• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

麦麸阿魏酸糖酯微生物发酵工艺优化及体外抗氧化和益生活性评价

陈秋燕, 郝希然, 王园, 杜涓, 安晓萍, 齐景伟

陈秋燕, 郝希然, 王园, 杜涓, 安晓萍, 齐景伟. 麦麸阿魏酸糖酯微生物发酵工艺优化及体外抗氧化和益生活性评价[J]. 食品工业科技, 2021, 42(2): 138-145,160. DOI: 10.13386/j.issn1002-0306.2020040362
引用本文: 陈秋燕, 郝希然, 王园, 杜涓, 安晓萍, 齐景伟. 麦麸阿魏酸糖酯微生物发酵工艺优化及体外抗氧化和益生活性评价[J]. 食品工业科技, 2021, 42(2): 138-145,160. DOI: 10.13386/j.issn1002-0306.2020040362
CHEN Qiuyan, HAO Xiran, WANG Yuan, DU Juan, AN Xiaoping, QI Jingwei. Optimization of Fermentation Process for Feruloylated Glycosides from Wheat Bran and Evaluation of Its Antioxidant and Probiotic Activities in Vitro[J]. Science and Technology of Food Industry, 2021, 42(2): 138-145,160. DOI: 10.13386/j.issn1002-0306.2020040362
Citation: CHEN Qiuyan, HAO Xiran, WANG Yuan, DU Juan, AN Xiaoping, QI Jingwei. Optimization of Fermentation Process for Feruloylated Glycosides from Wheat Bran and Evaluation of Its Antioxidant and Probiotic Activities in Vitro[J]. Science and Technology of Food Industry, 2021, 42(2): 138-145,160. DOI: 10.13386/j.issn1002-0306.2020040362

麦麸阿魏酸糖酯微生物发酵工艺优化及体外抗氧化和益生活性评价

基金项目: 

内蒙古农业大学"双一流"学科创新人才培养计划项目(NDSC2018-04);内蒙古自治区科技成果转化项目(CGZH2018142);内蒙古自治区科技创新引导项目(KCBJ2018009);内蒙古自治区科技计划项目(201802047);内蒙古自治区科技重大专项(2020ZD0004);内蒙古农业大学科技成果转化专项资金(YZGC2017025);内蒙古农业大学动物科学学院标志性成果专项资金项目(BZCG201912)。

详细信息
    作者简介:

    陈秋燕(1995-),女,硕士研究生,研究方向:生物饲料的研发与应用,E-mail:qiuyan_ch@163.com。

    通讯作者:

    王园(1986-),女,博士,讲师,研究方向:生物饲料的研发与应用,E-mail:wangyuan.926@163.com

    齐景伟(1966-),男,博士,教授,研究方向:生物饲料的研发与应用,E-mail:qijingwei_66@126.com。

  • 中图分类号: TS201.1

Optimization of Fermentation Process for Feruloylated Glycosides from Wheat Bran and Evaluation of Its Antioxidant and Probiotic Activities in Vitro

