙酸酐121537.52NDNDNDNDNF
    5-己腈126540.472.772.1914.6429.86NF
    5-甲硫基戊腈18063.703.052.96NDNDNF
    苯代丙腈19027.7213.4712.8019.0914.12NF
    注:ND代表未检出;NF代表未查阅到物质在油中相应的阈值。
    下载: 导出CSV

    表  6   辣子鸡丁的主体风味物质(OAV≥1)

    Table  6   Main flavor substance of spicy diced chicken (OAV≥1)

    种类化合物名称OAV香气描述
    0d4 ℃/15 d−18 ℃/15 d4 ℃/30 d−18 ℃/30 d
    醇类桉叶油醇20.6314.388.840.0015.72樟脑气息和清凉的草药味
    1-辛烯-3-醇0.000.000.0026.1437.44蘑菇、薰衣草、玫瑰和干草香气
    芳樟醇9.9711.688.9924.6118.07甜嫩新鲜的铃兰香气
    醛类异戊醛6.730.000.002.754.13苹果香气
    正己醛6.240.711.031.842.45生油脂和青草气及苹果香味
    反-2-辛烯醛2.522.782.173.552.09脂肪和鸡肉香味
    3-甲硫基丙醛27.490.0065.480.000.00土豆香气、洋葱味、肉香味
    苯甲醛2.081.801.802.702.03特殊的杏仁气味
    苯乙醛1.281.842.643.072.86类似风信子的香气
    酯类己酸乙酯13.650.000.000.000.00曲香、菠萝香型的香气
    酮类2,3-戊二酮208.5513.280.0042.14126.30奶油、焦糖香气,坚果底香
    呋喃酮0.001.551.540.004.17焦糖香气和水果香味
    烯烃类α-蒎烯0.040.660.643.101.02松节油味
    醚类二甲基三硫醚6.970.000.000.000.00类似新鲜洋葱香气
    杂环类2-正戊基呋喃0.000.520.921.231.52植物芳香味
    2-乙酰基-2-噻唑啉2.670.003.594.174.06坚果香味
    下载: 导出CSV
  • [1] 黄本婷, 张佳敏, 王卫, 等. 不同加工工艺对预调理回锅肉的品质影响[J]. 中国调味品,2020,45(3):11−14. [HUANG B T, ZHANG J M, WANG W, et al. Effect of different processing technology on the quality of prepared twice cooked pork[J]. China Condiment,2020,45(3):11−14.

    HUANG B T, ZHANG J M, WANG W, et al. Effect of different processing technology on the quality of prepared twice cooked pork[J]. China Condiment, 2020, 45: 11-14.

    [2] 孙金龙, 刘莉丹, 张春江, 等. 不同包装方式对土豆烧牛肉菜肴中牛肉贮藏品质的影响[J]. 食品工业科技,2020,41(23):203−208. [SUN J L, LIU L D, ZHANG C J, et al. Effects of different packaging methods on beef storage quality in braised beef with potatoes[J]. Science and Technology of Food Industry,2020,41(23):203−208. doi: 10.13386/j.issn1002-0306.2019090268

    SUN J L, LIU L D, ZHANG C J, et al. Effects of different packaging methods on beef storage quality in braised beef with potatoes[J]. Science and Technology of Food Industry, 2020, 41(23): 203-208. doi: 10.13386/j.issn1002-0306.2019090268

    [3] 魏乐乐, 许学勤. 冻藏和冷藏对冷冻调理牛肉颜色的影响[J]. 食品工业,2014,35(10):24−27. [WEI L L, XU X Q. Effects of freezing storage and refrigeration on the color of frozen prepared beef[J]. Food Industry,2014,35(10):24−27.

    WEI L L, XU X Q. Effects of freezing storage and refrigeration on the color of frozen prepared beef[J]. Food Industry, 2014, 35: 24-27.

    [4]

    ECHEGARAY N, DOMINGUEZ R, FRANCO D, et al. Effect of the use of chestnuts (Castanea sativa Miller) in the finishing diet of Celta pig breed on the shelf-life of meat refrigerated and frozen[J]. Food Res Int,2018,114:114−122. doi: 10.1016/j.foodres.2018.07.036

    [5] 陈伟玲, 周乐丹, 龙姣丽, 等. 4 ℃贮藏下黄田扣肉品质变化及贮藏期的研究[J]. 食品研究与开发,2020,41(20):78−83. [CHEN W L, ZHOU L D, LONG J L, et al. Study on quality change and storage period of Huangtian braised pork at 4 ℃[J]. Food Research and Development,2020,41(20):78−83. doi: 10.12161/j.issn.1005-6521.2020.20.013

    CHEN W L, ZHOU L D, LONG J L, et al. Study on quality change and storage period of Huangtian braised pork at 4 ℃[J]. Food Research and Development, 2020, 41: 78-83. doi: 10.12161/j.issn.1005-6521.2020.20.013

    [6] 胡力, 王芳梅, 吕明珊, 等. 不同贮藏温度下真空包装鸡肉酱品质变化及货架期模型的建立[J]. 食品与发酵工业,2021,47(10):132−138. [HU L, WANG F M, LYU M S, et al. Quality changes during storage at different temperatures and establishment of shelf-life model of vacuum packaged chicken paste[J]. Food and Fermentation Industries,2021,47(10):132−138. doi: 10.13995/j.cnki.11-1802/ts.025912

    HU L, WANG F M, LYU M S, et al. Quality changes during storage at different temperatures and establishment of shelf-life model of vacuum packaged chicken paste[J]. Food and Fermentation Industries, 2021, 47(10): 132-138. doi: 10.13995/j.cnki.11-1802/ts.025912

    [7] 李鹏, 孙京新. 冷藏和冻藏对酱卤鸡肉品质的影响[J]. 肉类工业,2018(5):45−49. [LI P, SUN J X. Effect of cold storage and frozen storage on the quality of sauced stewed chicken[J]. Meat Industry,2018(5):45−49. doi: 10.3969/j.issn.1008-5467.2018.01.011

    LI P, SUN J X. Effect of cold storage and frozen storage on the quality of sauced stewed chicken[J]. Meat Industry, 2018: 45-49. doi: 10.3969/j.issn.1008-5467.2018.01.011

    [8] 任思婕, 胡吕霖, 沈清, 等. 不同气体比例气调包装对冷藏微波辣子鸡丁品质的影响[J]. 食品科学,2018,39(21):245−252. [REN S J, HU L L, SHEN Q, et al. Effect of different modified atmospheric conditions on physicochemical properties and volatile flavor compounds of microwaved spicy diced chicken during refrigerated storage[J]. Food Science,2018,39(21):245−252. doi: 10.7506/spkx1002-6630-201821037

    REN S J, HU L L, SHEN Q, et al. Effect of different modified atmospheric conditions on physicochemical properties and volatile flavor compounds of microwaved spicy diced chicken during refrigerated storage[J]. Food Science, 2018, 39(21): 245-252. doi: 10.7506/spkx1002-6630-201821037

    [9] 牟心泰. 不同品类辣椒对菜肴色、香、味等形成的影响研究[D]. 哈尔滨: 哈尔滨商业大学, 2021

    MU X T. Study on the influence of different types of pepper on the color, aroma and taste of dishes[D]. Harbin: Harbin University of Commerce, 2021.

    [10] 谭小琴, 段珍珍, 周才琼. 低温贮藏对真空包装酸肉食用卫生及感官品质的影响及酸肉保质期预测[J]. 云南农业大学学报(自然科学),2020,35(5):871−877. [TAN X Q, DUAN Z Z, ZHOU C Q. Effect of cryopreservation on the hygienic and sensory quality of vacuum-packed sour pork and prediction of the shelf life of sour pork[J]. Journal of Yunnan Agricultural University (Natural Science),2020,35(5):871−877.

    TAN X Q, DUAN Z Z, ZHOU C Q. Effect of cryopreservation on the hygienic and sensory quality of vacuum-packed sour pork and prediction of the shelf life of sour pork[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(5): 871-877.

    [11] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 2726-2016 食品安全国家标准 熟肉制品[S]. 北京: 中国标准出版社, 2016

    National Health and Family Planning Commission of the People's Republic of China, State Food and Drug Administration. GB 2726-2016 National food safety standard-Cooked meat products[S]. Beijing: Standards Press of China, 2016.