  • 摘要: 以麦麸为原料,对固态发酵制备麦麸阿魏酸糖酯(Feruloylated glycosides,FGs)的工艺进行优化,并对其体外抗氧化及益生活性进行评价。以植物乳杆菌、枯草芽孢杆菌、地衣芽孢杆菌、酿酒酵母为发酵菌种,采取单菌发酵和混菌发酵筛选最优菌种组合,考察接种量、发酵温度、发酵时间、料水比对麦麸FGs产量的影响,通过响应面试验设计优化发酵工艺。结果表明:以枯草芽孢杆菌:地衣芽孢杆菌:酿酒酵母=1:1:1发酵麦麸时,FGs产量最高;最佳固态发酵工艺条件为发酵温度42.5℃,发酵时间58.5 h,接种量10.7%,料水比1:1.16(g/mL),在此条件下FGs产量为1273.18 nmol/g;抗氧化实验结果表明,DPPH自由基清除率高达87.42%(1 mg/mL),羟基自由基清除率为33.68%(4 mg/mL),还原力为1.078(4 mg/mL)。发酵麦麸FGs可有效促进嗜热链球菌和植物乳杆菌的增殖。综上所述,以枯草芽孢杆菌、地衣芽孢杆菌和酿酒酵母混菌发酵制备的麦麸FGs有一定的抗氧化和益生活性。
    Abstract: The fermentation process for feruloylated glycosides(FGs)from wheat bran was optimized. The in vitro probiotic and antioxidant activities of the extracted FGs from fermented wheat bran were analyzed. Lactobacillus plantarum CGMCC 1.2437,Bacillus subtilis CGMCC 1.0892,Bacillus licheniformis CGMCC 1.813,Saccharomyces cerevisiae CGMCC 2.119 were used as starter strains. The suitable starter strains were screened by different single starter strain and starter strains combination. The effects of level of inoculum,incubation temperature,incubation duration,material to water ratio on the FGs yield were investigated. The fermentation conditions were further optimized using response surface methodology. The results showed that FGs yield was highest when the combination of B. subtilis,B. licheniformis and S cerevisiae were as starter strain. The optimum fermentation conditions were level of incubation temperature 42.5 ℃,incubation duration 58.5 h,inoculum 10.7%,material to water ratio 1:1.16 (g/mL). Under this optimum fermentation condition,the FGs yield was 1273.18 nmol/g. The extracted FGs from fermented wheat bran had strong DPPH radicals scavenging capacity(87.42%,1 mg/mL),hydroxyl radicals scavenging capacity(33.68%,4 mg/mL)and reducing power(1.078,4 mg/mL). The extracted FGs from fermented wheat bran promoted the proliferation of Streptococcus thermophiles and Lactobacillus plantarum. In conclusion,the FGs from wheat bran fermented by B. subtilis,B. licheniformis and S cerevisiae could exert antioxidant and prebiotic activity.
  • [1]

    Koulouris A I,Luben R,Banim P,et al. Dietary fiber and the risk of pancreatic cancer[J]. Pancreas,2019,48(1):121-125.

    [2]

    Lee J M,Calkins M J,Chan K,et al. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis[J]. Journal of Biological Chemistry,2003,278(14):12029-12038.

    [3] 张欣,高增平.阿魏酸的研究进展[J].中国现代中药,2020,22(1):138-147.
    [4] 孙晓春,李铂,黄文静,等.当归醇提物阿魏酸含量和体外抗氧化性检测[J].陕西农业科学,2019,65(1):30-32.
    [5]

    Kim Y,Jeong S J,Seo C S,et al. Simultaneous determination of the traditional herbal formula ukgansan and the in vitro antioxidant activity of ferulic acid as an active compound[J]. Molecules,2018,23(7):1659.

    [6] 邬钰,陈珺.阿魏酸在衰老相关骨代谢疾病治疗中的应用[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(4):395-399.
    [7] 周静,王静,孙宝国.阿魏酸糖酯合成的研究进展[J].食品工业科技,2012,33(16):392-395.
    [8]

    Rondim,Peyrat-maillard M N,Marsset-bagliena,et al. Bound ferulic acid from bran is more bioavailable than the free compound in rat[J]. Agric Food Chem,2004,52(13):4338-4343.

    [9] 赵冰,张可,王静,等.阿魏酸糖酯体外抗氧化性质的研究[J].食品科学,2010,31(21):94-97.
    [10]

    Yuan X P,Wang J,Yao H Y,et al. Feruloyl oligosaccharides stimulate growth of Bifidobacterium bifidum[J]. Anaerobe,2005,11(4):225-229.