    [12] 任思婕. 微波辣子鸡丁的加工及气调保鲜工艺的研究[D]. 杭州: 浙江大学, 2018

    REN S J. Processing of spicy chili chicken grain by microwave and its fresh keeping by modified atmosphere packaging[D]. Hangzhou: Zhejiang University, 2018.

    [13] 中华人民共和国国家卫生和计划生育委员会. GB 5009.3-2016 食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2016

    National Health and Family Planning Commission of the People’s Republic of China. GB 5009.3-2016 National food safety standard. Determination of moisture in food[S]. Beijing: China Standards Press, 2016.

    [14] 中华人民共和国国家卫生和计划生育委员会. GB 5009.237-2016 食品安全国家标准 食品pH值的测定[S]. 北京: 中国标准出版社, 2016

    National Health and Family Planning Commission of the People’s Republic of China. GB 5009.237-2016 National food safety standard. Determination of pH value of food[S]. Beijing: China Standards Press, 2016.

    [15]

    İNCILI G K, KARATEPE P, AKGOL M, et al. Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets[J]. Int J Biol Macromol,2021,184:429−437. doi: 10.1016/j.ijbiomac.2021.06.106

    [16] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 4789.2-2016 食品安全国家标准 食品微生物学检验 菌落总数测定[S]. 北京: 中国标准出版社, 2016

    National Health and Family Planning Commission of the People's Republic of China, State Food and Drug Administration. GB 4789.2-2016 National food safety standard. Food microbiology inspection determination of total colony[S]. Beijing: Standards Press of China, 2016.

    [17] 赵晶, 张婷, 刘永峰, 等. 超长冻藏时间对牛肉品质的影响[J]. 食品与发酵工业,2018,44(11):200−209,215. [ZHAO J, ZHANG T, LIU Y F, et al. Effect of long frozen storage time on beef quality[J]. Food and Fermentation Industries,2018,44(11):200−209,215. doi: 10.13995/j.cnki.11-1802/ts.016992

    ZHAO J, ZHANG T, LIU Y F, et al. Effect of long frozen storage time on beef quality[J]. Food and Fermentation Industries, 2018, 44(11): 200-209, 215. doi: 10.13995/j.cnki.11-1802/ts.016992

    [18] 蒋兆景, 马汉军, 康壮丽, 等. 包装方式对冷鲜猪肉贮藏品质的影响[J]. 河南工业大学学报(自然科学版),2019,40:71−76. [JIANG Z J, MA H J, KANG Z L, et al. Effects of packaging methods on the storage quality of chilled pork[J]. Journal of Henan University of Technology (Natural Science Edition),2019,40:71−76. doi: 10.16433/j.cnki.issn1673-2383.2019.04.013

    JIANG Z J, MA H J, KANG Z L, et al. Effects of packaging methods on the storage quality of chilled pork[J]. Journal of Henan University of Technology (Natural Science Edition), 2019, 40: 71-76. doi: 10.16433/j.cnki.issn1673-2383.2019.04.013

    [19] 廖林, 贺稚非, 刘悦, 等. 基于HS-SPME-GC-MS的卤烤兔肉丁加工过程中挥发性风味物质变化分析[J]. 食品与发酵工业: 1−11[2022-07-05]. DOI: 10.13995/j.cnki.11-1802/ts.029062.

    LIAO L, HE Z F, LIU Y, et al. Analysis of volatile flavor substances during processing of halogen roast rabbit meat based on HS-SPME-GC-MS[J]. Food and Fermentation Industries: 1−11[2022-07-05]. DOI: 10.13995/j.cnki.11-1802/ts.029062.

    [20] 程宏桢, 蔡志鹏, 王静, 等. 基于GC-MS、GC-O和电子鼻技术评价百香果酒香气特征[J]. 食品科学,2021,42(6):256−264. [CHENG H Z, CAI Z P, WANG J, et al. Combined use of GC-MS, GC-O and electronic nose technology to evaluate the aroma characteristics of passion fruit wine[J]. Food Science,2021,42(6):256−264. doi: 10.7506/spkx1002-6630-20200319-286

    CHENG H Z, CAI Z P, WANG J, et al. Combined use of GC-MS, GC-O and electronic nose technology to evaluate the aroma characteristics of passion fruit wine[J]. Food Science, 2021, 42(6): 256-264. doi: 10.7506/spkx1002-6630-20200319-286