    [11] 袁小平,王静,姚惠源.小麦麸皮阿魏酰低聚糖对红细胞氧化性溶血抑制作用的研究[J].中国粮油学报,2005,20(1):13-16.
    [12]

    Ou Si,Jackson G M,Jiao X,et al. Protection against oxidative stress in diabetic rats by wheat bran feruloyl oligosaccharides[J].Journal of Agricultural and Food Chemistry,2007,55(8):3191-3195

    [13] 李林轩,李硕,王晓芳,等.小麦麸皮理化特性与深加工技术探讨[J].粮食加工,2019,44(4):20-23.
    [14] 蔺艳君,刘丽娅,钟葵,等.不同来源小麦麸皮营养成分及酚类物质含量的比较[J].现代食品科技,2014,30(12):194-200.
    [15] 赵文红,许慧颖,陈晖,等.高聚合度麦麸阿魏酸糖酯的组成特征及其自由基清除能力研究[J].河南工业大学学报(自然科学版),2018,39(5):12-17,75.
    [16] 张丽娜. 麦麸阿魏酸糖酯的制备及其抗氧化活性研究[D].郑州:河南工业大学,2016.
    [17]

    Rose D J,George,Inglett. Two-stage hydrothermal processing of wheat(Triticum aestivum)bran for the production of feruloylated arabinoxylooligosaccharides[J].Food Chemistry,2010,58(10):6427-6432.

    [18]

    Rose D J,George,Inglett. Production of feruloylated arabinoxylo-oligosaccharides from maize(Zea mays)bran by microwave-assisted autohydrolysis[J]. Food Chemistry,2010,119(4):1613-1618.

    [19]

    Li K Y,Lai P,Lu S,et al. Optimization of acid hydrolysis conditions for feruloylated oligosaccharides from rice bran through response surface methodolgy[J]. Journal of Agricultural & Food Chemistry,2008,56(19):8975-8978.

    [20] 李向菲,刘小琼,方芳,等.酶解米糠制备低聚糖阿魏酸酯及其抗氧化活性分析[J].广东农业科学,2018,45(6):90-95.
    [21] 解春艳. 茶薪菇发酵制备麦麸膳食纤维与阿魏酰低聚糖及其生物活性研究[D].南京:南京农业大学,2010.
    [22] 余晓红. 出芽短梗霉发酵麦麸制备阿魏酰低聚糖及其生物活性研究[D]. 南京:南京农业大学,2012
    [23] 卜雯丽,李凤伟,王杰,等.出芽短梗霉固态发酵啤酒糟制备阿魏酰低聚糖和膳食纤维工艺研究[J].中国酿造,2019,38(5):38-43.
    [24] 安晓萍,王园,齐景伟,等.基于响应面法分析菌比和辅料对发酵麸皮多糖含量的影响[J].食品工业科技,2018,39(3):122-126.
    [25] 黄越,周春晖,黄惠华.不同提取方法猴头菇粗多糖的表征及其抗氧化活性的比较[J].食品工业科技,2017,38(3):80-86.
    [26] 张倩茹.玉米芯多糖的菌酶协同发酵工艺及其体外活性研究[D]. 呼号浩特:内蒙古农业大学,2018.
    [27] 张婧涵,姚忠,孙芸,等.桑木耳多糖提取工艺优化及其益生活性和抗氧化活性评价[J].现代食品科技,2018,34(4):143-149.
    [28] 任勰珂,陈莉,卢红梅,等.多菌种混合固态发酵秸秆的研究[J].食品工业科技,2017,38(7):130-134.
    [29] 周阳.混菌固态发酵黄芪工艺条件的优化研究[J].食品工业,2018,39(4):23-27.
    [30] 鞠兴荣,王雪峰,何荣,等.混菌固态发酵生产菜籽肽工艺条件优化[J].食品科学,2012,33(11):231-236.
    [31] 李翔宇,马慧,焦冠儒,等.混菌固态发酵麸皮生产微生态蛋白饲料工艺研究[J].农业科技与装备,2017(7):48-51.
    [32] 李爱江,张敏,辛莉.发酵生产过程中发酵条件对微生物生长的影响[J]. 农技服务,2007(4):128-130.
    [33] 姜晓阳,胡迎芬,郑靖义,等.混菌固态发酵花生粕的工艺优化[J].食品工业科技,2019,40(22):120-124.
    [34]

    Xu Y Q,Cai F,Yu Z Y,et al. Optimisation of pressurised water extraction of polysaccharides from blackcurrant and its antioxidant activity[J]. Food Chemistry,2016,194(194):650-658.