    [21] 孙灵霞, 李苗云, 靳春杰, 等. 基于电子鼻和气质联用技术分析不同品牌道口烧鸡的香气差异性[J]. 食品与发酵工业,2020,46(6):238−243. [SUN L X, LI M Y, JIN C J, et al. Analysis of the aroma of different brands Daokou stewed chicken by electronic nose and GC-MS[J]. Food and Fermentation Industries,2020,46(6):238−243. doi: 10.13995/j.cnki.11-1802/ts.022005

    SUN L X, LI M Y, JIN C J, et al. Analysis of the aroma of different brands Daokou stewed chicken by electronic nose and GC-MS[J]. Food and Fermentation Industries, 2020, 46(6): 238-243. doi: 10.13995/j.cnki.11-1802/ts.022005

    [22]

    BECKER A, BOULAABA A, PINGEN S, et al. Low temperature cooking of pork meat-Physicochemical and sensory aspects[J]. Meat Sci,2016,118:82−88. doi: 10.1016/j.meatsci.2016.03.026

    [23] 钟萍, 陈鲜丽, 罗威, 等. 不同贮藏温度对鱼肉嫩度和菌落总数的影响研究[J]. 食品研究与开发,2021,42(7):45−49. [ZHONG P, CHEN X L, LUO W, et al. Effects of different storage temperature on tenderness and total number of bacterial colonies of fish[J]. Food Research and Development,2021,42(7):45−49.

    ZHONG P, CHEN X L, LUO W, et al. Effects of different storage temperature on tenderness and total number of bacterial colonies of fish[J]. Food Research and Development, 2021, 42(7): 45-49.

    [24] 朱丹实, 吴晓菲, 刘贺, 等. 水分对生鲜肉品品质的影响[J]. 食品工业科技,2013,34(16):363−366. [ZHU D S, WU X F, LIU H, et al. Effect of water on quality of fresh meat[J]. Science and Technology of Food Industry,2013,34(16):363−366. doi: 10.13386/j.issn1002-0306.2013.16.054

    ZHU D S, WU X F, LIU H, et al. Effect of water on quality of fresh meat[J]. Science and Technology of Food Industry, 2013, 34: 363-366. doi: 10.13386/j.issn1002-0306.2013.16.054

    [25]

    TEUTEBERG V, KLUTH I K, PLOETZ M, et al. Effects of duration and temperature of frozen storage on the quality and food safety characteristics of pork after thawing and after storage under modified atmosphere[J]. Meat Sci,2021,174:108419. doi: 10.1016/j.meatsci.2020.108419

    [26] 熊国远, 夏陆阳, 贾敬敏, 等. 符离集烧鸡加工过程中的营养和理化品质变化[J]. 食品工业科技,2020,41(6):47−52. [XIONG G Y, XIA L Y, JIA J M, et al. Nutritional and physicochemical quality changes of Fuliji braised chicken during processing[J]. Science and Technology of Food Industry,2020,41(6):47−52.

    XIONG G Y, XIA L Y, JIA J M, et al. Nutritional and physicochemical quality changes of Fuliji braised chicken during processing[J]. Science and Technology of Food Industry, 2020, 41: 47-52.

    [27]

    VIUDA-MARTOS M, RUIZ-NAVAJAS Y, FERNÁNDEZ-LÓPEZ J, et al. Effect of packaging conditions on shelf-life of mortadella made with citrus fibre washing water and thyme or rosemary essential oil[J]. Food and Nutrition Sciences,2011,2(1):1−10. doi: 10.4236/fns.2011.21001

    [28] 李芳. 硬脂鱼油的品质特征及在火锅底料中的应用研究[D]. 重庆: 西南大学, 2021

    LI F. Study on the quality characteristics of fish oil stearin and its application in hotpot seasoning[D]. Chongqing: Southwest University, 2021.

    [29] 肖香, 王莉莉, 王敏, 等. 真空包装水晶肴肉的贮藏特性研究[J]. 食品与机械,2013,29(1):187−189,222. [XIAO X, WANG L L, WANG M, et al. Research on the storage characteristics of vacuum-packed crystal meat[J]. Food and Machinery,2013,29(1):187−189,222. doi: 10.3969/j.issn.1003-5788.2013.03.045

    XIAO X, WANG L L, WANG M, et al. Research on the storage characteristics of vacuum-packed crystal meat[J]. Food and Machinery, 2013, 29: 187-189, 222. doi: 10.3969/j.issn.1003-5788.2013.03.045

    [30] 李莎莎, 计红芳, 张令文, 等. 冰温保鲜过程中鸡肉品质及微观结构的变化[J]. 食品与发酵工业,2019,45(16):201−207. [LI S S, JI H F, ZHANG L W, et al. Changes in chicken quality and microstructure during ice-warm preservation[J]. Food and Fermentation Industries,2019,45(16):201−207. doi: 10.13995/j.cnki.11-1802/ts.020553

    LI S S, JI H F, ZHANG L W, et al. Changes in chicken quality and microstructure during ice-warm preservation[J]. Food and Fermentation Industries, 2019, 45: 201-207. doi: 10.13995/j.cnki.11-1802/ts.020553

    [31]

    WANG Z, HE Z, GAN X, et al. Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage[J]. Meat Science,2018,146:131−139. doi: 10.1016/j.meatsci.2018.08.006

    [32] 牛改改, 游刚, 张晨晓, 等. 真空包装牡蛎肉在冷藏和冻藏过程中的品质变化[J]. 食品研究与开发,2020,41(18):7−14. [NIU G G, YOU G, ZHANG C X, et al. Quality changes of vacuum-packed oyster meat during cold and frozen storage[J]. Food Research and Development,2020,41(18):7−14. doi: 10.12161/j.issn.1005-6521.2020.19.002

    NIU G G, YOU G, ZHANG C X, et al. Quality changes of vacuum-packed oyster meat during cold and frozen storage[J]. Food Research and Development, 2020, 41: 7-14. doi: 10.12161/j.issn.1005-6521.2020.19.002

    [33]

    ABD-ELGHANY S M, EL-MAKHZANGY A M, MOHAMMED EL-SHAWAF A E, et al. Ensuring the best storage temperature of egyptian pastrami based on microbiological, physico-chemical and sensory evaluation[J]. Journal of Stored Products Research,2020:87.

    [34] 杨静. 暗纹东方鲀冷藏过程中质构劣化和蛋白降解变化研究[D]. 无锡: 江南大学, 2017

    YANG J. Study on texture softening and protein deterioration change of puffer fish (Takifugu obscurus) during refrigerated storage[D]. Wuxi: Jiangnan University, 2017.

    [35] 高爱武, 赵娇, 李立敏, 等. 抗氧化处理对风干肉贮藏期间质构特性的影响[J]. 肉类研究,2018,32(11):30−35. [GAO A W, ZHAO J, LI L M, et al. Effect of antioxidant treatment on texture characteristics of air-dried meat during storage[J]. Meat Research,2018,32(11):30−35.

    GAO A W, ZHAO J, LI L M, et al. Effect of antioxidant treatment on texture characteristics of air-dried meat during storage[J]. Meat Research, 2018, 32(11): 30-35.

    [36] 周然, 刘源, 谢晶, 等. 电解水对冷藏河豚鱼肉质构及品质变化的影响[J]. 农业工程学报,2011,27(10):365−369. [ZHOU R, LIU Y, XIE J, et al. Effects of electrolyzed water on texture and quality of obscure puffer fish (Takifugu obscurus) during cold storage[J]. Transactions of the CSAE,2011,27(10):365−369. doi: 10.3969/j.issn.1002-6819.2011.10.064

    ZHOU R, LIU Y, XIE J, et al. Effects of electrolyzed water on texture and quality of obscure puffer fish (Takifugu obscurus) during cold storage[J]. Transactions of the CSAE, 2011, 27(10): 365-369. doi: 10.3969/j.issn.1002-6819.2011.10.064

    [37] 闫征, 卞欢, 王咏梅, 等. 无磷保水剂对中式调理鸡丁品质的影响[J]. 江苏农业学报,2019,35(5):1203−1208. [YAN Z, BIAN H, WANG Y M, et al. Influence of non-phosphate water-retaining agents on quality of Chinese prepared diced chicken[J]. Jiangsu Agricultural Journal,2019,35(5):1203−1208. doi: 10.3969/j.issn.1000-4440.2019.05.029