    [35]

    Raguraman V,Abraham,L S,Jyotsna,et al. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model.[J]. Carbohydrate polymers,2019,203(203):441-449

    [36] 齐希光,张晖,王立,等.麦麸阿魏酸糖酯抗氧化性的研究[J].食品工业科技,2011,32,(8):71-73

    ,76.

    [37]

    Liu Q,Cao X,Zhuang X,et al. Rice bran polysaccharides and oligosaccharides modified by Grifola frondosa fermentation:Antioxidant activities and effects on the production of NO[J]. Food Chemistry,2017,223(15):49-53.

    [38]

    Soares J R,Dins T C P,Antono P C,et al. Antioxidant activities of some extracts of Thymus zygis[J]. Free Radical Research,1997,26(5):469-478.

    [39]

    Stewart M L,Timm D A,Slavin J L. Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system[J]. Nutrition Research,2008,28(5):329-334.

    [40]

    Wang X,Huang M,Yang F,et al. Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro[J]. Carbohydrate Polymers,2015,125(125):232-240.

  • 期刊类型引用(10)

    1. 袁陈婷,杨容,王立玮,景凌洁,陈璐阳,加羊卓玛,孙小祥,孙锦秀,杨欢. 基于特征多肽抗原的阿胶基原鉴定. 中成药. 2024(04): 1214-1219 . 百度学术
    2. 王晶,杨彤,芦云,王芳. 不同核酸提取方法用于检测明胶动物源性成分的比较分析. 食品科技. 2024(03): 312-319 . 百度学术
    3. 蒋洁莹,史万忠,刘瑾,元唯安,朱蕾蕾. 河蚌多糖生物活性与提取、纯化工艺研究进展. 中国药业. 2024(08): 125-128 . 百度学术
    4. 李晶峰,孙佳明,赵润怀,段金廒,万德光,吴楠,杜延佳,张辉. 动物源中药材鉴定学发展及面临的问题与挑战. 中国医院药学杂志. 2024(08): 973-978+984 . 百度学术
    5. 范小龙,朱晓玲,江丰,陈梦圆,吴婉琴,黄坤,王福燕. 高分辨质谱靶向筛查技术鉴别阿胶中杂皮源成分. 中南农业科技. 2024(07): 94-98 . 百度学术
    6. 杨帅,鲁婷婷,周祖英,迟明艳,巩仔鹏,李月婷,郑林,黄勇. 阿胶化学成分和药理作用及质量控制研究进展. 中国新药杂志. 2023(08): 806-816 . 百度学术
    7. 蒋文丽,朱晓湉,钟铭慧,谢作桦,芦玲,涂宗财,沙小梅. 阿胶制品中典型明胶特征性多肽的鉴定. 食品工业科技. 2023(12): 73-80 . 本站查看
    8. 孔浩,田汝芳,曹桂云,孟兆青. 阿胶质量安全分析研究进展. 畜牧与饲料科学. 2023(04): 109-115 . 百度学术
    9. 孙铁锋,王平,丁相龙,丁立钧,姜其宝,王金国. 细胞膜色谱技术在多肽类成分筛选的研究进展. 药学研究. 2023(11): 926-931+936 . 百度学术
    10. 付群,张玲,庞幸,刘岩,韩蓉,杨嫣骊. 苏州市工业园区市售阿胶类保健品基于PCR技术的检测结果分析. 食品安全导刊. 2023(33): 97-100 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  291
  • HTML全文浏览量:  26
  • PDF下载量:  18
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-05-05
  • 网络出版日期:  2021-01-20
  • 刊出日期:  2021-01-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