    YAN Z, BIAN H, WANG Y M, et al. Influence of non-phosphate water-retaining agents on quality of Chinese prepared diced chicken[J]. Jiangsu Agricultural Journal, 2019, 35: 1203-1208. doi: 10.3969/j.issn.1000-4440.2019.05.029

    [38]

    LEKJING S, VENKATACHALAM K. Effects of modified atmospheric packaging conditions on the quality changes of pasteurized oyster (Crassostrea belcheri) meat during chilled storage[J]. Journal of Aquatic Food Product Technology,2018,27(10):1106−1119. doi: 10.1080/10498850.2018.1534917

    [39]

    YANG B, LIU X. Application of proteomics to understand the molecular mechanisms determining meat quality of beef muscles during postmortem aging[J]. PLoS One,2021,16(3):e0246955. doi: 10.1371/journal.pone.0246955

    [40]

    LEO V H. Compilation of olfactory threshold of compounds[M]. Beijing: Science Press, 2018.

    [41] 赵文华, 王桂瑛, 王雪峰, 等. 鸡肉中挥发性风味物质及其影响因素的研究进展[J]. 食品工业科技,2019,40:337−343,351. [ZHAO W H, WANG G Y, WANG X F, et al. Research progress on volatile flavor substances and their influencing factors of chicken[J]. Food Industry Science and Technology,2019,40:337−343,351. doi: 10.13386/j.issn1002-0306.2019.21.055

    ZHAO W H, WANG G Y, WANG X F, et al. Research progress on volatile flavor substances and their influencing factors of chicken[J]. Food Industry Science and Technology, 2019, 40: 337-343, 351 doi: 10.13386/j.issn1002-0306.2019.21.055

    [42] 袁先铃, 彭先杰, 陈崇艳, 等. 冷吃兔常温贮藏的风味物质变化规律[J]. 食品工业科技,2022,43(5):331−339. [YUAN X L, PENG X J, CHEN C Y, et al. Variation of flavor substances in cold-eating rabbits stored at room temperature[J]. Science and Technology of Food Industry,2022,43(5):331−339.

    YUAN X L, PENG X J, CHEN C Y, et al. Variation of flavor substances in cold-eating rabbits stored at room temperature[J]. Science and Technology of Food Industry, 2022, 43(5): 331-339.

    [43] 朱成林. 卤兔腿加工工艺优化及其加工过程中挥发性物质的变化研究[D]. 雅安: 四川农业大学, 2016

    ZHU C L. Study on the processing technology optimization and volatile components in the stewed rabbit legs[D]. Ya'an: Sichuan Agricultural University, 2016.

    [44]

    FEDOROV F S, YAQIN A, KRASNIKOV D V, et al. Detecting cooking state of grilled chicken by electronic nose and computer vision techniques[J]. Food Chemistry,2021,345:128747. doi: 10.1016/j.foodchem.2020.128747

    [45] 王钰, 倪继龙, 李敏杰, 等. 鲐鱼低温冻藏过程中脂肪氧化特性[J]. 肉类研究,2021,35(6):63−68. [WANG Y, NI J L, LI M J, et al. Oxidation characteristics of lipids in mackerel during cryopreservation[J]. Meat Research,2021,35(6):63−68. doi: 10.7506/rlyj1001-8123-20210517-137

    WANG Y, NI J L, LI M J, et al. Oxidation characteristics of lipids in mackerel during cryopreservation[J]. Meat Research, 2021, 35(6): 63-68. doi: 10.7506/rlyj1001-8123-20210517-137

  • 期刊类型引用(19)

    1. 许津阁,郑卓琦,侯鹏颉,马高兴,熊彦娣,马壮,刘萌,赵靓,廖小军. 不同产地酱用卡宴辣椒原料品质评价. 食品工业科技. 2025(01): 317-332 . 本站查看
    2. 任朝辉,何建文,田怀志,田浩,廖卫琴. 基于主成分和聚类分析不同辣椒资源农艺和品质性状的综合评价. 中国瓜菜. 2025(02): 50-58 . 百度学术
    3. 杨晶,沙迪昕,张月,麦迪乃·尤努斯,沙黑兰·尼亚孜,杨海燕,黄文书. 不同贮藏条件下干辣椒颜色劣变的主要途径. 食品研究与开发. 2024(04): 58-67 . 百度学术
    4. 龙会英,张德. 干热区紫花苜蓿的生产性能和营养价值评价. 草业科学. 2024(01): 117-125 . 百度学术
    5. 李莹,张娇,杨树辉,朱月,陈滕,汪祖华. 不同温度和气体微环境对遵义干辣椒贮藏品质的影响. 食品研究与开发. 2024(11): 80-88 . 百度学术
    6. 裴艳婷,魏龙雪,李娜娜,白静,朱金英. 不同辣椒种质资源品质性状分析. 安徽农业科学. 2024(11): 27-31 . 百度学术
    7. 马唯钦,赵牧其尔,孙鹏波,刘逸超,李子琪,贾玉山,格根图,王志军. 10个饲用燕麦品种在沿黄盐碱地区生产性能评价. 饲料研究. 2024(22): 139-144 . 百度学术
    8. 廖卫琴,何建文,苟晓松,任朝辉,田浩. 不同辣椒种质资源果实中脂肪酸组成分析. 辣椒杂志. 2024(04): 13-18 . 百度学术
    9. 年国芳,郭超男,徐建宗,周建中. 新疆制干辣椒品质综合评价及加工适宜性分析. 食品工业科技. 2023(04): 317-325 . 本站查看
    10. 林巧,辛竹琳,孔令博,王晓梅,杨小薇,何微. 我国辣椒产业发展现状及育种应对措施. 中国农业大学学报. 2023(05): 82-95 . 百度学术
    11. 詹磊,徐卓越,蓝国玮,钟庆玲,刘倩桐,陈佩. 基于主成分分析构建混合多糖凝胶品质综合评价模型. 现代食品科技. 2023(04): 214-223 . 百度学术
    12. 杨创创,何建文,张正海,于海龙,冯锡刚,吴华茂,曹亚从,王立浩. 绥阳子弹头干椒风味品质分析. 辣椒杂志. 2023(01): 1-5+13 . 百度学术
    13. 张新悦,连畅,宋文胜,郭涛,杜心宇,徐嘉悦,张新贵,孙志健,廖小军,赵靓. 新疆地区辣椒自然干制的关键节点品质分析. 食品工业科技. 2023(12): 90-101 . 本站查看
    14. 屠大伟,翁盈秋,李青青,冯露萍,刘文俊. 火锅常用干辣椒品质及挥发性成分研究. 食品工业科技. 2023(16): 358-366 . 本站查看
    15. 向家勇,杨莎,梁成亮,陈文超,李雪峰,欧立军,戴雄泽,马艳青,邹学校,张竹青. 鲜食青椒果实的品质性状分析与评价. 湖南农业大学学报(自然科学版). 2023(04): 436-441 . 百度学术
    16. 杨芳,袁海彬,贾洪锋,邓凤琳,王珍妮. 基于气相色谱-离子迁移谱结合多元统计方法分析辣椒品种对辣椒油理化性质和风味物质的影响. 食品与发酵工业. 2023(19): 319-328 . 百度学术
    17. 林素钦,马文婧,何新超,付桂明,钟剑,彭红,万茵. 不同油温对辣椒油风味和辣度的影响. 河南工业大学学报(自然科学版). 2023(05): 25-32 . 百度学术
    18. 周鹏,杨娅,付文婷,王楠艺,彭世清,何建文. 贵州25个辣椒主栽品种品质分析与评价. 食品安全质量检测学报. 2023(21): 292-298 . 百度学术
    19. 吴梓仟,周劲松,刘特元,蒋立文,刘洋,尹世鲜,荣智兴,陈欢. 基于HS-SPME-GC-MS分析不同卤制条件下卤制液香气差异. 食品工业科技. 2023(24): 311-318 . 本站查看

    其他类型引用(7)

图(7)  /  表(6)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  128
  • PDF下载量:  20
  • 被引次数: 26
出版历程
  • 收稿日期:  2021-12-20
  • 网络出版日期:  2022-07-17
  • 刊出日期:  2022-09-14

目录

/

返回文章
返回
x 关闭 永久关闭